# Lattice QCD at non-zero temperature and density

Frithjof Karsch

Bielefeld University & Brookhaven National Laboratory

- QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations
- the phase diagram on strongly interacting matter, chiral symmetry restoration, the equation of state
- finite density QCD, cumulants of conserved charge fluctuations, thermal masses & transport properties

#### Phases of strong-interaction matter



#### **Symmetries of QCD**

$${\cal L}_E = {1\over 4} F^a_{\mu
u} F^a_{\mu
u} + ar{\psi}_{j,a} \left( \sum_{
u=0}^3 \gamma_
u \left( \partial_
u - i {g\over 2} {\cal A}^a_
u \lambda^a 
ight) + m_j 
ight)^{a,b} \psi_{j,b}$$

– symmetries of QCD:  $U_V(1) imes U_A(1) imes SU_L(n_f) imes SU_R(n_f)$ 

– chiral decomposition:  $\psi \equiv (\psi_1,...\psi_{n_f}) = \psi_L + \psi_R$ 

 $P_{\epsilon} = rac{1}{2} \left( 1 + \epsilon \gamma_5 \right) \;,\; \epsilon = \pm 1 \qquad P_{\epsilon}^2 = P_{\epsilon} \;,\; P_+ P_- = 0$  $\psi_L=P_+\psi$  ,  $\psi_R=P_-\psi$   $ar{\psi}_L=ar{\psi}P_-$  ,  $ar{\psi}_R=ar{\psi}P_+$  $\mathcal{L}_F \sim ar{\psi}_L D_\mu \psi_L + ar{\psi}_R D_\mu \psi_R - m_q (ar{\psi}_L \psi_R + ar{\psi}_R \psi_L)$  $U_V(1)$ : baryon number  $\psi^\Theta = {
m e}^{i\Theta}\psi$ ,  $ar{\psi}^\Theta = ar{\psi}{
m e}^{-i\Theta}$  $U_A(1):$  axial symmetry  $\psi^\Theta={
m e}^{i\Theta\gamma_5}\psi$  ,  $ar\psi^\Theta=ar\psi{
m e}^{i\Theta\gamma_5}$  $SU_{L/R}(n_f)$  : flavor symmetry  $G_\epsilon \equiv P_{-\epsilon} \cdot 1 + P_\epsilon U_\epsilon$  ,  $U_\epsilon \in U(n_f)$  $G \equiv G_+(U_+)G_-(U_-)$  $\psi' = G \psi$  ,  $ar{\psi}' = ar{\psi} G^\dagger$ 

F. Karsch, NNPSS 2017

## **Chiral phase transition**

#### Which symmetry is restored?

$$\begin{array}{c} U_L(n_f) \times U_R(n_f) \ \Leftrightarrow \ U_V(1) \times U_A(1) \times \underbrace{SU_L(n_f) \times SU_R(n_f)}_{\text{exact: baryon}} \\ \text{exact: baryon}_{\text{number conservation}} \end{array} \qquad \text{axial anomaly} \qquad \overbrace{n_f = 2 \ (u, d) : O(4)}^{\text{exact}} \end{array}$$

 $n_f=2:$ 

standard scenario:  $U_A(1)$  remains broken, chiral limit controlled by O(4)



alternative scenario:  $U_A(1)$  "effectively" restored, first order transition possible



R. Pisarski, F. Wilczek, PRD29 (1984) 338

## **Chiral symmetry breaking and restoration**

staggered (or Kogut-Susskind) fermions do have a global U(1)xU(1) symmetry (remnant of the chiral SU(nf)xSU(nf))

U(1) imes U(1): independent phase transformations on even and odd sites of the lattice

$$egin{aligned} \psi'_e &= \mathrm{e}^{i heta_1}\psi_e \ , \ ar{\psi}'_e &= \mathrm{e}^{-i heta_2}ar{\psi}_e \ \ \psi'_o &= \mathrm{e}^{i heta_2}\psi_o \ , \ ar{\psi}'_o &= \mathrm{e}^{-i heta_1}ar{\psi}_o \end{aligned}$$

one parameter, continuous global symmetry

its spontaneous breaking generates one Goldstone pion  $m_\pi \sim m_l^2$ 



5

#### **Universality and the Chiral Phase Transition**

Close to the chiral limit thermodynamics in the vicinity of the QCD transition is controlled by a universal O(4) scaling function

