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Nuclear physics at low temperatures:

Rπ ∼ ~
mπc
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“Low” temperature nuclear physics of a dilute pion gas.



Nuclear physics at modest temperatures:

Rπ ∼ ~
mπc
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At modest temperatures the pion density increases like nπ ∝
(
T
~c
)3



Nuclear physics at high temperatures:

Non-abelian plasma is special:

1. Ultra-relativistic

2. Non-linear

Expect a transition at for temperatures T ∼ mπc
2 ' 140 MeV



How nonlinear? The strong coupling constant at finite temperature:
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The real QGP is neither completely weakly nor strongly coupled making life hard!



Lattice QCD and the QCD equation of state:

Compute the equation of state by sampling fields with the statistical weight:

Z ∼
∫

[DA]e−SQCD[A]

The largest single computational project in human history!



The QCD Equation of State (Budapest-Wuppertal Collaboration)

Nf =2+1 flavour equation of state

Figure 5: The energy density normalized by T 4 as a function of the temperature onNt = 6,8 and 10 lattices.
The Stefan-Boltzmann limit εSB = 3pSB is indicated by an arrow.

Figure 6: The speed of sound squared as a function of the temperature on Nt = 6,8 and 10 lattices. The
Stefan-Boltzmann limit is c2s,SB = 1/3 indicated by an arrow.
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1. The “critical” energy density and temperature are

ec ' 1 GeV/fm3 Tc ' 160 MeV

2. The EOS state should be computable at high temperatures

p(T ) = T 4
(
1 + g2 + g3 + g4 + g5 + g6 log(1/g) + . . .

)

The equation of state is close to ideal gas – but important 20% deviations exist.
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Failure of the strict perturbative expansion from Strickland, Andersen, and Su

Figure 1. Weak-coupling expansion for the scaled QCD pressure with Nf = 3. Shaded bands show

the result of varying the renormalization scale µ by a factor of 2 around µ = 2⇡T .

very poorly, and show large dependence on the renormalization scale. In figure 1, we show

the weak-coupling expansion for the QCD pressure with Nf = 3 normalized to that of an

ideal gas through order g5. The various approximations oscillate wildly and show no signs

of convergence in the temperature range shown. The bands are obtained by varying the

renormalization scale µ by a factor of 2 around the value µ = 2⇡T and we use three-loop

running for ↵s [11] with ⇤MS(Nf = 3) = 344 MeV [12]. This oscillating behavior is generic

for hot field theories, and not specific to QCD. The instability is thought to be caused

by plasma e↵ects such as screening of electric fields and Landau damping. This calls for

a nonperturbative approach, or a reorganization of the perturbative expansion that takes

such e↵ects into account. Furthermore, data from RHIC suggest that the matter created

behaves more like a strongly coupled fluid with small viscosity [13–17], inspiring the de-

velopment of strongly coupled formalisms, perhaps the most successful being those based

on the Anti-de-Sitter space/conformal field theory (AdS/CFT) correspondence proposed

by Maldacena [18]. However, work on the perturbative side has shown that observables

like jet quenching [19, 20] and elliptic flow [21] can also be described by a perturbative

setup. Looking forward to the upcoming heavy-ion experiments scheduled to take place

at the LHC, it is therefore important to know if, at the higher temperatures generated,

one should expect a strongly-coupled (liquid) or weakly-coupled (plasma) description to

be more appropriate. The key question is, will the generated matter behave more like a

plasma of quasiparticles at these higher temperatures.

Of course, another approach is lattice gauge theory, which is a nonperturbative dis-

crete space-time framework that is the closest one can currently get to a first-principles

calculation with realistic parameters. However, the Monte Carlo methods used currently
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A disaster!







Hard Thermal Loop Perturbation Theory from Braaten, Andersen, Leganger, Strickland, Su

L = LQCD + LHTL︸ ︷︷ ︸
treat without expansion

− LHTL︸ ︷︷ ︸
treat as perturbation

where

LHTL︸ ︷︷ ︸
provides a mass term

= −1

2
m2
DGµα

∫
dΩv

4π

vαp v
β
p

(vp ·D)2

︸ ︷︷ ︸
Hard thermal loop self energy+vertices

Gµβ

then work very hard . . .
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Figure 3. QCD diagrams contributing to NNLO in HTLpt.
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and more...

