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Abstract
We review here theoretical models for describing various types of reactions
involving light nuclei on the driplines. Structure features to be extracted from
the analysis of such reaction data, as well as those that need to be incorporated
in the reaction models for an adequate description of the processes, are also
under focus. The major unsolved theoretical issues are discussed, along with
some suggestions for future directions of the field.

1. Introduction

A number of experimental reviews on the physics of light exotic nuclei [1–3] have focused
mainly on experimental techniques and the physics that could be extracted from those
measurements. Any attention paid to the reaction models used in the analyses was rather
modest, and has appeared mainly in conference proceedings [4–8], or published summer
school lectures [9]. Our aim in this topical review is to fill this gap by assessing the progress
in the theory of modelling reactions with light dripline nuclei.

In the early days of our field, total reaction cross section measurements were used
to obtain information on halo nuclei. This observable was one of the key pieces of
evidence for the extended density tails (large matter radii [10, 11]). However, depending
on the reaction model used, results could differ significantly: if the appropriate granular
structure of the projectile was included in the reaction model [12], one concluded, from
the same data, that halo nuclei were much larger than predicted using one-body density
models.

This is the first of many examples where there is an interplay between structure and
reaction. As the properties of these exotic nuclei became evident (see figure 1), reaction
models were modified in order to incorporate the essential known structure features. The
essence of these features could be summarized as follows:

(i) finite-range effects extending out farther than expected, due to the very long tails of the
wavefunctions;
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Figure 1. The light end of the chart of nuclides showing where much of the current interest has
been focused. Some of the dripline nuclides found to exhibit new phenomena, such as halos, are
highlighted.

(ii) strong recoil effects due to the few-body granular structure;
(iii) continuum effects due to the proximity to threshold.

The numerous cases discussed in this review are an illustration of the importance of including
these ingredients in the reaction model.

Following total reaction cross section data, and as soon as the beam intensity allowed,
elastic scattering for many of these nuclei was measured, raising some paradigmatic questions
about the type of optical potentials required to fit the angular distributions that are still not
satisfactorily answered. However, it was the study of breakup observables that attracted most
of the theoretical effort. Starting with momentum distributions, which essentially confirmed
the large spatial extension of the valence nucleons, progress led to experiments with complete
kinematics, producing good quality angular and energy distributions of the fragments.

Technical developments, both in the detection system and beam production, enabled not
only experiments with a larger variety of exotic nuclei but, more importantly, measurements
of the traditional transfer and fusion reactions, the basis of most of the knowledge on stable
nuclei. Consequently, systematic measurements of knockout and transfer reactions gave way
to further theoretical developments. The puzzling reports from recent fusion measurements
are presently a strong motivation for advances in the theory of fusion reactions.

Most of the reaction theory for light nuclei on the driplines has been developed for the
high-energy regime of fragmentation beams where convenient approximations can be made.
These include the eikonal approximation, the adiabatic or frozen halo approximation, first-
order perturbation theory, or even isolating the nuclear and Coulomb transition amplitudes
and treating them in different ways. Fortunately, fragmentation data have been abundant,
providing crucial checks, allowing the identification of the exotic features that need to be
assimilated. Looking back over the past two decades, it is fair to say that significant progress
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has been made and that it has been predominantly through the analysis of these high-energy
data that we have learnt what we know about light dripline nuclei.

In our view, a new era is beginning. We are no longer trying to learn general features
but the detailed structure. Unquestionably, it is harder to model reactions at low energy. The
adiabatic and eikonal simplifications are no longer expected to hold, couplings are usually more
important and isolating the nuclear and Coulomb parts is often not possible. However, low-
energy data contain more detailed information on the structure. The history of stable nuclear
physics shows that most of the detailed knowledge came from low-energy data. The large
number of new generation ISOL facilities that have or will become operational (e.g., SPIRAL-
GANIL, REX-ISOLDE, EXCYT, MAFF, ISAC-TRIUMF, HRIBF (Oak-Ridge), RIA-ANL,
E-arena (JHF)) will ensure progress in this direction.

In this review we report on both high-energy and low-energy reaction models. Section 2
examines the theoretical tools of various useful methods. Here we discuss the basic ideas
behind each method, summarizing the formalism and providing the relevant references. In
section 3, the models for analysis of total reaction cross sections are presented. In section 4,
elastic and inelastic scattering studies are considered. Section 5 covers the range of breakup
models presently in use, from the coupled discretized continuum channel (CDCC) method
to the traditional DWBA, including time-dependent, semiclassical approaches as well as the
models for high-energy reactions, mostly applied to momentum distributions. In section 6, the
model used to analyse knockout data is discussed, followed by a discussion of the applications
of transfer reactions to extract structure information (section 7). In section 8, we give an
account of the present status of fusion models. In section 9, we look at the modelling of other
types of reactions which do not fit in any of the previous sections. Finally, in section 10, we
conclude with a discussion on some of the main open issues that need to be tackled in the near
future, including theoretical considerations for reactions with electron beams.

2. Theoretical tools

In this section we give a brief outline of several approaches for calculating reaction observables
for light exotic nuclei. The common feature of these systems is their weak binding and few-
body nature. It is often therefore important to treat their reactions within few-body models also.
We thus begin by discussing a number of theoretical techniques which provide approximate
descriptions of the scattering and reactions of composite nuclei over a wide range of incident
energies.

2.1. Few-body model space

In general, we require approximate solutions of the time-independent few-body Schrödinger
equation. In this review, we focus mainly on projectiles which, to a good approximation, can
be described as strongly correlated n-body systems, where the n constituents can be individual
nucleons or more massive clusters of many nucleons. The projectile’s ground state is assumed
to be a bound state, φ

(n)
0 of the n constituents, each of which can interact with a target nucleus

via complex two-body effective interaction, VjT . This potential is identified with the energy-
dependent phenomenological optical potential obtained by fitting reaction data for the j + T

binary system at the same incident energy per nucleon as the full projectile. If such data
are not available then these potentials are calculated either from folding models or, more
microscopically, from multiple scattering theory.

In most cases of interest, the projectile nucleus has only one or two particle stable bound
states, which couple strongly to the continuum during the reaction process. A major feature
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Figure 2. Definition of the coordinate vectors used in the case of the scattering of a three-body
projectile from a target.

of few-body reaction models is therefore the inclusion of such projectile breakup effects in the
reaction theory.

The Schrödinger equation satisfied by the scattering wavefunction of the effective (n+ 1)-
body (projectile and target) system, �(+), when the projectile is incident with wave vector �K0

in the cm frame, is

[H − E]�(+)

�K0
( �R, �r1, . . . , �rn) = 0, (1)

with total Hamiltonian H = TR + U( �R1, . . . , �Rn) + Hp. Here Hp is the internal Hamiltonian
for the projectile and TR is the projectile cm kinetic energy operator. The vectors {�ri} are the
relative (internal) coordinates between the projectile constituents, and { �Rj } are the position
vectors of the projectile constituents with respect to the target (see figure 2). The total
interaction between the projectile and target is just the sum of projectile constituent–target
interactions:

U( �R1, . . . , �Rn) =
n∑

j=1

VjT (Rj ). (2)

The n-body projectile ground state wavefunction φ
(n)
0 satisfies

Hpφ
(n)
0 (�r1, . . . , �rn) = −ε0φ

(n)
0 (�r1, . . . , �rn). (3)

Hp will also generate an excited continuum spectrum and may support a finite number of bound
or resonant excited states. We thus seek solutions of the few-body scattering wavefunction
�

(+)

�K0
which satisfy the scattering boundary conditions

�
(+)

�K0
= ei �K0· �Rφ

(n)
0 + outgoing waves, (4)

and where the target nucleus is assumed to remain in its ground state. For a projectile with
a single bound state, the outgoing waves include only elastic scattering and elastic breakup
channels. More generally, the outgoing waves will also include terms from any inelastically
excited bound states.

It is implicit in the following that the methods we discuss yield only approximate solutions
of the physical n-body problem. In particular, one- and multi-constituent rearrangement
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channels are absent in the asymptotic (R → ∞) regions of the derived solutions, due to
our use of complex constituent–target interactions and radial and orbital angular momentum
truncations [13]. In fact, all the theoretical schemes calculate approximations to �(+) which
are expected to be accurate representations of the n-body dynamics only within a restricted
volume of the configuration space, or within a given interaction region. Reaction or scattering
amplitudes can nevertheless be calculated reliably by using the wavefunction within an
appropriate transition matrix element.

2.2. Continuum discretization method

The most accurate theoretical technique available for reactions involving a projectile that can
be reliably modelled as a two-cluster system is the method of CDCC [13]. It was originally
formulated and applied to the scattering of the deuteron (n+p), 6Li (α+d) and 7Li (α+t), but
has more recently been applied to a number of loosely bound core+valence nucleon modelled
dripline nuclei. The method cannot, however, be extended readily to three-body projectiles,
such as the Borromean nuclei (6He and 11Li), although progress in developing such a four-body
CDCC model is being made.

The CDCC method approximates the three-body Schrödinger equation as a set of effective
two-body coupled-channel equations by constructing a square integrable basis set {φα} of
relative motion states between the two constituents of the projectile (including, in addition to
the bound states, a representation of the continuum).

Projectiles treated using the CDCC method tend to have very few (often just one) bound
states and the method provides a means of describing excitations to the continuum. Each of
the physically significant set of spin-parity relative motion excitations is divided (or ‘binned’)
into a discrete set of energy or momentum intervals up to some maximum value.

The CDCC method therefore works with the model space Hamiltonian

H CDCC = PHP, P =
N∑

α=0

|φα〉〈φα|, (5)

where the subscript α refers to the set of discrete states (ground state plus excited states)
corresponding to energy eigenvalues εα = 〈φα|Hp|φα〉. The corresponding asymptotic
wavenumbers Kα , associated with the cm motion of the projectile in these excited
configurations, are such that

h̄2K2
α

/
2µp + εα = h̄2K2

0

/
2µp − ε0 = E. (6)

These bin states, together with the ground state, constitute an (N+1) state coupled-channel
problem for solution of the CDCC approximation to �(+)

�CDCC
�K0

(�r, �R) =
N∑

α=0

φα(�r)χα( �R), (7)

where α = 0 refers to the projectile ground state. Explicitly

[TR + Vαα( �R) − Eα]χα( �R) = −
∑
β �=α

Vαβ( �R)χβ( �R), (8)

with Eα = E − εα . The coupling interactions are

Vαβ( �R) = 〈φα|U( �R1, �R2)|φβ〉, (9)

keeping in mind the definition of �R, �R1 and �R2 as illustrated in figure 2.
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The evaluation of these couplings involves additional practical truncations of the CDCC
model space, namely of (a) the maximum order used in the multipole expansion of the
interactions U, and (b) the maximum radius rbin used in evaluating these matrix elements.
These must be chosen to be consistent with the included projectile excitation channels, the bin
widths �ki and interaction ranges.

The convergence of the calculations is then tested for different sizes of this model space.
The number of bins and their upper limit depend on the particular state they are describing.
The parameters must of course be carefully chosen to map any characteristic or resonant
features in the projectile continuum. The different schemes for construction of the bin states
are discussed extensively in the literature [14].

The solution of the coupled equations is obtained by usual partial wave decomposition.
This allows the calculation of the elastic or inelastic scattering amplitude required for
observables such as the differential cross section angular distribution. The CDCC scheme
is available in a general coupled-channel computer code [15, 16].

The nuclear and Coulomb breakups of two-body projectiles, such as 8B, 11Be, 17F and
19C, can also be calculated with this model. The breakup transition amplitudes Tm(�k, �K) from
an initial state J,m to a general physical three-body final state of the constituents, with final
state cm wave vector �K and relative motion wave vector �k, is done by replacing �CDCC in an
exact post-form matrix element [17],

Tm(�k, �K) = 〈
φ

(−)

�k (�r) ei �K· �R|U |�CDCC
�K0m

(�r, �R)
〉
. (10)

Inserting the set of bin states, assumed complete for the model space used, then allows us to
write the transition amplitude as a sum of amplitudes for each bin state, calculated by solving
the coupled equations [14].

