Neutrino Physics 3

Michelle Dolinski Drexel University NNPSS, 11 July 2019

Massive neutrinos

"Dirac" neutrinos

The two descriptions are distinct and distinguishable only if $m_v \neq 0$.

Electromagnetic properties of v

ν

Electromagnetic properties arise at the loop level. Dirac masses in the standard model give a prediction that the diagonal moments are proportional to the neutrino mass:

$$\mu_{\nu} = \frac{3m_e G_F}{4\pi^2 \sqrt{2}} m_{\nu} \mu_B \approx 3.2 \times 10^{-19} \left(\frac{m_{\nu}}{1eV}\right) \mu_B$$

In an extension with right handed neutrinos, the electric dipole vanishes for both Dirac and Majorana neutrinos, but the magnet moment also vanishes for Majorana neutrinos (can still have transition magnetic moments).

Experimental search for μ_{v}

$$\mu_{\nu} = \frac{3m_e G_F}{4\pi^2 \sqrt{2}} m_{\nu} \mu_B \approx 3.2 \times 10^{-19} \left(\frac{m_{\nu}}{1eV}\right) \ \mu_B$$

With known limits on neutrino mass, the "SM prediction" is small, so experimentally the search is for an anomalous magnetic moment of the neutrino. This is typically done by solar or reactor neutrino experiments, and neutrino oscillation parameters are taken into account.

The best direct limit comes from Borexino using the spectral shape of electron recoils due to solar neutrinos (which would be affected if there were additional contributions to the cross-section due to an electromagnetic interaction term):

$$\mu_{\nu}^{eff} < 2.8 \cdot 10^{-11} \ \mu_B$$
 at 90% c.l.

Agostini et al. Phys. Rev. D 96, 091103 (2017)

Some candidate nuclei: ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe

Direct Evidence for Two-Neutrino Double-Beta Decay in ⁸²Se

S. R. Elliott, A. A. Hahn, and M. K. Moe

Department of Physics, University of California, Irvine, Irvine, California 92717 (Received 31 August 1987)

The two-neutrino mode of double-beta decay in ⁸²Se has been observed in a time-projection chamber at a half-life of $(1.1 \pm 0.3) \times 10^{20}$ yr (68% confidence level). This result from direct counting confirms the earlier geochemical measurements and helps provide a standard by which to test the double-beta-decay matrix elements of nuclear theory. It is the rarest natural decay process ever observed directly in the laboratory.

FIG. 1. The observed sum-energy spectrum of two-electron events. A threshold of 800 keV was imposed on the sum energy of the events, and a threshold of 150 keV was imposed on the single energy. The curve is the theoretical $\beta\beta(2\nu)$ sum-energy spectrum normalized to 1.1×10^{20} yr.

S.R. Elliott, A.A. Hahn, M.K. Moe *Phys. Rev. Lett.* **59** (1987) 2020-2023

Measured $2\nu\beta\beta$ half-lives

Nuclide	$T_{1/2}^{2\nu\beta\beta} \pm stat \pm sys$	rel. uncert.	$G^{2\nu}$	$M^{2\nu}$	rel. uncert.	Experiment (year)
	[y]	[%]	$[10^{-21} \text{ y}^{-1}]$	$[{\rm MeV^{-1}}]$	[%]	
¹³⁶ Xe	$2.165 \pm 0.016 \pm 0.059 \cdot 10^{21}$	± 2.83	1433	0.0218	±1.4	EXO-200 (this work)
76 Ge	$1.84^{+0.09+0.11}_{-0.08-0.06} \cdot 10^{21}$	$^{+7.7}_{-5.4}$	48.17	0.129	$^{+3.9}_{-2.8}$	GERDA [39] (2013)
$^{130}\mathrm{Te}$	$7.0\pm 0.9\pm 1.1\cdot 10^{20}$	± 20.3	1529	0.0371	± 10.2	NEMO-3 [40] (2011)
¹¹⁶ Cd	$2.8\pm 0.1\pm 0.3\cdot 10^{19}$	± 11.3	2764	0.138	± 5.7	NEMO-3 [41] (2010)
^{48}Ca	$4.4^{+0.5}_{-0.4}\pm0.4\cdot10^{19}$	$^{+14.6}_{-12.9}$	15550	0.0464	$^{+7.3}_{-6.4}$	NEMO-3 [41] (2010)
⁹⁶ Zr	$2.35 \pm 0.14 \pm 0.16 \cdot 10^{19}$	± 9.1	6816	0.0959	± 4.5	NEMO-3 [42](2010)
¹⁵⁰ Nd	$9.11^{+0.25}_{-0.22} \pm 0.63 \cdot 10^{18}$	+7.4	36430	0.0666	+3.7	NEMO-3 [43](2009)
$^{100}\mathrm{Mo}$	$7.11 \pm 0.02 \pm 0.54 \cdot 10^{18}$	± 7.6	3308	0.250	± 3.8	NEMO-3 [44](2005)
⁸² Se	$9.6 \pm 0.3 \pm 1.0 \cdot 10^{19}$	± 10.9	1596	0.0980	± 5.4	NEMO-3 [44](2005)

