HADRONIC STRUCTURE EXPERIMENTAL

Anselm Vossen

OUTLINE

- Motivation
- Basics of hard scattering experiments
- Partonic structure of the unpolarized nucleon
 - Quarks
 - Gluons
 - Sea
- Longitudinal structure
- Transverse structure
- Fragmentation functions

STUDY "WHAT HOLDS THE WORLD TOGETHER IN ITS INMOST FOLDS" (GOETHE'S FAUST)

THEORY OF STRONG INTERACTIONS: QUANTUM CHROMODYNAMICS

$$L_{QCD} = \overline{q} (i\gamma^{\mu}\partial_{\mu} - m)q - g(\overline{q}\gamma^{\mu}T_{a}q)A_{\mu}^{a} - \frac{1}{4}G_{\mu\nu}^{a}G_{a}^{\mu\nu}$$

$$G_{\mu\nu}^{a} = \partial_{\mu}A_{\nu}^{a} - \partial_{\nu}A_{\mu}^{a} + f_{bc}^{a}A_{\mu}^{b}A_{\nu}^{c}$$

- Salient features like Color confinement of QCD not evident from Lagrangian!
- Proton is a QCD laboratory!

Setting the scale: Energy Matters!

system	constituents	$\Sigma_i m_i c^2$	Δmc^2	$\frac{\Delta mc^2}{\Sigma_i m_i c^2}$
atom	p+e	1 GeV	10 eV	10 - ⁸
nucleus	p + n	2 GeV	2 MeV	10 ⁻³
nucleon	3 quarks	~ 20 MeV	1 GeV	10 ²

- Properties are dominated by interactions among ~massless quarks
- Deep intellectual challenges / complicated numerical analyses / extensive experimental effort required to understand this!
- Hadronic structure \rightarrow Hadron dynamics

PROBING A HIGHLY RELATIVISTIC, STRONGLY INTERACTING SYSTEM

Parton picture:

(Feynman 1969) High energy scattering can be treated as scattering from many point-like sources

- partons

- Asymptotic freedom in high energy scattering Infinite momentum frame
 - \rightarrow probe wavefunction on the lightcone
 - suppresses transverse components

TOOLS OF THE TRADE SEMI INCLUSIVE DEEP INELASTIC SCATTERING

Inclusive DIS

LO parton picture valid at high $Q^2 >> I GeV^2$

 At fixed beam energy need two variables to characterize DIS event, e.g. Q²,v → x in scaling regime

•
$$l^{\mu} = (E, \vec{k}), \mathbf{v} = E - E'$$

•
$$Q^2 = 4EE' \sin^2 \frac{\theta}{2}$$
:"hard scale" of the probe

• $x = \frac{Q^2}{2M_n v}$: bjorken scaling variable, in partonic picture momentum fraction of the struck parton

TOOLS OF THE TRADE SEMI INCLUSIVE DEEP INELASTIC SCATTERING

Inclusive DIS

Semi-inclusive DIS (SIDIS)

 At fixed beam energy need two variables to characterize DIS event, e.g. Q², v → x in scaling regime

$$l^{\mu} = (E, \vec{k}), \boldsymbol{\nu} = E - E$$

$$Q^2 = 4EE' \sin^2 \frac{\theta}{2}$$
: "hard scale" of the probe

 $x = \frac{Q^2}{2M_n v}$: bjorken scaling variable, in partonic picture momentum fraction of the struck parton

 $z = E_h/E_q(lab)$: fractional energy the hadron is carrying

HANDBAG DIAGRAMS

• Scattering probability $\leftarrow \rightarrow$ QCD amplitude

HANDBAG DIAGRAMS $\leftarrow \rightarrow$ PDFS

Proton Polarization → Quark Polarization ↓	Unpolarized	Longitudinal	Transverse
Unpolarized	f(x)		
Longitudinal		g(x)	
Transverse			h(x)

HANDBAG DIAGRAMS $\leftarrow \rightarrow$ PDFS Proton Polarization \rightarrow Longitudinal Unpolarized Transverse Quark Polarization \downarrow Unpolarized f(x) Longitudinal g(x) Transverse h(x)

BASIS FOR f(x) EXTRACTION EP COLLIDER HERA DATA: (1992 - 2007)

- The world's only electron(positron)-proton collider at DESY, Hamburg
- Two collider experiments: HI and ZEUS
- Total luminosity ~ 0.5 fb⁻¹ per experiment
- Collider advantages: high energy, good acceptance (x,Q² coverage) (e.g. 320 GeV ~50 TeV beam)
- Charged and neutral current (flavour sensitivity)

• $E_e = 27.6 \text{ GeV}, E_p = 820 \text{ GeV} \text{ HERA-I}$, $E_p = 920 \text{ GeV} \text{ HERA-II}$ (460, 575 GeV)