2.3. Adiabatic (sudden) approximation

For reactions involving incident projectile energies above a few tens of MeV per nucleon, a
considerable simplification to the CDCC method can be applied if we make use of an adiabatic
treatment of the dynamics. By identifying the energetic (fast) variable with the projectile’s
cm motion coordinate, �R, and the slow variable with the projectile’s internal coordinates, �ri ,
the few-body Schrödinger equation can be reduced to a much simpler two-body form where
the dynamical variable is only �R and the projectile’s internal degrees of freedom enter only
as parameters (to be integrated over later). In the model, as formulated by Johnson and Soper
[18], the approximation amounts to assuming that the breakup energies εk associated with
the most strongly coupled excitation configurations in equation (1) are such that εk � E.
Equivalently, due to the slow internal motions of the constituents of the projectile, the {�ri} are
assumed frozen for the time taken for the projectile to traverse the interaction region. This
approximation is also the starting point for the few-body Glauber method [4], based on impact
parameter descriptions, discussed in the next subsection.

The crucial step is to replace Hp by −ε0, the projectile ground state binding energy. This
is done to satisfy the incident channel boundary conditions (the projectile is incident in its
ground state). What has been assumed here is that, while the projectile does couple to excited
and breakup states, they are all taken to be degenerate with the energy of the dominant elastic
channel, ε0. The adiabatic Schrödinger equation is therefore, with E0 = E + ε0,

[TR + U − E0]�AD
�K0

( �R, �r1, . . . , �rn) = 0. (11)

The crucial point here is that the Hamiltonian now only has parametric dependence on the
projectile coordinates {�ri}, which appear in the potential, U.
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Clearly, for two-body projectiles, the full CDCC approach is more accurate than the
adiabatic approach, particularly at low energies. However, the adiabatic model does not suffer
so much from convergence issues or computational limitations. Also, it has been generalized
and applied to three-body projectiles, something the CDCC method cannot yet cope with. In
addition, the adiabatic model allows for certain simplifying insights, such as when only one of
the projectile’s constituents interact with the target [19], or when the scattering wavefunction
is required only at the point �AD( �R, �r = 0) (a zero-range approximation) [20]. A recent
example of the first of these is the pure Coulomb breakup of a one-neutron halo nucleus such
as 11Be, to be discussed later on.

2.4. Glauber methods

A far more efficient approach for dealing with an n-body projectile is to use the few-body
Glauber (FBG) model, which is based on the eikonal approximation.

The eikonal approximation was introduced in quantum scattering theory by Moliere
and later developed by Glauber who applied it to nuclear scattering where he formulated a
many-body, multiple scattering generalization of the method [21]. In common with other
semiclassical approaches, the eikonal method is useful when the wavelength of the incident
particle is short compared to the distance over which the potential varies appreciably. This
short wavelength condition is expressed in terms of the incident centre of mass wavenumber,
K0, and the range of the interaction, R0, such that

K0R0 � 1. (12)

However, unlike short wavelength methods such as the WKB approximation, the eikonal
approximation also requires high scattering energies, such that

E � |V0|, (13)

where V0 is a measure of the strength of the potential. In practice, and when V is complex,
this high-energy condition is not critical and the eikonal approximation works well even when
E ≈ |V0| provided the first condition, equation (12), holds and we restrict ourselves to forward
angle scattering.

The eikonal wavefunction has incorrect asymptotics and so, to calculate amplitudes and
observables, it must be used within a transition amplitude. Thus for two-body elastic scattering,
via a central potential V (R), the transition amplitude is

T ( �K0, �K) = 〈 �K|V |ψeik
�K0

〉
. (14)

This leads to the well-known form of the scattering amplitude

f0(θ) = −iK0

∫ ∞

0
b dbJ0(qb)[S0(b) − 1], (15)

where q = 2K0 sin(θ/2), θ is the scattering angle and S0(b) = exp [iχ(b)] is the eikonal
elastic S-matrix element at impact parameter b, and the eikonal phase shift function, χ(b), is

χ(b) = − 1

h̄v

∫ ∞

−∞
V (R) dz. (16)

The FBG scattering amplitude, for a collision that takes a composite n-body projectile
from an initial state φ

(n)
0 to a final state φ(n)

α , can be derived following the same steps as in the
two-body (point particle projectile) case. The post-form transition amplitude is

T ( �Kα) = 〈
φ(n)

α ei �Kα · �R∣∣U({ �Rj })
∣∣�eik

�K0

〉
, (17)
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Figure 3. In the few-body Glauber model, each constituent of the projectile scatters from the target
independently with its S-matrix defined as a function of its own impact parameter.

and we obtain

f (n)( �Kα) = − iK0

2π

∫
d�b ei�q·�b〈φ(n)

α

∣∣S(n)(�b1, . . . , �bn) − 1
∣∣φ(n)

0

〉
, (18)

where

S(n) = exp


i

n∑
j=1

χj (bj )


 =

n∏
j=1

Sj (bj ). (19)

Thus the total phase shift is the sum of the phase shifts for the scattering of each of the
projectile’s constituents, as shown in figure 3. This property of phase shift additivity is a direct
consequence of the linear dependence of eikonal phases on the interaction potentials VjT .

Corrections to the straight line assumption of the eikonal approximation have been
calculated and allow the FBG approach to be applied at much lower energies than expected
(below 20 MeV/A). The most straightforward approach is to replace the eikonal S-matrices
by the physical ones, while retaining the simplicity of the impact parameter framework of the
model [22].

The model generalizes in a natural way when Coulomb forces are included in the projectile
constituent–target potentials, VjT .

2.5. The optical limit of the Glauber model

The Glauber model can be simplified considerably at high energies when the interaction
between each projectile constituent and the target can be considered as purely absorptive. In
this case, each constituent S-matrix, Sj (bj ), is calculated within the optical limit of the Glauber
model [23]. Here, the eikonal phase shifts are calculated assuming a ‘tρρ’ approximation to
the optical potentials, VjT , using one-body densities for each j constituent and the target, and
an effective nucleon–nucleon amplitude, fNN. The optical limit S-matrices are thus written as

SOL
j (b) = exp

[
i
∫ ∞

−∞
dz

∫ ∫
d�r1 d�r2 ρj (r1)ρT (r2)fNN(| �R + �r1 − �r2|)

]
. (20)

For an absorptive zero-range NN amplitude and an isospin zero target we have

fNN(�r) = (iσ̄NN/2)δ(�r), (21)

where σ̄NN is the average of the free nn and np total cross sections at the energy of interest.
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It is important to note that we have not thrown away here the few-body correlations in the
projectile since at this stage it is only the constituents’ scattering via their individual Sj that
has been treated in the optical limit (OL). The few-body S-matrix is still defined according to
equation (19). However, if all few-body correlations are also neglected then S(n) is replaced
by SOL which is defined as for the individual SOL

j but with ρj replaced by the one-body density
for the whole projectile. In this case it can easily be shown that full projectile–target OL
S-matrix is equivalent to neglecting breakup effects in equation (18), i.e.,

SOL(b) = exp


〈

φ
(n)
0

∣∣i
n∑

j=1

χj (bj )
∣∣φ(n)

0

〉 . (22)

2.6. Cross sections in Glauber theory

The Glauber model provides a convenient framework for calculating integrated cross sections
for a variety of processes involving peripheral collisions between composite projectiles and
stable targets. In particular, stripping reactions have been studied using approaches developed
by Serber [24]. Variants of such methods are still in use today due to the simple geometric
properties of the reaction processes at high energies.

In the few-body Glauber model, the differential cross section for the scattering process
defined by equation (18) is(

dσ

d�

)
α

= |f (n)( �Kα)|2, (23)

and the total cross section for populating the final state α is thus

σα =
∫

d�|f (n)( �Kα)|2

=
∫

d�b∣∣〈φ(n)
α

∣∣S(n)
∣∣φ(n)

0

〉 − δα0

∣∣2
. (24)

It should again be noted however that such an expression is only valid at high beam energies
and low excitation energies since energy conservation is not obeyed in this model. When
α = 0, the total elastic cross section is

σel =
∫

d�b∣∣1 − 〈
φ

(n)
0

∣∣S(n)
∣∣φ(n)

0

〉∣∣2
. (25)

The total cross section is also obtained from the elastic scattering amplitude, employing the
optical theorem, to give

σtot = 2
∫

d�b[
1 − Re

〈
φ

(n)
0

∣∣S(n)
∣∣φ(n)

0

〉]
. (26)

Hence, the total reaction cross section, defined as the difference between these total and elastic
cross sections, is

σR =
∫

d�b[
1 − ∣∣〈φ(n)

0

∣∣S(n)
∣∣φ(n)

0

〉∣∣2]
. (27)

For a projectile of total angular momentum j , the above expression is more correctly
defined as

σR = 1

2j + 1

∫
d�b

∑
m,m′

[
1 − ∣∣〈φ(n)

0m′
∣∣S(n)

∣∣φ(n)
0m

〉∣∣2]
. (28)
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For projectiles with just one bound state, any excitation due to interaction with the target
will be into the continuum. For such nuclei, which include the deuteron and many of the
neutron halo nuclei (such as 6He and 11Li), it is possible to describe elastic breakup channels
in which the target and each cluster in the projectile remain in their ground states. For simplicity
of notation, we assume a two-body projectile with continuum wavefunctions φ�k , where �k is
the relative momentum between the two clusters, and S = S(2)(b1, b2) = S1(b1)S2(b2) is
understood. Elastic breakup, also referred to as diffractive dissociation, has amplitudes

f (�k, θ) = −iK0

∫
d�b ei�q·�b〈φ�kσ |S|φ0m〉. (29)

Making use of the completeness relation (when there is only one bound state)∫
d�k|φ�kσ 〉〈φ�kσ | = 1 − |φ0m〉〈φ0m| (30)

the total elastic breakup cross section is

σbu = 1

2j + 1

∫
d�b

∑
m,m′

[〈φ0m||S|2|φ0m〉δm,m′ − |〈φ0m′ |S|φ0m〉|2]. (31)

The difference between the reaction and elastic breakup cross sections is the absorption cross
section,

σabs = 1

2j + 1

∫
d�b

∑
m

[1 − 〈φ0m||S|2|φ0m〉], (32)

which represents the cross section for excitation of either the target or one or both of the
projectile clusters.

The above formula can be understood by examining the physical meaning of |S|2
(=|S1|2|S2|2). The square modulus of each cluster S-matrix element, |Si |2, represents the
probability that it survives intact following its interaction with the target at impact parameter
�bi . That is, at most, it is elastically scattered. At large impact parameters |Si |2 → 1 since the
constituent passes too far from the target. The quantity 1 − |Si |2 is therefore the probability
that cluster i interacts with the target and is absorbed from the system. Such a simple picture
is useful when studying stripping reactions in which one or more of the projectile’s clusters
are removed by the target while the rest of the projectile survives. Thus, the cross section for
stripping cluster 1 from the projectile, with cluster 2 surviving, is given by

σstr = 1

2j + 1

∫
d�b

∑
m

〈φ0m||S2|2[1 − |S1|2]|φ0m〉. (33)

This cross section is seen to vanish if the interaction V1T of constituent 1 with the target is
non-absorptive, and hence |S1| = 1.

2.7. Time-dependent methods

A number of other semiclassical few-body reaction models have been developed and applied
to reactions in which the projectile is treated as a core+valence nucleon system. One method,
developed by Bonaccorso and Brink, is to solve the time-dependent Schrödinger equation after
assuming that the relative motion between the projectile’s core and the target can be treated
classically and approximated by a constant velocity path. This method [25, 26] treats the time
dependence of the reaction explicitly and thus conserves energy, but not momentum. Breakup
amplitudes can then be calculated within time-dependent perturbation theory, referred to as
the transfer to the continuum (TC) model [27].
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derived from the same cluster wavefunctions. In both cases, the reaction cross section is fixed to
the experimental value.