$$\begin{split} & \frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V,T,) = -f_s(t/h^{1/\beta\delta}) - f_r(V,T) \\ & \overbrace{t \equiv 0 \ , \ h \equiv 0}^{\text{critical point:}} t \sim \frac{T - T_c}{T_c} \ , \ h \sim \frac{m_l}{T} & O(4) \\ & \overbrace{t \equiv 0 \ , \ h \equiv 0}^{\text{critical point:}} t \sim \frac{T - T_c}{T_c} \ , \ h \sim \frac{m_l}{T} & O(4) \\ & \overbrace{t \equiv 0 \ , \ h \equiv 0}^{\text{critical point:}} & \overbrace{t \sim \frac{T - T_c}{T_c}} \ , \ h \sim \frac{m_l}{T} & O(4) \\ & \overbrace{t \equiv 0 \ , \ h \equiv 0}^{\text{critical point:}} & \overbrace{t \sim \frac{T - T_c}{T_c}} \ , \ h \sim \frac{m_l}{T} & O(4) \\ & \overbrace{t \equiv 0 \ , \ h \equiv 0}^{\text{critical point:}} & \overbrace{t \sim \frac{T - T_c}{T_c}} \ , \ h \sim \frac{m_l}{T} & O(4) \\ & \overbrace{t \equiv 0 \ , \ h \equiv 0}^{\text{critical point:}} & \overbrace{t \sim \frac{T - T_c}{T_c}} \ , \ h \sim \frac{m_l}{T} & O(4) \\ & \overbrace{t \equiv 0 \ , \ h \equiv 0}^{\text{critical point:}} & \overbrace{t \sim \frac{T - T_c}{T_c}} \ , \ h \sim \frac{m_l}{T} & O(4) \\ & \overbrace{t \equiv 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \equiv 0 \ , \ h \equiv 0}^{\text{critical point:}} & \overbrace{t \sim 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \equiv 0 \ , \ h \equiv 0}^{\text{critical point:}} & \overbrace{t \sim 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \equiv 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} & O(4) \\ & \overbrace{t \simeq 0 \ , \ h \equiv 0}^{\text{critical point:}} &$$

$$\frac{\mathrm{d}f_{\chi}(z)}{\mathrm{d}z} = 0 \iff z_{max} \begin{cases} -\text{ defines pseudo-critical } T_c(m_l) \\ -\text{ scaling: } \chi_l(m_l)/T^2 \sim m_l^{1/\delta - 1} \end{cases}$$

## **Chiral phase transition**



#### 3-flavor QCD:

| Action             | $N_t$               | $m^c_\pi$               | Year               |
|--------------------|---------------------|-------------------------|--------------------|
| standard staggered | 4                   | $\sim 290~{ m MeV}$     | 2001               |
| p4 staggered       | 4                   | $\sim 67~{ m MeV}$      | 2004               |
| standard staggered | 6                   | $\sim 150~{ m MeV}$     | 2007               |
| HISQ staggered     | 6                   | $\lesssim 50  { m MeV}$ | 2017 <sup>1)</sup> |
| stout staggered    | 4-6                 | could be zero           | 2014               |
| Wilson-clover      | 6-8                 | $\sim 300 \; { m MeV}$  | 2014               |
| Wilson-clover      | 4-10                | $\sim 100~{ m MeV}$     | 2016               |
| Wilson-clover      | 4-10, cont. extrap. | $\lesssim 170~{ m MeV}$ | 2017 <sup>2)</sup> |

1) A. Bazavov et al., arXiv:1701.03548 2) X.-J. Jin et al., arXiv:1706.01178

2 and (2+1)-flavor QCD: O(4) scaling?



magnetic equation of state:  $M=h^{1/\delta}f_G(z)$ 

- scaling analysis in (2+1)-flavor QCD with HISQ fermions

 $m_{\pi}^{crit} < 80 {
m MeV}$ 

not yet sensitive to O(4) scaling in the chiral limit vs. Z(2) critical behavior at  $m_c > 0$ 

staggered fermions: O(2) instead of O(4) for non-zero cut-off

# The QCD crossover transition extracting the pseudo-critical temperature –

#### **Crossover transition temperature**



#### $T_{ m c}=(154\pm9)~{ m MeV}$

- well defined pseudo-critical temperature
- quark mass dependence of susceptibilities consistent with O(4) scaling
- A. Bazavov et al. (hotQCD), Phys. Rev. D85, 054503 (2012), arXiv:1111.1710

lattice: 
$$N_{\sigma}^3 \cdot N_{ au}$$
  
temperature:  $T = 1/N_{ au} a$ 

Critical temperature from location of peak in the fluctuation of the chiral condensate (order parameter):



F. Karsch, NNPSS 2017

10

# Symmetries and in-medium properties of hadrons

Which symmetries are restored at Tc?