Neutrinoless double beta decay

This process can only occur for a Majorana neutrino!

Same candidate nuclei: ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁰Te, ¹³⁶Xe

Double beta decay spectrum

 $0\nu\beta\beta$ rate

If we assume that the mechanism is light neutrino exchange, we can write the rate for $0v\beta\beta$:

Phase space factor $\sim Q^5$ Effective Majorana mass $\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix}^{-1} = G^{0\nu} * |M_{1/2}^{0\nu}|^2 * \langle m_{\nu} \rangle^2$ Nuclear matrix element

Nuclear matrix elements

Nuclear structure approaches

In NSM (Madrid-Strassbourg group) a limited valence space is used but all configurations of valence nucleons are included. Describes well properties of low-lying nuclear states. Technically difficult, thus only few 0vββ-decay calculations

In QRPA (Tuebingen-Caltech-Bratislava and Jyvaskula-La Plata groups) a large valence space is used, but only a class of configurations is included. Describe collective states, but not details of dominantly few particle states. Relative simple, thus more $0\nu\beta\beta$ -decay calculations

In IBM (Iachello, Barea) the low lying states of the nucleus are modeled in terms of bosons. The bosons have either L=0 (s boson) or L=2 (d boson). The bosons can interact through one and to body forces giving rise to bosonic wave functions.

In PHFB (India/Mexico groups) w.f. of good angular momentum are obtained by making projection on the axially symmetric intrinsic HFB states. Nuclear Hamiltonian contains only quadrupole interaction.

Differences: i) mean field; ii) residual interaction; iii) size of the model space iv) many-body approximation

NME calculations

Engel and Menendez, Reports on Progress in Physics 80, 046301 (2017)

•The uncertainties on individual isotopes are related to nuclear structure.

•In addition there is an overall uncertainty (not shown) on the effective value to be used for g_A .

Differences in the models include:

•Mean field

- Residual interaction
- •Size of the model space
- Many-body approximation

F. Simkovic, Neutrino 2010

Effective Majorana mass

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} * \left|M^{0\nu}\right|^2 * \left< m_{\beta\beta} \right>^2$$

Using the standard representation of the PNMS matrix, the effective Majorana neutrino mass is given as:

$$\left\langle \mathbf{m}_{\beta\beta} \right\rangle = \left| \mathbf{m}_{1} \cdot \left(1 - \sin^{2}\theta_{12} \right) \cdot \left(1 - \sin^{2}\theta_{13} \right) + \mathbf{m}_{2} \cdot \sin^{2}\theta_{12} \cdot \left(1 - \sin^{2}\theta_{13} \right) \cdot \mathbf{e}^{\mathbf{i} \cdot (\alpha_{2} - \alpha_{1})} + \mathbf{m}_{3} \cdot \sin^{2}\theta_{13} \cdot \mathbf{e}^{-\mathbf{i} \cdot \alpha_{3}} \right|$$

The three CP phases α_1 , α_2 , and α_3 are unknown. This uncertainty is expressed by varying:

$$\langle \mathbf{m}_{\beta\beta} \rangle = \left| \mathbf{m}_{1} \cdot \left(1 - \sin^{2}\theta_{12} \right) \cdot \left(1 - \sin^{2}\theta_{13} \right) \pm_{(1)} \mathbf{m}_{2} \cdot \sin^{2}\theta_{12} \cdot \left(1 - \sin^{2}\theta_{13} \right) \right. \\ \left. \pm_{(2)} \mathbf{m}_{3} \cdot \sin^{2}\theta_{13} \right|$$