Other time-dependent approaches [28, 29] also treat the projectile–target relative motion
semiclassically but solve the time-dependent Schrödinger equation using a non-perturbative
algorithm on a three-dimensional spatial mesh that allows the treatment of Coulomb breakup
in the non-perturbative regime.

A time-dependent wavepacket approach has been developed to study low-energy reactions
of halo nuclei in a three-body direct reaction model [30]. More recently, this method has been
used to analyse the fusion reaction of 11Be on a medium mass target in a three-dimensional
model [31]. This will be discussed in section 8.3.

3. Reaction cross sections

One of the first observables measured in the study of neutron-rich (halo) nuclei was their
total interaction cross section [10, 11]. This was the first indication of their extended matter
radii due to the long-range tail in their neutron densities. Theoretically, one calculates the
total reaction cross section using equation (28). Early estimates of the size of neutron-rich
isotopes of lithium and helium employed the optical limit of the Glauber model [23] in which
the nuclear one-body densities were taken to be simple Gaussians. This allows for a simple
analytical expression to be derived [32]. This predicted an enhanced size for these nuclei
compared to that obtained from the usual 〈r2〉1/2 ∝ A1/3 scaling.

By retaining the few-body degrees of freedom in the projectile wavefunction, its important
structure information remains entangled. As a consequence, studies that evaluated the reaction
cross section in equation (28) correctly [12, 33], rather than take the optical model limit,
predicted an even larger matter radius, as shown in figure 4. This may at first sight seem
contrary to what we might expect, since such a model allows for new breakup channels to
become available predicting a larger reaction cross section and hence a smaller radius to
bring the cross section back down to the experimental value again. However, a simple yet
powerful theoretical proof, due to Johnson and Goebel [34], shows that for a given halo
wavefunction, the optical limit model always overestimates the total reaction cross section
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for strongly absorbed particles, thus requiring a smaller halo size than suggested by the full
few-body calculation for a given cross section.

4. Elastic and inelastic scatterings

Much has been learned about the structure of light exotic nuclei from elastic scattering, whether
the nucleus of interest is scattered from a stable nucleus or single proton. The latter case is,
of course, just proton elastic scattering in inverse kinematics. Over the past decade, a number
of measurements of the angular distribution for the scattering of exotic weakly bound light
nuclei from a stable target (often 12C) were unable to distinguish between elastic and inelastic
scatterings due to the poor energy resolution in the detectors. Such ‘quasielastic’ cross sections
were thus unable to resolve low-lying excited states of the target (e.g., the 2+ and 3− states
of 12C) from the elastic channel and the data were an incoherent sum of elastic and inelastic
pieces.

Angular distributions have been measured for 6He [35], 8He [36], 8B [37], 11Li [38, 39]
and 14Be [40]. All these nuclei are very weakly bound and have a well-defined few-body
cluster structure. Indeed, most have only one bound state and any excitation during the
scattering process will therefore couple to the breakup channels. Similarities were quickly
drawn between these and well-studied examples such as the deuteron (p+n), 6Li (α+d) and 7Li
(α+t), the scattering of which is strongly influenced by their dynamic polarization. For such
projectiles, simple folding models based on single particle densities fail to generate the optical
potentials needed to describe the elastic scattering angular distributions.

For halo nuclei where the binding energies are typically of the order of 1 MeV or less,
the breakup effect is even more important. The elastic scattering data for 6He+12C have
been analysed within an optical model approach, with the real part of the optical potential
calculated in the double-folding model using a realistic density-dependent NN interaction and
the imaginary part taken as a standard Woods–Saxon form. The projectile density used in the
folding is calculated from realistic few-body wavefunctions. Such a ‘bare’ folding potential,
however, describes the no-breakup scattering in which the projectile remains in its ground
state throughout. An additional phenomenological dynamic polarization potential (DPP) must
therefore be added to it to account for coupling to the breakup channels [41] (see figure 5).

A more microscopic approach to elastic scattering is to use a few-body scattering model
in which the few-body correlations of the projectile are retained. In such an approach it is the
few-body wavefunction of the projectile that is used directly rather than its one-body density.
Three-body models used previously to study the scattering of deuterons and 6,7Li have been
based on CDCC, adiabatic and Glauber approaches. The required inputs to all these models, in
addition to the projectile few-body wavefunction, are the projectile constituent–target optical
potentials. In particular, one of the advantages of the Glauber approach is that breakup is
included in a natural way to all energies and angular momenta, and to all orders in breakup,
through a closure relation. In fact, it has been found that higher order breakup terms, such as
those responsible for continuum–continuum coupling, are indeed very important [45].

The DPP representation of this breakup effect on the elastic channel has been analysed
for various halo nuclei such as 6He and 11Li [41, 45–48]. It is found to be strongly absorptive
and with a significant repulsive real part in the far surface region, which acts to reduce the
far-side scattering amplitude.

Most few-body models have been developed to describe the scattering of two-body
projectiles (three-body scattering models). However, many have been extended to four-
body models in order to describe the scattering of projectiles which are themselves modelled
as three-body systems, such as 11Li. First, a four-body Glauber model, based on eikonal
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Figure 5. Elastic scattering of 6He+12C at 38.3 MeV/nucleon. The data are from [41]. The
solid curve is an optical model fit to the data comprising a folded potential, using the energy-
and density-dependent effective NN interaction CDM3Y6 of [42] folded over simple one-body
densities for projectile and target, plus a complex dynamic polarization potential to account for
6He breakup. (See [41] for further details.) The dashed curve is obtained from a completely
parameter-free four-body Glauber calculation with a Faddeev wavefunction for 6He [35]. The
dotted curve is obtained by folding a 6He density [43] and a two-parameter Fermi density for 12C
with the density-dependent DDM3Y interaction [44].

and adiabatic methods, was presented [49] and subsequently extended to include recoil and
few-body correlation effects [50]. Soon after, a four-body adiabatic model—which was fully
quantum mechanical in that it made no semiclassical or eikonal assumptions—was developed
[51] based on the three-body model of Johnson and Soper [18]. At the time of writing
this review, work is underway on a four-body CDCC calculation. Ultimately, however,
the simplicity of the Glauber approach makes it the most practical tool for describing the
scattering of projectiles composed of more than three constituents. Using random sampling
(Monte Carlo) integration, it has been extended [52] to describe the scattering of 8He from 12C
in which the projectile is described by a five-body (α+4n) harmonic oscillator based cluster
orbital shell model approximation (COSMA) wavefunction [53].

An analysis of high-energy (700 MeV) elastic scattering of protons from helium isotopes,
6He and 8He, in inverse kinematics has been carried out [54, 55] to estimate their matter
radii (figure 6). Using the Glauber model to determine the forward angle differential cross
section it was found that while few-body correlation effects were not important at the small
momentum transfers of the experimental data [56], nevertheless the asymptotic behaviour of
the few-body wavefunctions describing the ground states of these nuclei leads to long-range
tails in the one-body density distributions, particularly for 6He. Simple analytical expressions
for the densities do not give rise to such long tails and hence underpredict the matter radius of
6He by about 10%.

Recently, the elastic differential cross sections (and total reaction cross sections) have been
calculated for light nuclei, again within the framework of Glauber theory but with the optical
phase-shift function evaluated by Monte Carlo integration [57]. In this work, the authors used
full A-body wavefunctions for their projectiles calculated using the Green function Monte
Carlo method [58]. The model was applied to study the scattering of 6He from a proton
target—now a seven-body scattering model—and compared with the data described in the last
paragraph.
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transfers such as these the cross sections depend on the matter radii chosen for the projectiles. The
curves for 6He and 8He scatterings were obtained within a few-body Glauber model [55]. The data
are from the IKAR collaboration [56, 54].

An important drawback of Glauber methods is that they are only accurate for forward
angle high-energy scattering. At lower energies, corrections to the two basic assumptions (the
eikonal and the adiabatic) of the few-body Glauber model are necessary [22, 59]. Figure 7
shows the ratio to the Rutherford angular distribution for 11Be elastic scattering from carbon
at 10 MeV/nucleon, using various models. The solid curve is the CDCC cross section and
represents here an ‘exact’ calculation; the dot-dashed is also from a fully quantum-mechanical
calculation but having made an adiabatic approximation; while the dashed curve is from a
three-body Glauber model calculation which makes, in addition to adiabatic assumption, an
additional semiclassical (eikonal) approximation. Clearly, while this energy is rather low for
either the eikonal or adiabatic assumptions to hold, both can be corrected for [22, 59] with the
inclusion of non-eikonal and non-adiabatic terms in the elastic amplitude.

A useful approximation to the adiabatic model, referred to as the ‘recoil limit’ model
[14, 19], is obtained when the potential between the projectile’s core and the target dominates
over that between the valence nucleon(s) and the target. In this limit, when all but one of the
potentials in the sum in equation (2) can be neglected, it can be shown that there is an exact
closed form to the few-body adiabatic wavefunction of equation (11). This leads to a factorized
expression for the scattering amplitude, into a point amplitude that is, to a good approximation,
that of the core–target system at the same energy per nucleon and momentum transfer as the
full projectile, and a form factor containing all the information on the structure and excitations
of the projectile. Such a simple formulation has proved to be extremely useful not only in
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providing physical insight but as a check of more complete coupled-channel methods such as
the adiabatic and CDCC models.

The advantage of the few-body scattering models described here is that they require two
types of inputs which should, in principle, be well known: (i) the few-body wavefunctions that
describe the structure of many of the loosely bound, particularly light halo nuclei so well and
(ii) information about the individual scattering of the projectile clusters from the target, either
as optical potentials or as scattering amplitudes. It is now well established that the few-body
dynamics should be incorporated into the scattering and reaction mechanisms ab initio. This
necessary entangled approach goes beyond simply feeding in knowledge of the total matter
density distribution of the projectile.

Another approach that takes into account the few-body nature of scattering of halo nuclei
is to treat it within a few-body multiple scattering approach. Such a model, known as the
Multiple Scattering expansion of the total Transition amplitude (or MST), has been developed
by Crespo and Johnson [60]. While traditional multiple scattering expansions of the optical
potential, such as the KMT approach [61], rely on a mean field description that treats all
nucleons (in the projectile and target) on an equal footing, they are inappropriate for exotic
loosely bound nuclei that are far from stability. The MST approach, however, surpasses such
mean field expansions since it takes into account structure features of the projectiles beyond
the total matter density distribution alone. It has been applied to proton elastic scattering
from 11Li, in inverse kinematics, and shows a much better agreement with data than the KMT
optical model approach due to its inclusion of both recoil effects (of the 9Li core) and breakup
effects of the halo neutrons [62].

Proton inelastic scattering from halo nuclei has been used as a tool to search for evidence
of the low-lying excited states in the continuum. So far, coupled-channel methods such as
CDCC, which explicitly expand on continuum states, can only be used, as mentioned earlier,
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to study projectiles comprising two clusters. But many exotic nuclei present a core+2n
three-body structure and thus require for the time being a different approach. The reaction
11Li(p, p′)11Li∗ has been analysed within both the shake-off approximation [63], in which
only the proton–core contribution to the single scattering term is considered, and the multiple
scattering MST approach [64], in which the scattering of the proton from the halo neutrons is
also taken into account.

A microscopic model referred to as the g folding potential has been developed by Dortmans
and Amos [65] who, together with Karataglidis [66], applied it to both elastic and inelastic
proton scatterings on a range of both stable and unstable nuclei. The optical potential for
the model is obtained by folding a complex energy- and density-dependent effective NN
interaction over the one-body density matrix elements and single particle bound states of the
target generated by shell model calculations. They show that the analysis of inelastic data is
a sensitive test of nuclear structure. For instance, it has been shown [67] that good agreement
with data can be achieved for the inelastic scattering to the unbound 2+ state at 1.87 MeV of
6He from protons at 41 MeV/A, provided a large enough shell basis is used to calculate the
wavefunctions for the initial and final states of 6He.