• Need precise determination of electron energy

From ANL-HEP-PR-08-23

• Small Q^2 lever arm at low x

F2 AND SCALING

$$F_2 \propto \sum_i e_i q_i$$
$$\frac{d^2 \sigma}{dx dQ^2} \propto F_2 (x, Q^2)$$

F2 AND SCALING

18

SCALING VIOLATION PROVIDES ACCESS TO GLUON DISTRIBUTION VIA DGLAP EQUATIONS

DGLAP Equations

•
$$\frac{d}{dQ^2}q_i(x,Q^2) \propto q_i \otimes P_{qq}] + [g \otimes P_{qg}]$$

- $\frac{d}{dQ^2}g(x,Q^2) \propto [(q_i + \overline{q}_i) \otimes P_{gq}] + [g \otimes P_{gg}]$
- $[q \otimes P] = P \otimes q = \int_x^1 dy \frac{q(y,Q^2)}{y} \cdot P(\frac{x}{y})$

Need to know PDF at all higher x

RESULTS ON PDFS FROM HERA

20

DIRECT ACCESS TO GLUON POLARIZATION AT PP COLLIDERS

• "Parton-beam" with poorly known initial kinematics

DIRECT ACCESS TO GLUON POLARIZATION AT PP COLLIDERS

- Cannot determine Q²,x , need different set of variables to define kinematics
- Initial parton kinematics unkown, use variables that are invariant under longitudinal boost:
 - **Rapidity y** (pseudorapidity η), $y = \frac{1}{2} \ln \left(\frac{E + p_z}{E p_z} \right)$, $\eta = -\ln \tan \frac{\theta}{2}$
 - Transverse jet momentum P_T
 - At leading order: $x_1 = \frac{p_T}{\sqrt{s}}(e^{y_1} + e^{y_2}), x_2 = \frac{p_T}{\sqrt{s}}(e^{-y_1} + e^{-y_2}),$
 - \rightarrow High, (low) x: high y, high (low) p_T

CROSS-SECTION AND MORE PROBES FROM HIGH LUMINOSITY COLLIDERS

- Together in a global fit they provide a detailed picture
 - Multiple probes probes and kinematic regions to probe different x regions helped by high precision LHC data
 - Examples from NNPDF
 - Top-top \rightarrow high x
 - W for flavor separation
 - W+c for strange quarks

Exp.	Obs.	Ref.	$N_{\rm dat}$
	W, Z 2010	49	30 (30/30)
ATLAS	W, Z 2011 (*)	72	34 (34/34)
	high-mass DY 2011	50	11 (5/5)
	low-mass DY 2011 (*)	77	6(4/6)
	$[Z \ p_T \ 7 \ { m TeV} \ \left(p_T^Z, y_Z ight)]$ (*)	78	64 (39/39)
	$Z \ p_T \ 8 \ { m TeV} \left(p_T^Z, M_{ll} \right)$ (*)	71	64(44/44)
	$Z \ p_T \ 8 \ { m TeV} \ \left(p_T^Z, y_Z ight)$ (*)	71	120 (48/48)
	7 TeV jets 2010	57	90 (90/90)
	2.76 TeV jets	58	59 (59/59)
	7 TeV jets 2011 (*)	76	140 (31/31)
	$\sigma_{ m tot}(tar{t})$	[74,75	3 (3/3)
	$(1/\sigma_{t\bar{t}})d\sigma(t\bar{t})/y_t$ (*)	73	10 (10/10)
	W electron asy	52	11 (11/11)
	W muon asy	53	11 (11/11)
	W + c total	60	5 (5/0)
	W + cratio	60	5 (5/0)
	2D DY 2011 7 TeV	54	124 (88/110)
CMS	[2D DY 2012 8 TeV]	84	124 (108/108)
OMD	W^{\pm} rap 8 TeV (*)	79	22 (22/22)
	$Z p_T 8 \text{ TeV}$ (*)	83	50(28/28)
	7 TeV jets 2011	59	133 (133/133)
	2.76 TeV jets (*)	80	81 (81/81)
	$\sigma_{ m tot}(tar{t})$	[82,88	3 (3/3)
	$(1/\sigma_{t\bar{t}})d\sigma(t\bar{t})/y_{t\bar{t}}$ (*)	81	10 (10/10)
	Z rapidity 940 pb	55	9 (9/9)
LHCb	$Z \rightarrow ee$ rapidity 2 fb	56	17 (17/17)
LICO	$W, Z \rightarrow \mu \ 7 \ { m TeV}$ (*)	85	33(33/29)
	$W, Z \rightarrow \mu \ 8 \ { m TeV}$ (*)	86	34 (34/30)