Neutrino mixing matrix

$$\begin{split} U &= \begin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{split}$$

Effective Majorana mass

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} * \left|M^{0\nu}\right|^2 * \left< m_{\beta\beta} \right>^2$$

Using the standard representation of the PNMS matrix, the effective Majorana neutrino mass is given as:

$$\left\langle \mathbf{m}_{\beta\beta} \right\rangle = \left| \mathbf{m}_{1} \cdot \left(1 - \sin^{2}\theta_{12} \right) \cdot \left(1 - \sin^{2}\theta_{13} \right) + \mathbf{m}_{2} \cdot \sin^{2}\theta_{12} \cdot \left(1 - \sin^{2}\theta_{13} \right) \cdot \mathbf{e}^{\mathbf{i} \cdot (\alpha_{2} - \alpha_{1})} + \mathbf{m}_{3} \cdot \sin^{2}\theta_{13} \cdot \mathbf{e}^{-\mathbf{i} \cdot \alpha_{3}} \right|$$

The three CP phases α_1 , α_2 , and α_3 are unknown. This uncertainty is expressed by varying:

$$\langle \mathbf{m}_{\beta\beta} \rangle = \left| \mathbf{m}_{1} \cdot \left(1 - \sin^{2}\theta_{12} \right) \cdot \left(1 - \sin^{2}\theta_{13} \right) \pm_{(1)} \mathbf{m}_{2} \cdot \sin^{2}\theta_{12} \cdot \left(1 - \sin^{2}\theta_{13} \right) \right. \\ \left. \pm_{(2)} \mathbf{m}_{3} \cdot \sin^{2}\theta_{13} \right|$$

Inverted hierarchy

Now we insert the standard neutrino oscillation parameters (central values). No total cancellation is possible for the inverted hierarchy.

Plots courtesy Andreas Piepke.

Normal hierarchy

For the normal hierarchy variation of the unknown CPphases introduces: 1) considerable variation of the effective mass, 2) allows destructive interference for certain values of m_{\min} and choice of phases.

Combined phase space

Inverted and normal hierarchy including 3σ errors on oscillation parameters.

Effective Majorana mass vs. M_{total} For the mean values of oscillation parameters (dashed) and for the 3 σ errors (full) 0.1 m_{etaeta} (eV) inverted hierarchy 0.01 normal hierarchy 0.001 0.01 0.1 M_{total} (eV)

20

A Global Bayesian Analysis of Neutrino Mass Data

Allen Caldwell,¹,^{*} Alexander Merle,¹,[†] Oliver Schulz,¹,[‡] and Maximilian Totzauer¹,[§]

¹Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany (Dated: May 8, 2017)

We perform a global Bayesian analysis of currently available neutrino data, putting data from oscillation experiments, neutrinoless double beta decay $(0\nu\beta\beta)$, and precision cosmology on an equal footing. We evaluate the discovery potential of future $0\nu\beta\beta$ experiments and the Bayes factor of the two possible neutrino mass ordering schemes for different prior choices. We show that the indication for normal ordering is still very mild and does not strongly depend on realistic prior assumptions or different combinations of cosmological data sets. We find a wide range for $0\nu\beta\beta$ discovery potential, depending on the absolute neutrino mass scale, mass ordering and achievable background level.

Discovery probability of next-generation neutrinoless double- β decay experiments

Matteo Agostini^{*} Gran Sasso Science Institute, L'Aquila, Italy

Giovanni Benato[†]

Department of Physics, University of California, Berkeley, CA 94720 - USA Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 74720 - USA

Jason Detwiler[‡]

Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA 98115 - USA

(Dated: May 9, 2017)

The Bayesian discovery probability of future experiments searching for neutrinoless double- β decay is evaluated under the popular assumption that neutrinos are their own antiparticles. A Bayesian global fit is performed to construct a probability distribution for the effective Majorana mass, the observable of interest for these experiments. This probability distribution is then combined with the sensitivity of each experiment derived from a heuristic counting analysis. The discovery probability strongly depends on whether the neutrino mass ordering is normal or inverted, and is found to be higher than previously considered for both mass orderings. In the absence of neutrino mass mechanisms that drive the lightest state or the effective Majorana mass to zero, for the inverted ordering next-generation experiments are likely to observe a signal already during their first operational stages. Even for the normal ordering, the probability of discovering neutrinoless double- β decay reaches ~50% or more in the most promising experiments.