5. Breakup reactions

Given their very low binding energy, breakup cross sections of exotic nuclei are generally
quite large and relatively easy to measure. Consequently, numerous breakup measurements
have been performed, even when the radioactive beam intensity was rather low. In parallel,
the theoretical community has been attempting to model these reactions accurately. In the
following sections we discuss the results for several approaches available in the literature.

5.1. Time-dependent calculations (semiclassical and Glauber approaches)

The semiclassical theory for Coulomb excitation was developed in the early days of nuclear
physics [68]. The semiclassical approach is valid for large impact parameters and relies on the
fact that the relative motion between the projectile and target can be treated classically whilst
the excitation of the projectile is treated quantum mechanically. Then, the total breakup cross
section is a product of the Rutherford cross section by the square of the excitation amplitude.
The excitation amplitude is typically calculated perturbatively, and often only E1, M1 and E2
contributions are sufficient. A further extension of this work for relativistic energies, where
the projectile follows straight line trajectories, can be found in [69].

The pioneering work by Baur and Bertulani [70], proposing Coulomb dissociation as a
source of information for radioactive capture rates relevant in astrophysics, justifies the large
efforts that concentrated on this topic over the past decade and in particular on the breakup of
8B. (For more detail, a topical review on this subject can be found in [71].) Calculations in [70]
show the kinematical regimes where the breakup of 7Be → α+3He and 16O → α+12C on 208Pb
would become useful for astrophysics (both reactions rates have meanwhile been measured
using the Coulomb dissociation method). More relevant for our topic is the application to 8B.
In [72], calculations for E1 and E1+E2+M1 are performed and compared with the RIKEN
data [73]. Controversy on the importance of the E2 contribution for this reaction was raised
due to the re-analysis of the data in [74]. Improvements in the reactions models, which will
be covered in the following subsections, have shown that the quadrupole contribution is not
easy to disentangle.

Higher order corrections to include the two-photon exchange was developed in [75]
and corrections up to third order for the Coulomb interaction was deduced within the small
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Figure 8. The breakup of 11Li on a lead target at 28 MeV/A: first-order perturbation theory
(dotted line) versus the dynamical calculation (solid line). The calculations are from [77] and the
data are from Sackett D et al 1993 Phys. Rev. C 48 118.

adiabaticity approximation [76]. The second-order correction is always positive but the third
order interferes to produce the so-called dynamical quenching of the E2 strength [29]. These
corrections are more important at lower beam energies and for small relative energies of the
fragments resulting from the breakup of the projectile. In addition, nuclear diffraction effects
need also be considered. The semiclassical approach neglects the strong interaction between
the projectile and the target. Diffraction corrections on the Rutherford orbit were calculated
by comparing the semiclassical expressions with the Glauber approach [76]. These effects
can become very large even for small angles.

Although the first-order semiclassical method is appealing due to its simplicity, there
are many aspects of the problem that are left out. One of the debated issues concerned the
post-acceleration of the light fragment in the Coulomb field. In order to describe this process
properly, one should formulate the problem non-perturbatively.

Instead of treating the time-dependent Hamiltonian perturbatively, an exact treatment can
be performed. This approach, known as the dynamical method and introduced in section 2.7,
has two great advantages: (i) it contains the coupling to breakup channels to all orders and
(ii) the multipole expansion of the Coulomb interaction is not necessary. In most applications
to data, the projectile is still confined to the Rutherford trajectory. Such applications include
the breakup of 11Li (using a dineutron model) and 11Be [77, 78]. The time evolution of
the projectile wavefunction was calculated by solving the three-dimensional time-dependent
Schrödinger equation. In both examples the dynamical calculation reduces the cross section
when compared with first-order perturbation theory, although this effect is more noticeable
at lower energies. An example of the breakup of 11Li on 208Pb at 28 MeV/A is shown in
figure 8, comparing the first-order perturbation theory with the time-dependent dynamical
calculation. The re-acceleration is produced automatically in the calculation, shifting the
momentum distributions. The comparison with the breakup data for 11Be is good. For 11Li,
the calculation produces a different energy distribution, a limitation not of the reaction model
but of the dineutron structure model. The application of this method to the breakup of 8B at
intermediate energies [72, 29] shows the importance of including all the dynamics, as in this
case there is a strong E1/E2 interference that reduces substantially the breakup probability.
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More recent time-dependent calculations including both the nuclear and Coulomb
interactions between projectile and target have been performed for the low-energy breakup
of 8B [79, 80]. In the first of these, the calculation is partly truncated, in the sense that
no continuum–continuum couplings are included. The comparison between these two
calculations shows that this is not an adequate approximation for this system. Similar
calculations were performed for the breakup of 17F, another exotic nucleus on the proton
dripline [81]. Conclusions are qualitatively similar to those for 8B.

Other implementations of the non-perturbative time-dependent approach were performed
in [28, 82]. The Lagrange-mesh method of [28] used the breakup of 11Be on 208Pb at
72 MeV/A as a test case. A careful study of the convergence of the method demonstrates
that the equation needs to be solved for a radial grid within a large range (Rmax = 1200 fm)
keeping the radial step very small. Deflection from the straight line trajectories and a spin–
orbit coupling to the Coulomb field are included but proved to be weak for the particular case
studied. The calculations in [82] have been successful in analysing the recent 11Be data from
GANIL.

Another possibility for calculating neutron breakup observables for nuclei on the neutron
dripline is the semiclassical TC model [27] described in section 2.7. In this model, the
initial and final wavefunctions are approximated to their asymptotic forms, and the WKB
approximation is made to the distorted waves describing the projectile–target relative motion,
providing a simple analytic expression for the Coulomb breakup amplitude. It is generally
applicable to reactions at large impact parameters and intermediate energies. It has been
demonstrated that this model reduces to the PWBA (plane wave Born approximation) when
the binding energy of the projectile tends to zero, and to the Serber formula in the high-energy
limit.

Often, an independent treatment of the nuclear and Coulomb parts is preferred. For
example, in [83] a semiclassical model is developed to study interference effects in the breakup
of one-neutron halos. Results for 11Be are calculated when it reacts with three separate targets.
The Coulomb breakup contribution is calculated within a first-order semiclassical approach,
whereas the nuclear neutron–target interaction is treated to all orders. These are finally added
incoherently. More recently, the same authors have presented a model in which they calculate
both Coulomb and nuclear breakups to all orders consistently within an eikonal framework
[84].

Unfortunately, even though it is now generally known that dynamical effects are very
important, often the first-order semiclassical theory is still used (e.g. the dissociation of 19C
[85] or 8He [86]).

5.2. DWBA calculations

A traditional quantum-mechanical approach to the breakup reaction uses distorted waves for
the initial and final states of the relative motion between the projectile and the target, as well
as the Born approximation: the one-step DWBA. The nuclear part of early RIKEN data for 8B
breakup on 208Pb was analysed using this approach [73], whilst the Coulomb part was treated
in the first-order semiclassical theory. This reaction was re-measured with better accuracy
and angular coverage [87]. These data were re-analysed using DWBA for both nuclear and
Coulomb parts [88, 89]. The results show evidence for the strong model dependence of the
E2 contribution.

At lower energy, the E2 component becomes stronger. A series of experiments were
carried out in Notre Dame [90–92] with the aim of pinning down this ingredient. The DWBA
calculation of [93] for this system used, instead of the conventional collective model for the
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Figure 9. The breakup of 6He on 12C at 240 MeV/A: (a) contribution of 1− (thin solid), 2+ (long
dashed) and 0+ (dot-dashed) to the differential cross section; (b) contribution of the nuclear (dot-
dashed) and the Coulomb part (long dashed); (c) contribution of elastic (long dashed) and inelastic
fragmentation (inelastic). In all cases the thick solid lines correspond to the total differential cross
section and are compared with the data from Aumann T et al 1999 Phys. Rev. C 59 1252.

coupling, the folding with the 8B wavefunction. This aspect is essential for loosely bound
projectiles. A calculation for the angular distribution, for Coulomb only, shows that the
finite-range effects of 8B become noticeable for angles as low as 30◦, much lower than what
would be expected through impact parameter considerations. In that work a nuclear peak is
predicted around 80◦, which disappeared once all couplings were included (next subsection).
The importance of Coulomb–nuclear interference is also underlined.

All the above-mentioned approaches describe the breakup of two-body projectiles. The
work for calculating the three-body breakup cross section was initiated with the development
of the four-body DWIA (distorted wave impulse approximation) [94]. This method offers a
one-step quantum-mechanical calculation only valid for high energies, when the loss of energy
in the breakup is small compared to the initial energy. The calculations were applied to the
6He breakup in the fields of 12C and 208Pb. Results show that including the full three-body
structure of the projectile enables a very rich interplay between the reaction mechanism and
the halo excitations that otherwise would be missing (an illustration is given in figure 9).
The major drawback of this model is that the four-body partial wave expansion is extremely
cumbersome. Preliminary four-body DWBA calculations for the Coulomb breakup of 6He
have also been presented in [95].
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Figure 10. The breakup of 8B on 58Ni at 26 MeV: nuclear only (long dashed line), Coulomb only
(short dashed) and the result of including both nuclear and Coulomb (solid). The grey lines are the
truncated calculations without couplings between continuum states.

5.3. CDCC calculations

The CDCC method [96, 97], briefly introduced in section 2.2, offers one of the most complete
approximations to the three-body problem involving a two-body projectile impinging on a
target. It has been shown that the exact Faddeev equations reduce to the CDCC equations as
long as the model space is sufficiently large [98]. And even though convergence issues need
to be carefully checked, solving the CDCC equations is much easier than finding the Faddeev
solutions to the problem.

The CDCC method reduces to the DWBA when only one-step processes are taken into
account. One can further solve the coupled-channel equations iteratively, including 2, 3, . . . , n

steps in the reaction. This method should converge to the CDCC exact solution. However, if
the couplings are strong, then the Born series may not converge.

Before discussing specific applications of the CDCC method, we emphasize that it is
not always trivial to obtain a model space which is sufficient to account for all the physical
properties (e.g., [17]). Convergence studies concerning the choice of the discretization were
performed in [99] for 58Ni elastic and breakup reactions, proving that both the average method
and the midpoint method give the same results. However, it should be stressed that that study
considered nuclear coupling only, and not Coulomb. The main advantage of the average
method is that the resulting bin-wavefunctions characterizing the continuum states are square
integrable, and therefore couplings between two continuum states are tractable.

The first application of the CDCC method to the breakup of exotic nuclei was performed
for the Notre Dame experiments [90–92]: 25.8 MeV 8B, breaking up into 7Be+p under
the field of 58Ni [17, 100]. In [100] differential cross sections for multistep processes are
calculated for both nuclear and Coulomb separately. It is shown that even six-step processes
have a significant contribution. Here too, Coulomb and nuclear effects need to be included
coherently, as interference plays an important role. In figure 10 the full CDCC calculation
is compared with the truncated calculation where no continuum–continuum couplings are
included. The huge reduction of the nuclear peak can only be attributed to the couplings
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Figure 11. The breakup of 8B on lead at 44 MeV/A: the quadrupole components of the reaction
process have been multiplied by the given factor. The data are from [104].

within the continuum. The three-body observables were adequately derived in [17]. This
was required due to the fact that the data had incomplete kinematics [90–92] (the outgoing
proton was not detected). The calculated 7Be angular and energy distributions could then be
compared directly with the data. The agreement is excellent for all but the largest detection
angle, where transfer effects become relevant. Yet even this fact can be easily accounted for
within the model [92].

More recently there has been an application of the CDCC method to the breakup of 8B at
higher energies [101]. In the previous years, a series of 8B Coulomb dissociation experiments
were performed at MSU [102–104]. Breakup data on both Pb and Ag targets, at 44 MeV/u
and 81 MeV/u, were compared with CDCC calculations in [101]. Therein it is shown that the
asymmetry of the momentum distributions is reduced through the couplings to the continuum,
in agreement with the results at lower energy [17]. Also, in order to obtain agreement with
the data, it was found that the quadrupole component needed to be scaled by 1.6, as shown in
figure 11.