INPUT FOR. NNPDF 3.0

• Data used

		•	Experiment	Obs.	Ref.	N_{dat}	Ì	
			NMC	F_{2}^{d}/F_{2}^{p}	28	260 (121/121)		
			INNIC	$\sigma^{ m NC,p}$	29	292 (204/204)		
			SLAC	F_2^p	32	211 (33/33)		
Evn	Obe	Ref	SLAC	F_2^d	32	211 (34/34)		
Exp.	Obs.	Itel.	BCDMS	F_2^p	30	351 (333/333)		0
E866	$\sigma^{d}_{ m DY}/\sigma^{p}_{ m DY}$	48	BCDMS	F_2^d	31	254 (248/248)		
$\sigma_{\rm DY}^p$	$\sigma^p_{ m DY}$	46, 47	CHORUS	$\sigma^{CC,\nu}$	39	607 (416/416)	_	
E605	$\sigma^p_{ m DY}$	45	CHORUS	$\sigma^{{ m CC},ar{ u}}$	39	607 (416/416)		
CIDE	$d\sigma_Z/dy_Z$	42	NuTeV	$\sigma_{ u}^{cc}$	40,41	45 (39/39)		
CDF k_t in	k_t incl jets	87	Nulev	$\sigma^{cc}_{ u}$	40,41	45 (37/37)	ļ	
	$d\sigma_Z/dy_Z$	43		$\sigma^p_{ m NC,CC}$ (*)	9	1306 (1145/1145)		
D0	W electron asy (*)	14	HERA	$\sigma^c_{ m NC}$	38	52 (47/37)		\mathbf{L}
20	TT CICCHOIL asy ()	14		F_{2}^{b} (*)	67,68	29 (29/29)	-	
	W muon asy (*)	13	EMC	$[F_2^c](*)$	69	21 (16/16)	L	
					-			

EXAMPLE OF EXTRACTED PDFS

- Global fits:
- NNPDF → NNPDF3.1 (<u>arXiv:1706.00428</u>,)
- CTEQ/CT →CTI4
 (Phys.Rev. D93 (2016) no.3, 033006)
- MSTW/MMHT
 →MMHT2014 (Eur.Phys.J.

 C75 (2015) no.5, 204)

• Gottfried sum rule:

•
$$S_G = \int_0^1 \left[\frac{F_2^p(x) - F_2^n(x)}{x}\right] dx = \frac{1}{3} + \frac{2}{3} \int_0^1 \left(\bar{u}_p(x) - \bar{d}_p(x)\right) dx$$

- If $(\bar{u}_p(x) = \bar{d}_p(x)) S_G = \frac{1}{3!}$
- NMC=0.235 +/- 0.026

• Background from resonances decaying in lepton pairs

DRELL-YAN KINEMATICS

- Drell Yan Kinematics
 - Invariant mass of the lepton pair $M = sx_tx_b$
 - "x-Feynman": $x_F = x_t x_b = \frac{p_L}{p_{L_{max}}} \approx 2p_L/\sqrt{s}$
 - Fixed target cross section is a convolution of beam and target parton distributions

$\frac{d^2\sigma}{dx_{\rm b}dx_{\rm t}} = \frac{4\pi\sigma}{x_{\rm b}x_{\rm t}}$	$\frac{a^2}{\mathbf{t}^s} \sum_{q \in \{u,d,s,\ldots\}}$	$e_q^2 [\bar{q}_t (x_t) q_b (x_b) + \bar{q}_b (x_b) q_t (x_t)]$ Acceptance limited		
u-quark dominance	Beam	Sensitivity	Experiment	
$(2/3)^2$ vs. $(1/3)^2$	Hadron	Beam quarks target antiquarks	Fermilab, J-PARC RHIC (forward acpt.)	
	Anti-Hadron	Beam antiquarks Target quarks	J-PARC, GSI-FAIR Fermilab Collider	
	Meson	Beam antiquarks Target quarks	COMPASS, J-PARC	

E866(NuSea) used 800 GeV proton beam

NEW: THE SEAQUEST SPECTROMETER

~20% of data, pre improved acceptance

RHIC: THE ONLY POLARIZED PP COLLIDER IN THE WORLD!

- Charged Tracks/π⁰/γ in -0.35<η<0.35
- μ in 1<η<2
- Forward EMC with preshower
- Pi0 channels
- High resolution/precision

- PID (Barrel) with dE/dx,TOF
- Jets in -0.7<η<0.9
- EM Jets I <η<4
- Full Azimuth
- Forward EMC with preshower
- Jets+dijets

STAR KINEMATIC REACH MID-RAPIDITY

STAR RESULTS AND PROJECTIONS

Charged W Cross Section Ratio Projected Uncertainty

Rapidity from 'fully reconstructed Ws'

SUMMARY UNPOLARIZED PART

- Measurements of the partonic structure of the nucleon challenges challenges our understanding of QCD
- Hard scattering experiments probe the proton in a frame where it moves at the speed of light
- Factorization enables us to measure universal functions describing the parton structure (PDFs) and that have (at leading order) a probabilistic interpretation.
- Optical theorem relates PDFs to forward scattering amplitudes
- Worldwide effort to measure quark and gluon distributions precisely
- Structure of the sea still an open question