Phase space

Caveats

- In NO, a flavor symmetry could induce an apparent fine tuning of the Majorana phases and a vanishing $m_{\beta\beta}$
- Mass mechanisms that drive m_l to zero are not considered
 - \Rightarrow Just extrapolate down the horizontal bands

Benato, TAUP 2017 and Agostini, *et al.* arXiv:1705.02996v1

Discovery potential

Agostini, et al. arXiv:1705.02996v1

Mechanism?

In some cases, it's possible to determine the mechanism by measuring the opening angle between the electrons.

LHC complementarity

One more SUSY-inspired example:

except the relationship to the half-life is now a different one.

0v66 decay always implies new physics!

Other mechanisms

While it is convenient to think in terms of the light neutrino exchange mechanism, it may not be the dominant mechanism.

Wick Haxton, DNP 2016

Black box theorem (Schechter and Valle)

Experimental search

Large exposure
High isotopic abundance
Good energy resolution
Low background
High detection efficiency

Low background

Massive effort on material radioactive qualification using:

- Neutron activation analysis
- Low background γ -ray spectroscopy
- $\alpha\text{-counting}$ and radon counting
- High sensitivity GD-MS and ICP-MS

At present the database of characterized materials includes over 300 entries. See D.Leonard et al., *Nucl. Instr. Meth.* A**591**, 490 (2008).

Material	Method	K conc. (10^{-9} g/g)	Th conc. (10^{-12} g/g)	U conc. $(10^{-12} g/g)$
Bulk copper				
Norddeutsche Affinerie, NOSV copper made May 2002	Shiva Inc. GD-MS	0.4	<5	<5
Norddeutsche Affinerie, NOSV copper made May 2002	Ge	<120	<35	<63
Norddeutsche Affinerie OFRP copper made May 2006, batch E263/2E1	ICP-MS	<55	<2.4	<2.9
Norddeutsche Affinerie OFRP copper made May 2006 batch E262/3E1	ICP-MS	<50	<2.4	<2.9
Rolled Norddeutsche Affinerie OFRP copper, May 2006 production. Rolled by Carl- Schreiber GmbH	ICP-MS	-	< 3.1	<3.8
TIG welded Norddeutsche Affinerie OFRP copper made May 2002. No cleaning after welding. Results are normalized to length of weld	ICP-MS	_	<9.8 pg/cm	$10.2 \pm 3.4 \text{pg/cm}$
Valcool VNT 700 metal working lubricant, concentrate	A.G. Ge	38000 ± 11000	<10 000	< 3700
Water alcohol mixture, lubricant for machining of Cu parts	A.G. Ge	<44000	< 18 000	< 3800

Underground physics

Mei, Dongming et al. Phys.Rev. D73 (2006) 053004

Liquid (organic) scintillators: - KamLAND-ZEN (¹³⁶ Xe) - SNO+ (¹³⁰ Te)	Crystals: - GERDA, Majorana Demonstrator, LEGEND (⁷⁶ Ge) - CUORE, CUPID (¹³⁰ Te)
Pros: "Simple", large detectors	Pros: Superb energy resolution,
exist, self-shielding	possibly 2-parameter
Cons: Poor energy resolution,	measurement
2v background	Cons: Intrinsically fragmented
Low density trackers:	Liquid TPC:
- NEXT PandaX (¹³⁶ Xe gas	EXO_{200} $pEXO_{136}(x_0)$
TPC) - SuperNEMO (foils and gas tracking, ⁸² Se)	- LAO-200, IILAO (19976)

Current best $0v\beta\beta$ sensitivities

Isotope	Experiment	Exposure (kg yr)	$T_{1/2}^{0\nu\beta\beta}$ average sensitivity (10 ²⁵ yr)	T ^{0νββ} 1/2 (10 ²⁵ yr) 90%CL	$< m_{ u} >$ (meV) Range from NME*	Reference
⁷⁶ Ge	GERDA	82.4	11	>9.0	<113-254	Agostini et al. PRL 120 (2018) 132503
	MJD	29.7	4.8	>2.7	<200-433	Alvis et al. arXiv:1902.02299 (2019)
¹³⁰ Te	CUORE	24.0	0.7	>1.5	<110-520	Alduino et al. PRL 120 (2018) 132501
¹³⁶ Xe	EXO-200	234.1	5.0	>3.5	<93-286	Anton et al. arXiv:1906.02723 (2019)
	KamLAND- ZEN	504	5.6	>10.7	<60-161	Gando et al., PRL 117 (2016) 082503

Note that the range of NME is chosen by the experiments, uncertainties related to g_A not included.