The motivation for both the Notre Dame and the MSU series of measurements on 8B
is astrophysical. As mentioned earlier, Coulomb dissociation may offer a powerful tool for
extracting S-factors, as long as the E2 component can be well determined, nuclear effects are
negligible and no higher order effects are present. Both Notre Dame and MSU experiments
aimed at pinning down the E2 components, which are part of the dissociation cross section
but do not contribute to the direct capture transition at low energy. The data from Notre Dame
[92] are consistent with the modified 8B model from Esbensen and Bertsch [29] (where all
breakup states are calculated with the ground state single particle interaction). However, as
just mentioned, the MSU data [104] require a 1.6 increase of the E2 component. It is not clear
whether the inconsistency comes from the reaction model or missing structure information.

CDCC calculations for the breakup of 6Li and 7Li on Pb have been used to analyse
the recent data from Florida State [105]. Experiment shows that the α-breakup for 6Li is
systematically larger than that for 7Li. The CDCC results predict the correct trend in the
measured energy range (29 MeV to 52 MeV) although the absolute value is considerably
lower than expected. The most likely reason pointed out by the authors for this mismatch
[105] is the absence of transfer channels in the calculation. This was also found to be important
for 6He [106], and we will come back to this point in section 7.



R110 Topical Review

5.4. Other approaches to breakup

Although in the previous subsections we have covered the main theoretical approaches to
breakup, some alternative methods that were developed with specific applications in mind
should also be mentioned.

The recoil limit approximation [14, 19] to the adiabatic method described in section 4
is particularly interesting for neutron-rich nuclei [107, 108]. This method involves a fully
quantum-mechanical non-perturbative few-body description of the breakup process, where
essentially two approximations are made: (i) the valence particle(s) of the projectile does(do)
not interact with the target and (ii) the relative motion of the fragments in the projectile is
treated adiabatically. For the case of pure Coulomb breakup of projectiles with a neutral
valence particle (such as 11Be) there is no interaction between the valence neutron and the
target and so only an adiabatic approximation is made. If the reactions are performed at
relatively high energies then this assumption should hold. In [107] results for the breakup of
the deuteron are compared with various sets of data, and a good level of agreement is obtained.
The application to three-body projectiles is made in [108]. The comparison of the theory
with the experimental data for the breakup of 6He shows that for this reaction [109], nuclear
effects are considerable and finite-range effects on the Coulomb interaction need to be taken
into account.

Even though the equivalence between the full Faddeev formalism and the CDCC
truncation has been proved [98], in practice the CDCC calculations are truncated in
configuration space and matched to two-body asymptotics. Work developed by Alt and
Mukhamedzhanov [110] estimated the correction to these approximations, handling the
Faddeev two- to three-body scattering problem. Therein, corrections to the asymptotics
for the three charged particles’ final state are included. The application to the breakup of 8B
shows that these asymptotic effects are more important for larger angles and relative energies.
They are not relevant for the high-energy GSI experiment [111] but should not be neglected
in the RIKEN data [73, 87].

The participant spectator model (PSM) has been proposed to calculate high-energy
reaction observables for three-body projectiles impinging on a target. It takes the sudden
approximation (neglecting completely the internal energy of the projectile) and assumes that
only one of the constituents of the three-body nucleus interacts with the target at a time.
Initially applied to light targets, where the process was nuclear dominated [112, 113], it has
since been extended to treat Coulomb processes too [114]. A wide variety of observables
are computed. For the 11Li data, it seems to be possible to choose reasonable radial cutoff
parameters within a black disc approximation, for each fragment separately, that provide an
overall agreement.

In the data analysis of many three-body breakup experiments, the mechanism is often
interpreted as a decay through the existing two-body resonances of the subsystems. In [115]
it is shown that a correspondence between the R-matrix resonance parameters and the real
resonance structure of the two-body subsystems is not always possible.

5.5. Momentum distributions

Measurement of the momentum distributions of the fragments (core and valence nucleons)
following the breakup of halo nuclei on stable targets is now a well-established method for
studying halo properties. While it has been used for many decades as a tool to access the
structure of stable nuclei, it is particularly well suited to loosely bound systems. The basic
idea is simple: since very little momentum transfer is required in the breakup process to
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dissociate the projectile fragments, they will be detected with almost the same velocity as
they had prior to the breakup, and their relative velocities will be very similar to those within
the initial bound projectile. In all reactions with weakly bound systems the momentum
distributions are found to be very narrowly focused about the beam velocity. This has
the simple physical interpretation of representing the momentum distribution of the initial
projectile. Via the uncertainty principle, the narrow momentum distribution corresponds to
a wide spatial distribution. It was such observed narrow distributions which first helped
confirm the large extent of halo nuclei [116]. Since then many measurements have been made,
involving detection of both the valence nucleons and the core fragments, and the halo structure
of several light nuclei has been established.

Two types of distributions can be measured: either perpendicular (transverse) or parallel
(longitudinal) to the beam direction. It is now known that the transverse distributions
are broadened due to nuclear and Coulomb diffraction effects (elastic scattering of the
fragments from the target) and therefore require more careful theoretical analyses. This
is why longitudinal momentum distributions are regarded as a better probe of the projectile
structure. Early on, simple models based on eikonal assumptions agreed with measurements
rather well. Similar widths were obtained from nuclear breakup on light targets and Coulomb
breakup on heavy targets, supporting the view that the distributions were no more than
the square of the Fourier transform of the projectile ground state wavefunction. However,
presently this view is considered too simplistic. Firstly, these simple models only really
sample the momentum content of the single particle wavefunction at the nuclear surface [118].
Secondly, reaction mechanisms, for the case of two neutron halo nuclei, need to be taken into
account since the neutrons may be scattered or absorbed separately. This is even the case
for single valence nucleon systems. In the breakup of 8B, the reaction mechanisms lead to a
narrowing of the calculated width due to the valence proton being in a relative p-state and the
m = ±1 components of the wavefunction being affected differently in the breakup process
[29, 119].

For single valence nucleon systems, the longitudinal inelastic breakup momentum
distributions for the core—at high energies the elastic breakup piece is small—can be expressed
as

dσ

dkz

= 1

2l + 1

l∑
m=−l

∫
d�s

∣∣∣∣ 1√
2π

∫
dz eikzzφlm(�s, z)

∣∣∣∣
2 ∫

d�bc|Sc(bc)|2(1 − |Sn(bn)|2), (34)

where bn = |�bc + �s| and �s is the projection of the core–nucleon relative coordinate onto
the impact parameter plane, φlm(�s, z) is the valence nucleon wavefunction with orbital
angular momentum l and projection m, and Sc, Sn are the core and nucleon elastic S-matrices
respectively as described in section 2.4. The integral over �b in equation (34) represents the
reaction mechanism and involves the product of the core survival probability (in its ground
state) and the nucleon absorption probability by the target. Without this factor, the momentum
distribution is just a Fourier transform of the nucleon wavefunction.

Figure 12 shows a segment of the segre chart with the momentum distributions for
individual nuclides superposed. The theoretical curves were obtained using a Glauber model
with JLM parametrization of the optical potentials and incorporating second-order non-eikonal
corrections (see [117] for details).

Another complication is the possibility of final state interactions between the surviving
fragments. These can lead to two- or three-body resonances that also act to make the widths
narrower [100, 115, 120–122].

Finally, in measurements in which the surviving fragments form a bound state, there is
a significant probability that the reaction would populate excited states of this system. This
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Figure 12. The longitudinal momentum distributions for the core fragments following single
neutron removal from a range of neutron-rich nuclides on a carbon target [117]. The narrow
distributions correspond to larger size.

implies that the measured momentum distributions contain several contributions superimposed,
each with a different width. This has led to gamma-ray coincidence measurements to
discriminate between the different partial cross sections, as will be discussed in the next
section.

6. Knockout reactions

The early measurements of Coulomb dissociation and one nucleon removal cross sections of
halo states have since evolved into the more general technique of single neutron knockout
reactions, which have become a reliable tool for obtaining basic information about the
shell structure of a number of neutron-rich nuclei. The neutron knockout process takes
place via two different mechanisms: diffractive dissociation (elastic breakup) and stripping
(neutron absorption by the target). Theoretically, each of these two contributions is evaluated
separately, usually within a Glauber framework. In particular, the stripping cross section
can be calculated within a model in which the projectile comprises the stopped neutron
plus the surviving fragment. Such a ‘three-body’ model (fragment+neutron+target) treats
the detected fragment as a ‘spectator core’ which, at most, interacts elastically with the
target.

The spectator core assumption in models of nuclear-induced breakup or a knockout
reaction was first proposed by Hussein and McVoy [123] and has more recently been applied
to the study of the breakup of halo nuclei [124, 125] where it is based on a few-body eikonal
approach. Tostevin [126] has proposed a modified spectator core model for the calculation of
partial cross sections to definite final states of the surviving core fragment.

Considering first the simple case of a two-cluster (core+n) projectile interacting with a
target, the total cross section for stripping of the neutron and detecting the surviving core (c)
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Figure 13. Partial longitudinal momentum distributions corresponding to the states in the simplified
level scheme of 16C. The bottom panel corresponds to populating the g.s., the middle panel to the
2+ state at 1.77 MeV and the top panel to the bunch of three states all around an excitation energy
of ∼4.1 MeV. The data are from [127].

in a particular final state, Jπ
c (spin Jc and parity π ), can be written as

σst
(
Jπ

c

) = 1

2J + 1

∫
db

∑
M

〈
�c

JM

∣∣(1 − |Sn(bn)|2)|Sc(bc)|2
∣∣�c

JM

〉
, (35)

where �c
JM is the ground state wavefunction of the projectile, with angular momentum

J and projection M, containing the core fragment in state Jπ
c . This is thus only part of

the projectile’s total ground state wavefunction which may well contain contributions from
configurations involving different core states. Note that equation (35) is essentially the same as
equation (33), only here the cross section is just that part of the full stripping cross
section in which the spectator core is in the state Jπ

c both before and after the stripping
process.

As an example of the procedure we present the case for (16C,15C) [127] in figure 13.
The momentum distribution for the outcoming 15C is measured along with any coincidence
γ -rays from the decay of excited core states, allowing the extraction of a spectroscopic
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factor and angular momentum from the overall normalization and the shape of the
distribution.

When dealing with a three-body projectile involving a core and two valence neutrons, the
surviving fragment in equation (35) (i.e. after the removal of just one of the neutrons) is now
itself a composite system of core plus neutron, which may be loosely bound. To check
whether the spectator core assumption remains valid in this situation, a four-body
generalization of the Tostevin model, which allows for the dynamic coupling of different
fragment states in the stripping process, was developed [128] and applied to a number of
reactions such as 9Be(12Be,11Beγ ) at 78 MeV/A. For this reaction, partial cross sections to
both the 1

2
+

ground state and the 1
2

−
first excited state of 11Be have been measured and calculated

[129]. It is known that only one third of the ground state wavefunction of 12Be (which is treated
as a three-body (10Be+2n) system [130]) comes from a closed p-shell configuration, with the
valence neutron pair spending most of their time in the (1s2 + 0d2) intruder configuration.
Clearly, the s1/2 intruder ground state in 11Be has some effect on the configuration mixing in
12Be. However, the spectroscopic factors deduced from the cross sections estimated in the
Tostevin spectator model will be modified if dynamical coupling between the different 10Be+n
states (1s1/2, 0p1/2 and 0d5/2) in the projectile and the bound states (1s1/2 and 0p1/2) of the
final 11Be are important.

It was found [128] that allowing for couplings between different single particle states
caused a less than 10% overall increase to the stripping cross section. Such a correction gives
an indication of the reliability of the spectator assumption and suggests that it is better than
might be expected for a ‘core’ such as 11Be. Similar modifications to the partial stripping
cross sections have also been found when applied to the reaction (16C,15C), where the knockout
cross sections to the 1

2
+

ground state and 5
2

+
excited state of 15C have been measured [127].