thermal hadron correlation functions

Greens functions G of quark-antiquark pair in different quantum number channels H, controlled by operators J

$$J_H(x) = ar{q}(x)\Gamma_H q(x)$$



scalar, pseudo-scalar, vector, axial-vector

$$q(\bar{q}) = u(\bar{u}), \ d(\bar{d}), \dots \Rightarrow \qquad \bar{q}q = \bar{u}u$$
 flavor singlet  
 $\bar{q}q = \bar{u}d$  flavor non-singlet

$$G_H(\tau, \vec{x}) = \langle J_H(\tau, \vec{x}) \ J_H^{\dagger}(0, \vec{0}) \rangle \sim \mathrm{e}^{-m_H \tau}$$
  
at T=0

# Thermal modification of the hadron spectrum

quark propagator: 
$$\bar{q}(x)q(0) = M_q^{-1}(x,0)$$
  
 $G_{\pi}(x) = \langle \operatorname{Tr} \gamma_5 M_l^{-1}(x,0)\gamma_5 M_l^{-1}(0,x) \rangle$   
 $G_{\eta}(x) = G_{\pi}(x) - \langle \operatorname{Tr} \left[ \gamma_5 M_l^{-1}(x,x) \right] \operatorname{Tr} \left[ \gamma_5 M_l^{-1}(0,0) \right] \rangle$   
 $G_{\delta}(x) = -\langle \operatorname{Tr} M_l^{-1}(x,0) M_l^{-1}(0,x) \rangle$   
 $G_{\sigma}(x) = G_{\delta}(x) + \langle \operatorname{Tr} M_l^{-1}(x,x) \operatorname{Tr} M_l^{-1}(0,0) \rangle$   
 $-\langle \operatorname{Tr} M_l^{-1}(x,x) \rangle \langle \operatorname{tr} M_l^{-1}(0,0) \rangle$ 

hadronic susceptibilities

$$\chi_{\pi} = \sum_{x} G_{\pi}(x) \equiv \chi_{5, ext{con}} \quad , \quad \chi_{\delta} = \sum_{x} G_{\delta}(x) = \chi_{ ext{con}}$$
 $\chi_{\eta} = \sum_{x} G_{\eta}(x) \equiv \chi_{5, ext{con}} - \chi_{5, ext{disc}}$ 
 $\chi_{\sigma} = \sum_{x} G_{\sigma}(x) = \chi_{ ext{con}} + \chi_{ ext{disc}}$ 

disconnected

# Thermal modification of the hadron spectrum

 $T < T_c$ : broken chiral symmetry is reflected in the hadron spectrum



 $T \geq T_c$ : restoration of symmetries is reflected in the (thermal) hadron spectrum

 $SU(2)_L imes SU(2)_R$ :  $(\pi, \sigma), (a_1, \rho)$  degenerate  $U(1)_A$ :  $(\pi, \delta)$  degenerate

# Symmetry restoration and correlation functions



# **Restoration of the axial symmetry**

 $T < T_c$ : broken chiral symmetry is reflected in the hadron spectrum



 $T \geq T_c: SU(2)_L \times SU(2)_R$  restored

$$\begin{array}{c|c} & \searrow & \chi_{5,con} = \chi_{con} + \chi_{disc} \\ U(1)_A \ \ \text{restored} \end{array} \qquad \begin{array}{c} & \chi_{5,con} = \chi_{con} \\ & \Leftrightarrow & \chi_{disc} = 0 \ \ \Leftrightarrow \ \chi_{\pi}(x) - \chi_{\delta}(x) = 0? \end{array}$$

# U(1)<sub>A</sub> remains broken

 $10^{-1}$ 

10<sup>-2</sup>

10<sup>-3</sup>

 $C_{\pi}(z) - C_{\delta}(z)$ 

the difference of the scalar ( $\delta$ ) and pseudo-scalar( $\pi$ ) drops by an order of magnitude but stays non-zero



S. Aoki et al., PR D86 (2012) 114512



16

# Lattice QCD at non-zero baryon number density $\mu > 0$

**THE PROBLEM** in QCD Thermodynamics

partition function again:

$$egin{aligned} Z(V,T,\mu) = & \int \mathcal{D}\mathcal{A}\mathcal{D}\psi\mathcal{D}ar{\psi} \ \mathrm{e}^{ar{\psi}\mathcal{M}(\mathcal{A},m_q,\mu)\psi} \ \mathrm{e}^{-S_G} \ & = & \int \mathcal{D}\mathcal{A} \ \mathrm{det}M(\mathcal{A},m_q,\mu) \ \mathrm{e}^{-S_G} \ & \mu > 0 \end{aligned}$$

The fermion determinant – is no longer positive definite standard simulation techniques fail

$$\det M(\mathcal{A}, m_q, \mu) = e^{i\theta(\mu)} |\det M(\mathcal{A}, m_q, \mu)|$$