Dressed



Result from Braaten, Andersen, Strickland, Su

Figure 9. Comparison of LO, NLO, and NNLO predictions for the scaled pressure for Nf = 2 + 1

(left panel) and Nf = 2+1+1 (right panel) with lattice data from Bazavov et al. [22] and Borsanyi

et al. [23]. We use Nc = 3, three-loop running for ↵s, µ = 2⇡T , and ⇤MS = 344MeV. Shaded band

shows the result of varying the renormalization scale µ by a factor of 2 around µ = 2⇡T for the

NNLO result. See main text for details.

perturbative approach for the quark mass parameter, as using BN mass and perturbative

thermal quark mass can be argued to be less of a “mixing” of prescriptions than BN mass

and mq = 0. As it turns out, the final NNLO results are very insensitive to whether one

chooses a perturbative mass prescription for mq, or uses the variational mass mq = 0. In

figure 7 the NNLO pressure with LO perturbative mq is virtually indistinguishable from

the mq = 0 result. The di↵erence in dependence on the renormalization scale is also very

small, though slightly in favor of the perturbative mq, see figure 8. However, convergence

is improved with the choice mq = 0, where the pressure curves of figure 7 monotonically

approaching the NNLO results rather than oscillating as one goes from LO to NLO to

NNLO. We will therefore use mq = 0 in the following unless otherwise stated.

6.5 Comparison to lattice data

In figure 9 we show the normalized pressure for Nc = 3 and Nf = 2 + 1 (left panel), and

Nc = 3 and Nf = 2 + 1 + 1 (right panel) as a function of T . The results at LO, NLO,

and NNLO use the perturbative Debye mass given by eq. (6.7) as well as mq = 0. For

the strong coupling constant ↵s, we used three-loop running [11] with ⇤MS = 344 MeV

which for Nf = 3 gives ↵s(5 GeV) = 0.2034 [12]. The central line is evaluated with the

renormalization scale µ = 2⇡T which is the value one expects from e↵ective field theory

calculations [7, 63] and the band represents a variation of µ by a factor of 2 around this

value.

The lattice data from the Wuppertal-Budapest collaboration use the stout action.

Since their results show essentially no dependence on the lattice spacing (it is smaller than

the statistical errors), they provide a continuum estimate by averaging the trace anomaly

measured using their two smallest lattice spacings corresponding to N⌧ = 8 and N⌧ = 10
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Gives a much better agreement with lattice results! But . . .

EQCD resummation scheme gives similar results





Entropy of Super Yang Mills Theory at Large Nc

1. The coupling constant in Super Yang Mills Theory

λ = g2Nc = 4παsNc︸ ︷︷ ︸
“theorist’s” coupling

2. The entropy is function of coupling

s

s0
=

entropy

ideal gas entropy
= f(λ)︸︷︷︸

function of coupling

(a) Weak coupling (quasi-particles), λ� 1

s

s0
= 1− 3

2π2
λ

︸ ︷︷ ︸
∼ g2

+

√
2 + 3

π3
λ3/2

︸ ︷︷ ︸
∼ g3

+ . . .



The Entropy of Super-Yang Mills Theory vs. λ Blaizot, Iancu, Kraemmer, Rebhan

• Strong coupling result, λ� 1:

s

s0
=

3

4︸︷︷︸
constant as λ→∞!

+
45

32
ζ(3)λ−3/2

Nearly Perfect Fluidity 18
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Figure 1. Entropy density in units of the Stefan-Boltzmann value for pure gauge QCD

and N = 4 supersymmetric QCD. The left panel shows the entropy density of pure

gauge QCD as a function of T/Tc. The grey band is the lattice result. The solid lines

show a resummed QCD calculation [63]. The different lines correspond to different

choices for a non-perturbative parameter cΛ. The dashed lines mark an error band

determined by variations in the QCD renormalization scale. The right panel shows the

entropy density of SUSY QCD as a function of the ’t Hooft coupling λ. The curves

are labeled as in the left panel.

where φa (a = 1, 2, 3) is the pion field. This result is clearly analogous to the phonon

interaction in equ. (28). There are, however, some minor differences. Because of parity

and isospin symmetry there are no vertices with an odd number of pions. We also note

that the leading four-pion interaction has two derivatives, while the four-phonon term

involves four derivatives.