In this case, including the dynamical coupling between different single particle states of the
valence neutron in 15C gives rise to an overall reduction in the stripping cross sections. The
changes are nevertheless relatively small (of order 5%).

It should be emphasized that there are other effects which, if included, could also affect the
calculated cross section, such as core recoil, the use of a more realistic three-body wavefunction
for the projectile and, maybe most importantly, including collective core excitation effects in
both the initial and final wavefunctions.

Another way of studying the single particle structure of exotic nuclei is via Coulomb
dissociation at fragmentation energies of several hundred MeV per nucleon. Using the same
technique as developed by the MSU group on knockout reactions, experiments at GSI also
measure the decay neutron and any γ -ray in coincidence with the projectile. The differential
Coulomb dissociation cross section, dσ/dE∗, is then the incoherent sum of components
corresponding to the different core states populated following the removal of the neutron.
Figure 14 shows such cross sections for the dissociation of both 15C and 17C into 14C
and 15C, respectively. In both graphs, the solid curves are the result of a direct breakup
model using a plane wave approximation [131]. The dotted curve in the upper graph and
the dashed curve in the lower graph both correspond to a distorted wave approximation
analysis.

Many of the techniques to describe one or two nucleon knockout reactions as a
spectroscopic tool for studying dripline nuclei are still under development. For example,
when the surviving fragment is a halo state, whereas it was more tightly bound within the
projectile (prior to the knockout of a valence neutron), it is necessary to include an overlap
(or ‘mismatch’) factor due to the change induced in the remaining valence neutrons’ binding
energy. Since this field is relatively new, it is not appropriate to discuss it further in this review.
However a recent review of the work in this area can be found in [132].
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Figure 14. Differential cross sections for Coulomb dissociation with respect to excitation energy,
E∗, of 15C and 17C on a lead target at beam energies of 605 and 496 MeV/nucleon, respectively
[131]. See the text for details of the different curves.

7. Transfer reactions

The history of transfer reactions with radioactive beams for studying the structure of exotic
nuclei is a relatively recent one. Thus there have not been many specific developments of
transfer theories with the aim of dealing with halo-like nuclei. We will present here the few
applications that have been performed with conventional methods and discuss the additional
developments that have been proposed.

7.1. DWBA

Traditionally, DWBA has proved to be extremely useful to extract spectroscopic information
in nuclear physics, thus one can find it in most textbooks [133]. As it retains only the first
term of the Born series, the transfer process is performed in one step. One needs to determine
the initial and final distorted waves describing the relative motion of projectile and target. The
intrinsic structure information is contained in the spectroscopic factor, and multiplies the full
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DWBA cross section. This factor can then be related to the structure information calculated
in microscopic models [134].

In DWBA, the transition matrix element for the transfer reaction A(X, Y )B, where
A = B + v and Y = X + v, can be written in post form,

Mpost = 〈
�−

f IYX

∣∣VvB + VBX − UBY

∣∣IAB�+
i

〉
, (36)

and in prior form

Mprior = 〈
�−

f IYX

∣∣VvX + VBX − UAX

∣∣IAB�+
i

〉
. (37)

Here, IAB = φ(rv−B) is the overlap function of the composite nucleus A and its core B, and
IYX = φ(rv−X) is the overlap function of the composite nucleus Y and its core X. The distorted
waves �−

f and �+
f are calculated using the corresponding optical potentials UBY and UAX.

Often the remnant term in the transition operator
(
U

post
rem = VBX −UBY or U

prior
rem = VBX −UAX

)
is neglected. Furthermore, the zero-range approximation may be applicable to either VvB or
VvX.

Even when applied to reactions with stable beams, the DWBA was considered to have
a limited accuracy (≈30%). One of the reasons for this restriction is due to uncertainties in
the optical potentials responsible for distorting the incoming and outgoing waves. Typically,
one makes use of elastic scattering data taken over a wide angular range, to pin down the
optical parameters. With radioactive beams, these data are not available, and in some cases
even not measurable. So far, in most applications to exotic nuclei, optical potentials have been
obtained via several methods: either extrapolated from nuclei in the valley of stability (global
parametrizations), or from double folding models involving projectile and target densities, or
have been determined with elastic data taken only at forward angles, where the sensitivity to
the parameters is low [135]. As a consequence, these optical potentials may bring about large
uncertainties [136].

In addition to the distorted waves, one also needs to worry about the transfer transition
operator. So far results show that zero-range DWBA should not be used for halo nuclei. Also,
the core–core interaction for these dripline nuclei may differ significantly from the potential
describing the scattering of the unstable nucleus from the target. Then there is no cancellation
of the remnant term in the transfer operator. For loosely bound systems, finite-range effects,
as well as the remnant contribution, have been shown to be important [136]. An alternative
way of writing the transition matrix element has been developed and applied to exotic nuclei
[137]. However, this model goes beyond the traditional DWBA method and we will discuss it
later in section 7.3.

Often the cores of dripline nuclei are stable and can be used as targets. In those
circumstances stripping reactions can populate states of the exotic nucleus, thus providing
some spectroscopic information. However, in order to get the full spectroscopy of the ground
state the exotic nucleus should be used as the beam.

The initial attempt to extract the structure of an exotic nucleus using a transfer reaction
was for 11Be through a (p,d) reaction in inverse kinematics [138]. Being the first of what
we expect will be a series of experiments, it is important to understand the approximations
performed in the calculations used for the analysis of the data, and identify the accuracy of
the approach.

First, let us review briefly what is known about the ground state structure of 11Be. It
is well accepted that the loosely bound neutron is mainly in an s1/2 state, but there is also
a significant core excited 10Be(2+) component, where the neutron is found in a d5/2 state.
In [138] these components are initially calculated separately, and added incoherently, in the
separation energy prescription. Keeping in mind that the deformation of the core is very strong
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in this system, dynamical effects are bound to play a role. In such cases, the components for
the ground state wavefunction should be calculated properly in a coupled-channel description.

Secondly, the choice of optical potentials needs to be considered. The proton optical
parameters are taken from proton elastic scattering data of stable nuclei, and there is no
evidence that this is a correct procedure. Although the deuteron–10Be elastic scattering has
been described at nearby energies with the optical model, there is the possibility of the deuteron
breaking up in the process. Then the ADBA (adiabatic deuteron breakup approximation)
potential may be more appropriate [18]. Note that adiabatic models were discussed in
section 2.3 and, crucially, go beyond DWBA. The difference between these two potential
choices is considerable. Unfortunately, the transfer cross sections are very sensitive to the
parameters of both entrance and exit potentials. It seems that only additional elastic and
breakup data, taken exactly at the relevant energies, would reduce all these uncertainties.

Similar concerns on the possible inadequacy of the optical potentials could be expressed
for the extraction of spectroscopic factors for 17F, from the analysis of 16O(d,n) data [139].

The ANC method offers an indirect measurement for the low-energy capture rates needed
in astrophysics, through transfer reactions. DWBA is widely used in the extraction of ANCs
(asymptotic normalization coefficients) [140]. The essential condition for the applicability of
the ANC method is that the reaction should be completely peripheral, so it will only probe
the asymptotic part of the overlapping wavefunctions. The applications have concentrated
on 8B [141], although there are many ongoing projects to measure ANCs for other loosely
bound nuclei. Essentially, there have been two independent sets of measurements: those on
the very light targets, i.e. (d,n) and (3He,d), or those on heavier targets (typically the stable
boron to oxygen isotopes). In (d,n), even if the reaction is peripheral, the transfer cross section
depends very strongly on the choice for the optical potentials, and typically elastic scattering
corresponding to the exit channel cannot help in pinning down the parameters [136]. In
addition, deuteron breakup may need to be considered. For heavier targets, the dependence
on the optical parameters is not so strong, but there are many open channels accessible to the
reaction path. Other tests of the validity of the DWBA approach should then be performed.
This discussion will continue in the following section.

For three-body projectiles, the partial wave decomposition involves the coupling of four
angular momenta and a converged calculation can easily become unfeasible. In [142],
the partial wave decomposition is avoided by performing the nine-dimensional integral
corresponding to the DWBA transition amplitude [142]. Results for two-nucleon transfer
of 151 MeV 6He on proton and alpha particles are extremely promising. By including the
three-body structure into the reaction calculation, this work shows how the details of the halo
ground state are determinant in the reaction process.

7.2. Coupled channels

There are many ways of going beyond the one-step DWBA approach, and we shall mention a
few here.

If there are strongly coupled open inelastic channels in the entrance (exit) partition, one
can still treat the transfer process in first order, but allow for various steps between the relevant
entrance (exit) channels. This provides an n-step DWBA method which becomes the CCBA
(coupled-channel Born approximation) method when the inelastic couplings are treated to all
orders.

Intuitively one would guess that transfers on well-deformed targets require a CCBA
reaction model instead of the DWBA, as inelastic couplings are known to be strong. This was
confirmed by the coupled-channel tests performed in [143]. In figure 15 the transfer to the
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Figure 15. The transfer cross section for 10B(7Be,8B)9Be at 84 MeV: grey lines are the result of
DWBA calculations whereas black lines are those for CCBA.

three first states in 9Be is predicted. The differences between the grey lines and the black lines
give an estimate of the error made when using the one-step approach.

Alternatively, one can also have couplings within the radioactive projectile, due to
inelasticities of the core. There should obviously be consistency in the structure and the
reaction models used. If the structure model predicts, as in the case of 11Be, a significant core
excited component, then core excitation needs to be included in the reaction model through
an n-step DWBA or preferably a CCBA formalism. The large two-step DWBA contribution
to the 11Be(p,d) reaction estimated in [138] does not come as a surprise.

One should still consider the proximity to threshold of these exotic projectiles. This
may provide strong couplings to the continuum which in principle can affect the transfer
process. As mentioned before, breakup cross sections for these nuclei are generally large and
may feedback to the transfer cross sections. In such cases, one of the standard theoretical
approaches to handle the problem is the so-called CDCC-BA method, where the continuum is
appropriately discretized and fully coupled, but the transfer process is still treated in first-order
Born approximation. CDCC-BA calculations were performed for the reaction 14N(7Be,8B)13C
[144, 145] and the results show that for this system, the transfer is not affected by couplings
to the continuum, in particular in the forward angle region.

The complexity of the problem increases when there is the possibility of breakup in both
entrance and exit partitions, such as is the case for 7Be(d,n)8B. The first attempt of including
both deuteron and 8B breakups in this reaction was presented recently [146] although many
approximations were involved in the simplified version of the CDCC-BA-CDCC model. In
these calculations, the basis is over complete, and orthogonality issues need to be carefully
considered. Also, such a calculation lies at the limit of computational capacities. In spite of
this, more calculations along these lines will be needed in the future.

If the transfer is very strong, then first-order Born series may not be sufficient. One
can then allow for multistep transfer through the CRC (coupled reaction channels) method.
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Figure 16. The two-nucleon transfer of 6He on protons.

Applications to transfer reactions with 11Be [138] and 8B [136] show that such higher order
multistep terms provide less than 10% corrections.

When more than one nucleon is transferred, one-step transfer may be supplemented by
two and higher order step processes. When the reaction time is large, the system can rearrange
itself in several ways. Inevitably one can find many transfer paths for the reaction, which need
to be coupled in a CRC method. The low-energy experimental program using the 6He beam in
LLN [147] motivated the application to 6He+p [148]. In figure 16 the various multistep paths
relevant to the reaction as well as the total cross section, resulting from the interference of
the considered channels, are shown. Calculations were performed within a CRC formalism.
In those calculations, one- and two-nucleon transfer form factors were determined within a
three-body structure model and a full finite-range treatment was included. Both the remnant
term and non-orthogonality corrections were found to be necessary. Couplings to all open
channels were important to generate the final cross sections.