To achieve higher sensitivity, the next generation of experiments will be at the ton scale.

A priority for nuclear physics

The 2015 LONG RANGE PLAN for NUCLEAR SCIENCE

RECOMMENDATION II:

"The excess of matter over antimatter in the universe is one of the most compelling mysteries in all of science. The observation of neutrinoless double beta decay in nuclei would immediately demonstrate that neutrinos are their own antiparticles and would have profound implications for our understanding of the matter-antimatter mystery.

"We recommend the timely development and deployment of a U.S.-led ton-scale neutrinoless double beta decay experiment."

INITIATIVE B:

"We recommend vigorous detector and accelerator R&D in support of the neutrinoless double beta decay program and the EIC."

Tour of Experiments

NEMO-3

Like the first observation of $2\nu\beta\beta$ in the laboratory, NEMO-3 uses source foils in a gas TPC.

NEMO-3 to SuperNEMO

[2.8-3.2] MeV: DATA = 18; MC = 16.4 \pm 1.4 T_{1/2}(OV) > 1.0×10²⁴ yr at 90%CL <m_V> < (0.47 - 0.96) eV

[2.6-3.2] MeV: DATA = 14; MC = 10.9 ± 1.3 $T_{1/2}(0v) > 3.2 \times 10^{23}$ yr at 90%CL $< m_v > < (0.94 - 2.5) eV$

rnemo

collaboration

SuperNEMO will scale up to ~100 kg in Modane (LSM). Working on demonstrator module now.

- 2034 drift cells working in Geiger mode
- Ultrapure materials : copper, steel, duracon. HPGe and radon tested.
- Robotic construction
- Radiopure gas flow, anti-radon sealing
- < 1 % of dead channels

Source = detector

For source = detector configuration, the figure of merit F_{0v} :

$$F_{0\nu} = \ln 2 \cdot N_A \frac{f}{A} \left(\frac{Mt}{B\Delta E}\right)^{1/2} \varepsilon$$

f is the number of atoms of the $\beta\beta$ isotope/molecule; *A* is the molecular mass;

M is the mass;

t is the running time;

B is the number of background counts/keV/kg/year;

 ΔE is the energy resolution of the detector in keV;

 ϵ is the detector efficiency in the $\beta\beta$ region

Claim for observation of $0\nu\beta\beta$

Fit model: 6 gaussians + linear bknd. Fitted excess @ $Q_{\beta\beta}$ 28.75 ± 6.86 → 4.2 σ

$$T_{1/2} = 2.23_{-0.31}^{+0.44} \cdot 10^{24} yr$$
$$\langle m_{v} \rangle = 0.32 \pm 0.03 \, eV$$

[H.V.Klapdor-Kleingrothaus and I.Krivosheina, Mod.Phys.Lett. A21 (2006) 1547]

Heidelberg-Moscow Collaboration split over this result, and it is still controversial.

Current ⁷⁶Ge diode experiments

Majorana Demonstrator

GERDA: the concept

Pandola, TAUP 2017

C)

- Best fit \rightarrow no signal.
- T_{1/2} > 0.9·10²⁶ yr (median sensitivity for limit 1.1 ·10²⁶ yr) @ 90% C.L.

Bayesian analysis:

- Best fit \rightarrow no signal. Bayes factor = 0.054
- $T_{1/2} > 0.8 \cdot 10^{26}$ yr (median sensitivity for limit $0.8 \cdot 10^{26}$ yr) @ 90% C.I.

The median limit on effective Majorana mass is < (0.11-0.26) eV NME range from [Rept.Prog.Phys. 80 (2017) no.4, 046301]

Next generation ton-scale ⁷⁶Ge $0\nu\beta\beta$

- Build on the experience of GERDA and the MAJORANA DEMONSTRATOR, as well as contributions from other groups and experiments.
- Design sensitivity of ~1x10²⁸ y with a background of 0.1 cnt/tonne-yr in the region of interest (background reduction of ~6-20 relative to existing)

CUORE

^{nat}TeO₂ bolometers operated in a low
 background dilution refrigerator at LNGS
 ~200 kg ¹³⁰Te

CUORE results

Limits combining CUORE with CUORE-0 and Cuoricino:

- Bayesian limit @ 90% c.i. (flat prior for $\Gamma_{\beta\beta}>0$): 1.5 × 10²⁵ yr
- Profile likelihood ("frequentist") limit @ 90% CL: 2.2 × 10²⁵ yr

 $m_{\beta\beta} < 110 - 520 \text{ meV}$

Back to data taking since May 2018!