2.5. Gauge theories: Superconformal QCD

QCD is a complicated theory, and a significant amount of effort has been devoted to the

study of generalizations of QCD that possess a larger amount of symmetry, in particular

supersymmetry. Supersymmetry is a symmetry that relates bosonic and fermionic fields.

The simplest supersymmetric cousin of QCD is SUSY gluodynamics, a theory of gluons

and massless fermions in the adjoint representation of the color group called gluinos.

Theories with more supersymmetry involve extra fermions and colored scalar fields. The

most supersymmetric extension of QCD is a theory with four supersymmetries, called

N = 4 SUSY QCD. Theories with even more supersymmetry contain fields with spin

3/2 and 2, and therefore involve gravitational interactions. These theories are known

as supergravity.

The lagrangian of N = 4 SUSY QCD is

L = −1

4
Ga

µνG
a
µν − iλ̄a

i σ
µDµλ

a
i + Dµφ† a

ij Dµφ
a
ij + Lλλφ + Lφ4 , (47)

where Ga
µν is the usual field strength tensor, λa

i is the gluino field, and φa
ij is a colored

Higgs field. The gluino is a two-component (Weyl) fermion in the adjoint representation

of the color group. The index i (i = 1, . . . , 4) transforms in the fundamental

representation of a global SU(4)R “R-symmetry”. This symmetry interchanges the

Green = quasi-particle resumption Red = � ! 1
At strong coupling, all of those interactions add up to∼ 25% correction
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The AdS Black Hole

ds2 =
r2

L2

(
−f(r)dt2 + dx2

)
+

L2

f(r)r2
dr2

︸ ︷︷ ︸
AdS geometry

where f(r) = 1−
(ro
r

)4

 

Gravity

Black Hole r = ro

“Our” world r = ∞

I’m not seeing the QGP here!



The AdS Cavity with Hawking Radiation

ds2 =
r2

L2

(
−f(r)dt2 + dx2

)
+

L2

f(r)r2
dr2

︸ ︷︷ ︸
AdS geometry

where f(r) = 1−
(ro
r

)4

 

Gravity

“Our” world r = ∞
Induced T µν

reflecting boundary

Black Hole r = ro = πT

Hawking flux of gab

The fluctuations are small in large Nc, justifying the classical gravity approximation



The AdS Cavity with Hawking Radiation

ds2 =
r2

L2

(
−f(r)dt2 + dx2

)
+

L2

f(r)r2
dr2

︸ ︷︷ ︸
AdS geometry

where f(r) = 1−
(ro
r

)4

 

Gravity

“Our” world r = ∞

reflecting boundary

Induced Jµ

Black Hole r = ro = πT

Hawking flux of Aa

The fluctuations are small in large Nc, justifying the classical gravity approximation



Gauge-Gravity Duality

QuarkOur world

Black Hole

String Pulling on QuarkQuark Drag

Gravity

average drag

Fdrag

M dv
dt = −ηv

Its physics not math!



Gauge-Gravity Duality
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Quark

Stochastic String Pulling on Quark

Gravity
random force

Brownian Quark

Black Hole

Our world

average drag

M dv
dt = −ηv + ξ(t)

5D equilibrium is a competition between dissipative gravity and hawking radiation:

classical probability ∝ e−βH[x,πx]

Again, its physics not math!
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Greatly influenced by,  Arnold, Moore, Yaffe, hep-ph/0209353.  For a review with progress to "NLO" see Ghiglieri and Teaney arXiv:1502.03730.





Plots of energy density in a heavy ion collision:

Initial Condition Ideal Hydro Viscous Hydro

Viscosity diffuses out fluctuations!











Real calculation of η/s at LO Arnold, Moore, Yaffe (red curves)

η

s
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At leading order you can get whatever you want for η/s!



Calculation of η/s at NLO Moore, Ghiglieri, Teaney

η

s
=

1

α2
s

(
C0 + C1 log(mD/T )︸ ︷︷ ︸

AMY-Leading order

+ C2 (mD/T )︸ ︷︷ ︸
“NLO”, i.e. order g

+ . . .
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For any reasonable value of the coupling the first correction is huge!