7.3. Other methods

When the transfer process occurs at sufficiently high energy, a Glauber approach is possible
[149]. The sensitivity to details of the projectile wavefunction is shown to be very strong in the
calculations for 11Be(d,p)10Be, although only a single particle form factor is assumed. In fact,
one expects that the sensitivity is more on the scale than the shape details and components.
It would be interesting to confirm this by improving the structure information included in the
reaction model.

If, on the other hand, the energy is not very high, but still high enough compared to
the binding energy, an adiabatic approximation can be safely made. Note that the adiabatic
model can be regarded as an approximate solution of the coupled-channel problem [4]. An
adiabatic model was developed for one-nucleon halo nuclei [137]. The T -matrix is written so
that only the halo-nucleon/target interaction appears in the operator. Then both core–halo and
target–core interactions need to be considered in calculating the entrance(exit) wavefunction.
The adiabatic solution is a distorted wave that includes recoil and breakup effects (REB). The
exact wavefunction appearing in the exit(entrance) channel is approximated to a distorted wave
and the adiabatic limit is also taken (making use of the ADBA potential [18]). Calculations
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REB effect. In both cases the deuteron breakup was included.

for 16O(d,p)17F, 10Be(d,p)11Be and 11Be(p,d)10Be are presented. The REB effects generally
increase the cross section, so that the extracted spectroscopic factors are generally reduced. In
all cases the impact of deuteron breakup on the transfer cross section was stronger than that of
the heavier nucleus. The example for 11Be(p,d) populating both the g.s. and the first 2+ in 10Be
is shown in figure 17. Disappointingly, the spectroscopic factors extracted for 11Be g.s. do not
agree with those in [138], although a direct comparison with these data was not performed. It
would be interesting to include core excitation in this reaction model, as the d-wave dynamics
are expected to change the picture. Also, a comparison with the various standard models is
necessary to better understand the advantages and drawbacks. Nevertheless this model is very
promising, since in principle it can deal with breakups in both entrance and exit partitions and
yet is not computationally demanding.

Sometimes, transfer methods can be applied to breakup reactions. The usual way to think
about projectile breakup (P ⇒ C + x) is as T (P,C + x)T . However, the transfer to the
continuum of the target T (P,C)T + x is formally equivalent to this, and the calculation may
converge more quickly. If the experiments cannot tell the two processes apart, then the transfer
description (including bound and unbound states) may become more attractive. This approach
offers the best description to date of the 6He 2n low-energy transfer/breakup on 209Bi [106].
It is also proving to be very promising for the 8Li transfer/breakup on 208Pb [150].

8. Fusion

Theoretical developments for fusion reactions, specifically designed for light dripline nuclei,
are still scarce, partly due to the fact that accurate fusion data on these nuclei are rather recent,
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and partly because fusion makes up such a small fraction of the reaction cross section. For this
reason we first point out a few general aspects concerning the theory of fusion reactions with
stable nuclei, of relevance for loosely bound systems, and discuss the theoretical advances
when applied to RNBs.

8.1. Some relevant ideas from heavy-ion fusion

It was only in the early eighties that the heavy-ion fusion data allowed the refinement of
fusion calculations, which now go much beyond the basic barrier penetration ideas [151], and
incorporate coupled-channel effects of various types (e.g. [152–157]). There are essentially
two approaches: (a) the fusion process is modelled with a strong imaginary potential in the
interior, taking into account the loss of flux from all other channels, and (b) the incoming
boundary condition method, where each component of the wavefunction is matched to an
incoming wave on the barrier. In both cases a coupled-channel equation is solved. The first
approach generally contains very strong imaginary potentials which remove any couplings
acting in the barrier region. Under these circumstances, as couplings are limited to larger
distances where they are typically weaker, the DWBA first-order solution may be adequate
to describe the mechanism. However, in the strong coupling limit, the determination of the
imaginary potential is by no means transparent and coupling effects may be misinterpreted
[153]. It is often preferrable to use the incoming boundary condition, both for technical and
physical reasons. Often one also takes the adiabatic approximation, when excitation energies
of the colliding nuclei are negligible compared to the fusion energy, and the differences in
the centrifugal barriers can be ignored [156]. Lindsay et al [156] showed that, in the strong
coupling limit, the adiabatic calculations reproduce the full coupled-channel results, while
the DWBA calculations overestimate the fusion cross section. Explicit simplified expressions
in terms of the one-channel cross section have been deduced for vibrational and rotational
structures [156].

It is well understood that in general the inclusion of extra channels, coupled into the
reaction mechanism, produces more steps in the barrier distribution and consequently spread
the energy range over which the transmission factor goes from zero to unity. This produces
enhancement of sub-barrier fusion, and hinders fusion above the barrier [153, 156].

Also, while the flux transmitted by the barrier in a particular channel (fusion) depends
on the strength of the interaction through the barrier, the reflected flux (the reaction cross
section that is missing from the elastic channel) depends on the couplings outside the barrier.
This means that the connection between the fusion part and reaction part of the flux for each
channel is not straightforward.

It has been shown that the energy matching for the channel to be coupled, relative to the
incident channel, is a crucial ingredient. In fact, negative Q-values tend to reduce the relative
enhancement of sub-barrier fusion (when comparing with the perfectly matched channels
Q = 0), and positive Q-values tend to enlarge these effects [153, 154]. However, negative
Q-values produce an increase of the overall fusion flux and positive Q-values an overall
decrease, when compared with Q = 0.

The inclusion of inelastic couplings alone is frequently not enough to describe the data
[155, 158] and transfer couplings have been suggested as the necessary solution. Neutron
transfer has often been a successful explanation for the enhancement of sub-barrier fusion
cross sections (see for instance the results on the fusion of 58Ni+64Ni, relative to 58Ni+58Ni
[152]). One can expect that for loosely bound neutron-rich (or proton-rich) nuclei this effect
will become even more important.
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Given the influence of both inelastic couplings and transfer couplings, fusion calculations
can easily become rather demanding. The CRC method mentioned in section 5 offers a reliable
path for the fusion calculation [157]. In the end, a consistent description of the elastic, inelastic
and transfer channels should be obtained, at the same time as the fusion cross section.

The number of data sets on the fusion of light dripline nuclei is increasing by the day,
yet we are still far from understanding the general behaviour [159]. Given the importance of
breakup and transfer channels, experiments designed to measure specifically these components
have been carried out (e.g. [106]). Nevertheless, many studies are still presently performed
on the stable Li or Be isotopes, where systematic trends can be more easily identified [160].
Below we discuss the theoretical contributions in this field, starting with the simple models
initially used, up to the full CDCC or the time-dependent models, already applied in earlier
sections.

8.2. Preliminary fusion results

Interest in the fusion of dripline nuclei was initiated in the early nineties for two reasons: to
better understand the exotic properties of these nuclei and for the hope of insight into the
production of the superheavy elements. The first sequence of theoretical work was applied to
11Li [161–163] for which there are as yet no available data.

In [161], a two-channel fusion calculation included a resonance at around 1.2 MeV
(referred to as a pygmy resonance, or giant dipole resonance). The possibility of breakup was
accounted for through a survival probability multiplying factor. The idea was that breakup
channels take flux away from fusion. Even though rather poor, the adiabatic approximation
was used. The conclusion was that fusion is suppressed above the barrier, and the prediction
of sub-barrier enhancement is lower than what would be obtained if no breakup was included.
It was subsequently pointed out that the breakup channel need not reduce fusion [162]. In
fact, the additional coupling could produce enhancement in the same way inelastic or transfer
couplings do. The coupled-channel calculations in [162] determine the complete fusion of 11Li
on 208Pb for the same barrier parameters as those used in [161]. Results show enhancement
due to the dipole coupling and further enhancement due to the coupling to breakup states. A
theoretical improvement of the treatment of resonant channels in [161] uses doorway states
[163]. The results confirmed fusion hindrance around the barrier, sustaining the controversy.

As knowledge of the properties of light exotic nuclei increased, breakup and transfer
channels became an unavoidable issue when considering the fusion process. Many of these
nuclei do not have excited states and the inclusion of inelastic excitation of the target is by
now a standard procedure. However, given the loosely bound nature of these beams, the
coupling strength to continuum channels is expected to be strong and the Q-value for neutron
transfer (for neutron rich) or proton transfer (for proton rich) can become positive, which if
well matched can also produce strong coupling.

In [164], a study of the effect of transfer and inelastic couplings on the fusion of 11Be+12C
is performed. The CRC calculations included both bound states and the d-wave resonance of
11Be, as well as several one-neutron transfer channels to 10Be+13C, corresponding to the three
first states in 13C and the first two states of 10Be (note that all have positive Q-values). The
equations were solved using a strong but short-range imaginary potential in order to remove
coupling from small distances. It was found that the transfer alone decreases the fusion and
that inelastic couplings partly compensate this reduction. Coupling effects dissappear at higher
incident energies while the maximum effect is found just below the barrier.
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8.3. The time-dependent method

One can also determine the fusion cross section using the time evolution of a wavepacket,
solution of the time-dependent Schrödinger equation. Such calculations were performed
by Yabana [31] for a core+n system impinging on a target, which simulates the 11Be+40Ca
reaction. Due to computational limitations, nuclei are considered spinless, only l = 0 relative
motion is included, and the wavepacket is confined to a finite radial region where only the
Coulomb part of the core–target interaction is felt. The absorption is included through the
imaginary part of the core–target interaction alone, thus the fusion cross section contains both
complete and incomplete fusions. The behaviour of the process for low binding (−0.6 MeV)
is compared with a system with stronger binding (−3 MeV). Breakup, transfer, and fusion
cross sections are simultaneously calculated.

It was found in that study that, by increasing the depth of the neutron–target potential
until binding is larger than the binding of the neutron in the projectile, the projectile–target
kinetic energy is increased, producing an increase of the fusion cross section. The opposite
effect happens when the n–target interaction produces less binding for the n–target system
than the separation energy of the neutron in the projectile. However, when the projectile
binding is already very low, the likelihood is that the neutron will have a larger binding to
the target, resulting in an overall suppression of fusion. Fusion cross sections as a function
of beam energy show a slight enhancement below the barrier and a clear reduction above the
barrier.

8.4. The CDCC method

The CDCC method is another possibility for including breakup effects when calculating the
fusion reaction. In the CDCC calculations for the fusion of 11Be and 208Pb performed by
Hagino et al [165], several truncations are made in order to concentrate on pure breakup
effects (results are shown in figure 18). Continuum–continuum couplings as well as projectile
and target inelastic excitations are ignored. The neutron in the projectile is assumed to be in a
pure 2s1/2 state and only transitions to p3/2 are considered. The incoming boundary condition
method is used for solving the coupled-channel equations, and the isocentrifugal approximation
is made. The results predict fusion enhancement below the barrier and suppression above the
barrier, in agreement with the early results of [153]. The dynamical effects of the couplings
are essential. It is shown that the coupling form factors at around barrier distances, peak at
relatively large energies, behaving in a completely different way from the asymptotic coupling
form factor. The same conclusions were obtained for the fusion of 6He and 238U for an
identical calculation [166].

More recently a full CDCC calculation, without the above-mentioned truncations, was
performed in order to calculate the fusion of 11Be and 208Pb [167]. Although inelastic
excitations of the target and transfer couplings were left aside, the calculation included the
projectile excited state 1/2− as well as all multipoles in the continuum needed for convergence.
The fusion cross sections were defined in terms of a short-range imaginary potential. It was
found that the excited 1/2− state of 11Be has little influence on the fusion, redistributing the
fusion cross section. If no continuum–continuum couplings were included, the conclusions of
[165] for complete fusion would be corroborated: strong enhancement below the barrier and
hindrance above the barrier. However, since incomplete fusion is relatively large above the
barrier, the total fusion cross section, for this energy region, was not reduced when compared
with the no-couplings case. The truly surprising result was the effect of continuum–continuum
couplings: the reduction of the complete fusion cross section was of nearly two orders of
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Figure 18. The fusion cross section for 11Be+208Pb as a function of bombarding c.m. energy: (a)
complete fusion (thick solid) and the total fusion (dashed) are compared with the simple penetration
model (thin solid); (b) the nuclear (long dashed) and Coulomb (dot-dashed) contributions to the
complete fusion (diamonds). The barrier penetration model is shown (thin solid) for comparison.

magnitude in the sub-barrier region and around an order of magnitude above the barrier. In
addition incomplete fusion is also reduced. This means that the sub-barrier enhancement is
much weaker for the complete and total fusion processes and there is suppression above the
barrier for both complete and total fusions.