Alduino et al. *PRL* 120, 132501 (2018)

Beyond CUORE: CUPID

Challenges of the ton-scale

Shielding a detector from MeV gammas is difficult!

Example: γ -ray interaction length in Ge is 4.6 cm, comparable to the size of a germanium detector.

Shielding 0v66 decay detectors is much harder than shielding dark matter detectors

We are entering the "golden era" of $0v\beta\beta$ decay experiments as detector sizes exceed interaction length ⁴⁷

Monolithic detectors

Background suppression

All observables have a role in separating signal from background. A very large, homogeneous detector has great advantages but only if its energy resolution is sufficient to sufficiently suppress the $2\nu\beta\beta$ mode.

Scintillator-based detectors

3.9 t natural Te dissolved in liquid scintillator in the upgraded SNO detector

Up to 800 kg 90% enriched Xe dissolved in inner volume of KamLAND

KamLAND-Zen

Enriched xenon (90% ¹³⁶Xe) dissolved in scintillator in the inner volume of the KamLAND detector in Japan.

 $T_{1/2}^{0\nu\beta\beta} > 1.07 \text{ x } 10^{26} \text{ yr}$

 $\langle m_{\scriptscriptstyle BB} \rangle < 61 - 165 \,\mathrm{meV}$

Beyond KamLAND-Zen 800

Higher energy resolution = lower 2v background: KamLAND2-ZEN

1000+ kg xenon

Beyond?

	Light collection gain		
Winston cones	x1.8		
Higher q.e. PMTs	x1.9		
LAB-based liquid scint	x1.4		
Overall	x4.8		

expected σ (2.6MeV)= 4% \rightarrow ~2% target sensitivity 20 meV

Super-KamLAND-Zen in connection with Hyper-Kamiokande

target sensitivity 8 meV But eventually 2*v* background becomes dominant

NEXT-100

- •15 bar high pressure gas Xe time projection chamber (TPC) with ~100 kg fiducial mass. SiPMs (MPPCs) for tracking and PMTs for energy.
- •Proportional electroluminescent amplification for large photon yield.
- •Tracking and event topology reconstruction.
- •Good energy resolution. Demonstrated <0.9% energy resolution achievable at $0\nu\beta\beta$ Q-value.
- •Will be sited at the Canfranc laboratory (LSC). Projected 3 year sensitivity of 5x10²⁵ y. Commissioning in ~2020.

NEXT R&D

•Multiple prototypes at the ~kg scale (IFIC, LBL, Canfranc).

•Study of ⁶⁰Co calibration data for event topology.

Ander Simón Estévez, TAUP 2017

EXO-200 Liquid Xe TPC

~100 kg fiducial mass Xe enriched to 80% in ¹³⁶Xe, ultralow background construction.

- Readout plane is made up of LAAPDs + crossed wire grid.
- Operating with enriched Xe at the Waste Isolation Pilot Plant since May 2011.

EXO-200 @ WIPP

EXO-200 was located at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM, a DOE facility for the disposal of radioactive waste. Provides ~1600 m.w.e. shielding and low U, Th, and Rn.

•TPC housed in thin-walled copper vessel.

•Vacuum insulated cryostat with HFE-7000 for shielding and thermal bath.

- •Lead shield.
- •Clean room environment.
- •Active muon veto.

•Other support systems not shown here (refrigeration, gas handling, etc.).

Operated with enriched Xe from May 2011 to Feb. 2014 (Phase I)

57

Upgraded detector ran from June 2016 to December 2018 (Phase II)

$2\nu\beta\beta$ precision measurement

Most precise measurement of the $2\nu\beta\beta$ half-life $T_{1/2}^{2\nu\beta\beta} = 2.165 \pm 0.016(\text{stat}) \pm 0.059(\text{sys}) \times 10^{21} \text{ yr}$ [PRC **89**, 015502 (2014)]

Energy measurement

Scintillation vs. ionization, ²²⁸Th calibration:

- Anticorrelation between scintillation and ionization in LXe known since early EXO R&D [E.Conti et al. Phys Rev B 68 (2003) 054201]
- Rotation angle determined weekly using ²²⁸Th source data, defined as angle which gives best rotated resolution
- In the most recent analysis, EXO-200 has achieved 1.15% σ/E energy resolution at the Q-value in Phase II.