Correction is dominated by q̂soft
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Start of strong coupling calculation of shear viscosity. The orginal paper,  hep-th/0205051, is very clear.





η/s from AdS/CFT

r = ∞

r = 1

h0
xye

−iωt

gavity waves

filling cavity hxy(r, t)

Induced T xy

where, u ≡ 1/r2

Nearly Perfect Fluidity 47
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Figure 5. Spectral function ρxyxy(ω,k=0) associated with the correlation function of

the xy component of the energy momentum tensor. The spectral function is normalized

to entropy density s. Left panel (Fig. (a)): Schematic picture of the spectral density

in weak coupling QCD or SUSY Yang Mills theory [145, 146]. Right panel (Fig. (b)):

Spectral density in strong coupling SUSY Yang-Mills theory calculated using the

AdS/CFT correspondence, from [147].

determined numerically. For small ω however, a straightforward calculation shows that

to linear order in ω the solution which is infalling at the horizon is

hxy = ho
xy(ω) (1 − u)−iω/4πT

[
1 − iω

4πT
log(1 + u) + O(ω2)

]
. (165)

Expanding this functional form near the boundary we find B(ω) = −iω/(4πT ). Then

using ϵ + p = sT and comparing the functional forms in equ. (160) and equ. (164) we

conclude that ⟨Txy(ω)⟩ = pho
xy − iωηho

xy with

η

s
=

1

4π
. (166)

Remarkably, the strong coupling limit of the shear viscosity is small and independent

of the coupling. The difference as compared to the weak coupling result becomes even

clearer if one considers the spectral function. As described in Sect. 3.4 the Kubo formula

relates the shear viscosity to the zero energy limit of the stress-energy spectral function.

In weak coupling QCD the spectral function has a narrow peak near zero energy which

reflects the fact that momentum transport is due to quasi-particles that are almost on-

shell. The height of the transport peak is governed by the kinetic theory result for the

shear viscosity. Kubo’s formula implies that ρ(ω)/ω ∼ T 3/g4 as ω → 0. The width can

be reconstructed from the f -sum rule

T
∫ Λ

0

dω

ω
ρxyxy(ω) =

T (ϵ+ P )

5
, (167)

where g4T ≪ Λ ≪ g2T . Since the height of the transport peak is T 3/g4, the width

must be g4T . The high energy part of the spectral density can be computed from the

Solve and evaluate the induced stress from the discontinuity in the extrinsic curvature





Real calculation of η/s Arnold, Moore, Yaffe (red curves)
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Thermalization of Strongly Coupled Plasmas







Bjorken Expansion at weak coupling:
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Expanding
• Condition for hydro to apply:

Collision rate︸ ︷︷ ︸
∼α2

sTo

� Expansion Rate︸ ︷︷ ︸
∼1/τo

Find:

1. For a fixed coupling αs, need Tτ larger enough to have hydro
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α2
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� τT



Bjorken Expansion at weak coupling:

z
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• Condition for hydro to apply:

Collision rate︸ ︷︷ ︸
∼α2

sTo

� Expansion Rate︸ ︷︷ ︸
∼1/τo

Find:

1. For a fixed coupling αs, need Tτ larger enough to have hydro

1
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s

� τT

︸ ︷︷ ︸
What about when αs →∞ ???



Strong coupling answer: (M. Heller et al, PRL)

• Find at strong coupling must have

0.65 <∼ τoTo

before we can use (viscous) hydro

– I will review work of Michal Heller, R. Janik, R. Pechanski

– See also recent work by Keegan, Kurkela, Romatschke, van der Schee, Zhu



The setup

• Specify intial conditions and solve
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- Immense number of initial conditions with the same initial energy density

* Specify initial conditions in the fifth dimension

- Specify an effective temperature Teff(τ) from the energy density at all times

energy density(τ) ≡ (constant) (Teff(τ))4



Result:
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F HwL
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Different initial conditions
relaxing to hydro

Hydro 1st and 2nd order

Hydro 3rd order

hydro
regime
starts
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Te↵

d(⌧Te↵)

d⌧

Remarkably fast convergence to the universal hydro regime



But, viscous (anisotropic) corrections are important for everything
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Hydro applies but anisotropic

a sample init condition
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Viscous (anisotropic) corrections are important for all observables.

Hydrodynamics is seemingly much more robust than what one expects!