Note that in [167], complete fusion was associated with absorption from the bound
channels only, when in principle it is possible that the projectile suffers complete fusion
even after breaking up. Also, incomplete fusion was associated with absorption from the
breakup channels and so the real incomplete fusion could be lower than that calculated in
[167]. Nonetheless, the total fusion cross section is unambiguous and can be compared with
experiment. Agreement is found below the barrier but cross sections are underpredicted above
the barrier.

A better understanding of the role of the continuum–continuum couplings is probably
necessary to be able to improve the theoretical description. In addition, the separation of
complete fusion from incomplete fusion in both the data and calculations would also be helpful.
Given the conclusions in [164], transfer channels will inevitable need to be included in a
CDCC-CRC-type calculation before a definite conclusion can be drawn, albeit the calculations
presented in [167] were already at the limit of our best computational possibilities. At present,
the extraction of structure details from fusion data seems to be unlikely. Notwithstanding,
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it still offers one of the best alternatives to learn more about the production of superheavy
elements.

9. Charge exchange and photonuclear reactions

Another way to study the structure (both bound state and continuum) of exotic nuclei is through
charge exchange reactions. However, where measurements have been made for (n,p) reactions,
for instance 6Li(n,p)6He [168] and 14Be(n,p)14B [169], the experiments have suffered from
poor statistics and energy resolution such that individual final states could not be resolved.
Alternatives to this are the (t,3He) and (7Li,7Be) reactions. The reaction 6Li(t,3He)6He has been
studied at MSU [170] and the continuum structure of 6He probed. However, little theoretical
work has been carried out. Ershov and collaborators [171] have studied the 6Li(n,p)6He within
a four-body DWBA model and also point out that 6He(p,p′)6He is a useful complimentary
probe. A few-body eikonal model for charge exchange has been developed by the Surrey
group but has so far been applied only to the (d,2p) reaction [172].

In recent years, there has been a growing interest in the use of charged pion
photoproduction reactions, (γ, π±), as a tool for studying nuclear structure. In particular,
because of recent advances in intermediate energy ‘electron’ factories, and the development of
high resolution pion spectrometers, precise angular distributions for the produced pions can be
measured and, it is anticipated, individual final states of the nucleus of interest can be resolved.
As discussed in this review, most of what is known about exotic nuclei has been obtained
through fragmentation reactions in which the strong interaction, particularly that of the core,
plays a major role. Pion photoproduction studies offer an alternative, cleaner, electromagnetic
probe of nuclear structure. In such charge exchanging reactions (e.g. 6Li(γ, π+)6He) the pion
energy and momentum can provide information about the valence nucleon participating in the
reaction γ N → πN.

A major feature of such reactions is that they can probe the entire nuclear wavefunction,
unlike the surface-dominated fragmentation reactions which tend to only probe the
wavefunction tail. Of course, depending on the momentum transferred in the process, such
reactions can also probe the surface and be used to study the halo without ambiguities due to
any core potential. Karataglidis et al [173] have carried out a DWBA calculation in which the
nuclear transition density is obtained using the shell model, in a similar way to the studies of
proton elastic and inelastic scatterings [66].

Several years ago it was suggested [174] that excited state halos can also be
probed in this way. It was shown that the pion cross sections calculated for the
17O(γ, π−)17F

(
1
2

+
, 0.495 MeV

)
reaction is sensitive to the halo structure of the valence

proton.
Finally, an alternative photonuclear probe that does not involve charge exchange is via

the (γ, p) reaction. Boland et al [175] have observed a broad resonance in the 6He continuum
at 5 MeV but are unable to define its exact nature. Such reactions are in need of further
theoretical analysis as well as more accurate measurements.

10. Outlook

In this review we have attempted to cover many theoretical aspects concerning reactions with
light dripline nuclei, paying particular attention to the interplay between the structure input
and the reaction model. In order to obtain a successful description of the reaction, specific
features associated with the exotic nature of these nuclei need to be included. Furthermore, as
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data become more detailed and accurate, better models are required. Better models typically
imply that calculations become larger and new numerical methods need to be developed in
order to ensure progress in the field. Given some discrepancies found between theory and
experiment, the suggestion that core excitation can dynamically interfere in the process needs
to be checked. Improvements to the single particle models, extensively used to date, are then
necessary to assess the role of core excitation in the reaction mechanism. Finally we comment
on possible physics with electron beams.

10.1. Continuum couplings and computation

Continuum coupling is crucial for understanding certain reaction processes involving light
exotic nuclei. These coupling effects are best seen in breakup processes, but it has also been
shown that there is an important influence on elastic scattering and fusion reactions. In fact,
the results on fusion are so large that they call for further investigations. Couplings to the
continuum may be less important for transfer reactions and certainly more examples need to
be analysed before any general statement can be made.

When including continuum coupling in a reaction model, one should definitely take care
of the non-resonant continuum as well as resonant states. Couplings between two continuum
states may be equally (or even more) important as couplings between the ground state and
the continuum. Many results discussed here use the well-established CDCC method to
discretize the continuum. However, given the computational demand of the traditional CDCC
calculations, new methods are being developed. One of the most promising alternative methods
for discretizing the continuum uses transformed harmonic oscillators (THO). Benchmark
calculations comparing the CDCC and the THO methods for the elastic scattering and
breakup of deuterons on 208Pb are very encouraging [176]. We expect that, in the future,
the optimization of the continuum discretization will make it feasible to tackle reactions
involving three-body systems, such as 11Li, by including the three-body continuum properly.

On the same lines, the very recent work presented in [177] proposes a pseudo-state
discretization using real- and complex-range Gaussian bases to calculate the breakup within
the three-body CDCC picture. Applications to the four-body CDCC problem are also under
consideration.

10.2. Core excitation

In recent years, the description of light exotic nuclei based on single particle models has become
unsatisfying. Although extremely attractive for their simplicity, one needs to go beyond the
inert core approximation in order to account for the physics that can now be accurately
measured in the new facilities. We have already mentioned the experiments involving the Be
isotopes, where excited core components were clearly identified (e.g. [129, 138]). Evidence
for a core excited component was also found in the breakup of high-energy 8B [178]. Besides,
similar results are to be expected for many other nuclei.

In the light of these new experimental results, theoretical reaction models need to
encompass core excitation. As excited states of the core involve typically larger angular
momentum, there will be a rapid increase of the number of available reaction channels. In
cases such as 8B where the ground state of the core is a 3/2− state, the spin of the core has
been routinely neglected and most models do not allow the core structure to play any role in
the reaction mechanism. In reaction models that include core excitation, this can no longer
be done and the calculations become much larger. Apart from the computational demands,
there are some theoretical issues that need to be addressed. Namely, since the loosely bound
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systems often require the coupling to breakup states, a reaction model with core excitation
implies that both bound and unbound states need to have core excited components. It is thus
necessary to generalize the CDCC approach to include core excitation within the projectile.

Most efforts to include core excitation in the reaction model have been performed in a
static way. For example in [179, 180], core excitation components of the initial wavefunction
are included in a DWBA calculation for the Coulomb dissociation of 11Be, 17C and 19C. Yet
there is no dynamical excitation of the core throughout the reaction process. In other words,
core excitation could not be generated in the reaction. This approximation does not seem
adequate, especially in cases where the couplings to core excited states are strong. The best
attempt so far of studying the effect of core excitation in reactions with light exotic nuclei was
performed in [145]. In that work, core excitation in 8B was dynamically included in the transfer
reaction 14N(7Be,8B)13C. A CDCC-BA formalism was used, employing the approximation that
the continuum bin states could still be described within a single particle picture [145]. As
a conclusion of that work, core excitation turned out not to be important. One should note
that there is an inconsistency in the calculation [145] in that the projectile Hamiltonian for the
bound state is not the same as that for the unbound states. There are non-orthogonality issues
that arise and should be investigated. Further work on generalizing CDCC with core excited
bins is underway.

Recent results show that, as one moves away from the stability line, few-body models
are less successful. An example can be found in [181] where many 12Be reaction observables
are compared with recent data. The three-body model of 10Be+n+n in which the core 10Be is
assumed to be a perfect rotor and is allowed to excite to the first 2+ state, is unable to reproduce
the correct E2 transition 2+ → 0+ for 12Be, if all other observables are to be reproduced. This
suggests that the simple core excitation ideas need to be revisited. Microscopic information
needs to be integrated to an extent that it becomes useful in a reaction model, and yet retains
the necessary detail. This balance is one of the most challenging problems to be dealt with in
the near future.

10.3. New physics with electron beams

For half a century, electron scattering experiments on nuclei have contributed significantly to
our understanding of the structure of stable nuclei. However, since short-lived exotic species
cannot form a nuclear target that is at rest in the laboratory frame, electron–nucleus (eA)
colliders are being built [182, 183], which will give access to structure studies of unstable
nuclei, opening up a new era of low-energy electron scattering. Due to the limited luminosities
achieved with radioactive beams, the first generation of experiments with these colliders will
focus on measurements of the radii of the nuclear charge distribution and its diffuseness.
Electron scattering on a large variety of unstable nuclei will become possible and help clarify
the evolution of charge radii towards the driplines.

Since the electromagnetic interaction is relatively weak, multiple scattering effects can
be neglected in electron scattering and the interaction can be well described by one-photon
exchange terms. By combining the charge distributions from electron scattering with matter
distributions from hadronic probes such as proton scattering (in inverse kinematics) it will be
possible to determine proton and neutron distributions separately for a large number of exotic
nuclei.

More interestingly, inelastic electron scattering, which is known to be an excellent tool
for studying the spectroscopy of bound and unbound states in nuclei, will also be possible.
The transition form factors are related to different multipolarities of the excitations and offer
a unique way of studying collective motion in unstable nuclei.



R128 Topical Review

In addition, inclusive quasielastic scattering, A(e,e′), is well known as a way of probing
nucleon motion within the nucleus [184]. Exclusive quasielastic scattering involves detecting
a knocked-out constituent in coincidence with the electron, A(e, e′x)B. For instance, the
unpolarized quasifree (e,e′p) reaction has been systematically used to probe single particle
properties of complex nuclei, such as momentum distributions and spectroscopic factors.
Excellent agreement with experiment has been obtained for these observables for both
6Li(e,e′)6Li [185] and 7Li(e,e′p)6He [186] reactions. The reliability of the information
extracted from such reactions is due to the weak dependence of the observables upon the
electron scattering kinematical conditions. This is particularly true in the quasielastic region,
where both the momentum transfer and the energy transfer are high enough for the interaction
between the electron and a single nucleon in the nucleus to dominate.

Due to the novelty and relatively recent interest in this field, there has been, as yet, very
little theoretical work. The only available calculations [187], for electrons scattering from 6He,
make use of the plane wave impulse approximation (PWIA) (which assumes that the virtual
photon is absorbed by a single constituent). While that study described the 6He as a three-
body system, the authors make several further simplifying assumptions, such as neglecting the
Coulomb distortion of the electron, and final state interactions of the knocked-out constituent
with the spectator constituents. Further work is clearly needed, and on a range of light exotic
nuclei.

11. Summary

The relatively new field of the structure and reactions of light exotic and halo nuclei has
certainly provided a ‘wake up’ call for nuclear theorists. Textbook models have been applicable
in certain cases while elsewhere new approaches have had to be developed. We stress though
that reviews such as this act only as staging posts along the road; there is still a challenging
and no doubt fascinating journey ahead.
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