Position and multiplicity

Allows for background measurement and reduction

Events with > 1 charge cluster: multi-site events Events with 1 charge cluster: single-site events.

Improved γ -background Rejection

Additional discrimination in SS using *spatial distribution* and *cluster size*

Entering γ -rays are exponentially attenuated by LXe self-shielding, providing an independent measurement of γ -backgrounds. We call this standoff distance.

The size of individual events is estimated from pulse rise time (longitudinal direction) and the number of wires with a charge collection signal (transverse).

Optimal $0 \nu \beta \beta$ Discrimination

Use Deep Neural Network (DNN) based $0\nu\beta\beta$ discriminator, more powerful than previous method using BDT

Signal/background identification efficiency clearly correlates with the true event size

- Data/MC agreement validated with different data
 - γ: Ra-226, Th-228, Co-60 sources
 - $\beta: 2\nu\beta\beta$ data
- Showed consistent and reasonable agreement

Analysis strategy

- SS/MS classification
- 3-dimensional fit in both SS and MS: Energy + DNN + standoff distance
 - Energy, event topology and spatial information
 - Make the most use of multi-parameters for background rejection
 - SS, MS relative contributions constrained by SS fraction
- Improvement of ~25% in $0\nu\beta\beta$ half-life sensitivity compared with using energy spectra + SS/MS alone

Results

arXiv:1906.02723

Background contributio

Sensitivity & Limits

2012: Phys.Rev.Lett. 109 (2012) 032505 2014: Nature 510 (2014) 229-234 2018: Phys. Rev. Lett. 120 (2018) 072701 **2019: arXiv:1906.02723**

Comparison across isotopes

Current limits, ⁷⁶Ge vs. ¹³⁶Xe

Majoron modes in Xe

Majoron Search in EXO-200

Phys. Rev. D 90, 092004 (2014)

Decay mode	Spectral index, n	Model types	$T_{1/2}$, yr	$ \langle g^M_{ee} angle $
$0\nu\beta\beta\chi_0$	1	IB, IC, IIB	$> 1.2 \cdot 10^{24}$	$<\!(0.8 ext{-}1.7) ext{-}10^{-5}$
$0 uetaeta\chi_0$	2	"Bulk"	$> 2.5 \cdot 10^{23}$	—
$0\nu\beta\beta\chi_0\chi_0$	3	ID, IE, IID	$> 2.7 \cdot 10^{22}$	$< \! (0.6 - 5.5) $
$0\nu\beta\beta\chi_0$	3	IIC, IIF	$> 2.7 \cdot 10^{22}$	< 0.06
$0 uetaeta\chi_0\chi_0$	7	IIE	$> 6.1 \cdot 10^{21}$	$< \! (0.5 - 4.7)$

EXO-200 to nEXO

A 5000 kg enriched LXe TPC, based on success of EXO-200

Preliminary artist view of nEXO in the SNOIab Cryopit

nEXO discovery potential

nEXO 10 year discovery potential at $T_{1/2}$ =5x10²⁷ yr

Baseline design assumes:

- · Existing measured materials
- 1% σ/E energy resolution
- Factor of two improvement in SS/MS discrimination

Ba+ tagging

If you could identify the daughter nucleus as ¹³⁶Ba on an event-by-event basis, you could eliminate all backgrounds other than $2\nu\beta\beta$.

•Ba⁺ system is well studied. See H. Dehmelt et al. Phys. Rev. A22, 1137 (1980).

•Very specific signature with laser induced fluorescence.

•Single ions can be detected from a photon rate of 10⁷/s
Barium tagging: Solid xenon

Summary

- Neutrino masses are an open window into physics beyond the Standard Model.
- Majorana neutrino masses may be the key to understanding the matter-antimatter asymmetry of the universe.
- Neutrinoless double beta decay is the most sensitive experimental probe of whether neutrinos have Majorana masses.
- There is a varied experimental program to search for neutrinoless double beta decay.
- We need nuclear theorists, too!