## Lattice QCD at non-zero baryon number density – the infamous sign problem –

 $Z(V,T,\mu) = \int \mathcal{D}\mathcal{A} \det M(\mathcal{A},m_q,\mu) \; \mathrm{e}^{-S_G}$ partition function:  $M(\mu)=m_q\delta_{i,j} ~~+~~ rac{1}{2}\eta_iigg(\sum_{i=1}^3 (U_{i,k}\delta_{i,j-\hat{k}}-U_{i-\hat{k},k}^\dagger\delta_{i,j+\hat{k}})$ staggered fermion matrix:  $+ \quad {f e}^{\mu} \ U_{i,0} \delta_{i,j-\hat{0}} - {f e}^{-\mu} \ U_{i-\hat{0},0}^{\dagger} \delta_{i,j+\hat{0}} \Big)$  $= m_q \cdot 1 + \sum_{i=1}^{n} D_i + D_0(\mu)$  $= \begin{pmatrix} m_q & D_{eo} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ 

# Lattice QCD at non-zero baryon number density – the infamous sign problem –



# Probing the properties of matter through the analysis of conserved charge fluctuations

Taylor expansion of the QCD pressure: 
$$rac{P}{T^4} = rac{1}{VT^3} \ln Z(T,V,\mu_B,\mu_Q,\mu_S)$$

$$\frac{P}{T^4} = \sum_{i,j,k=0}^{\infty} \frac{1}{i!j!k!} \chi^{BQS}_{ijk}(T) \left(\frac{\mu_B}{T}\right)^i \left(\frac{\mu_Q}{T}\right)^j \left(\frac{\mu_S}{T}\right)^k$$

cumulants of net-charge fluctuations and correlations:

$$\chi^{BQS}_{ijk} = \left. \frac{\partial^{i+j+k} P/T^4}{\partial \hat{\mu}^i_B \partial \hat{\mu}^j_Q \partial \hat{\mu}^k_S} \right|_{\mu_{B,Q,S}=0} \quad , \quad \hat{\mu}_X \equiv \frac{\mu_X}{T}$$

the pressure in hadron resonance gas (HRG) models:

$$\frac{p}{T^4} = \sum_{m \in meson} \ln Z_m^b(T, V, \mu) + \sum_{m \in baryon} \ln Z_m^f(T, V, \mu)$$
$$\sim e^{-m_H/T} e^{(B\mu_B + S\mu_S + Q\mu_Q)/T}$$

# Equation of state of (2+1)-flavor QCD: $\mu_B/T>0$

$$egin{aligned} rac{P}{T^4} = \sum_{i,j,k=0}^\infty rac{1}{i!j!k!} \chi^{BQS}_{i,j,k}(T) \left(rac{\mu_B}{T}
ight)^i \left(rac{\mu_Q}{T}
ight)^j \left(rac{\mu_S}{T}
ight)^k \end{aligned}$$

the simplest case:  $\mu_S=\mu_Q=0$ 

$$\frac{P(T, \mu_B)}{T^4} = \frac{P(T, 0)}{T^4} + \frac{\chi_2^B(T)}{2} \left(\frac{\mu_B}{T}\right)^2 + \frac{\chi_4^B(T)}{24} \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}((\mu_B/T)^6)$$
  
An  $\mathcal{O}((\mu_B/T)^4)$  expansion is exact in a QGP up to  $\mathcal{O}(g^2)$ 
  
HRG vs. QCD:
$$\mathcal{O}((\mu_B/T)^4)$$
 : difference is less than 3% at  $\mu_B/T = 2$ 

$$\mathcal{O}((\mu_B/T)^6)$$
 : difference is less than 2% at  $\mu_B/T = 3$ 

F. Karsch, NNPSS 2017 21

# Equation of state of (2+1)-flavor QCD: $\mu_B/T>0$



- leading and next-to-leading order corrections agree well with HRG for T<150 MeV - already in the crossover region deviations from HRG  $\,$  can reach ~40% for T~165 MeV  $\,$ 

# Equation of state of (2+1)-flavor QCD: $\mu_B/T>0$

$$\frac{\Delta(T,\mu_B)}{T^4} = \frac{P(T,\mu_B) - P(T,0)}{T^4} = \frac{\chi_2^B}{2} \left(\frac{\mu_B}{T}\right)^2 \left(1 + \frac{1}{12} \frac{\chi_4^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^2\right) + \frac{1}{720} \frac{\chi_6^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^6$$

The EoS is well controlled for  $\mu_B/T \leq 2$ or equivalently  $\sqrt{s_{NN}} \geq 20 \text{ GeV}$ 

#### Searching for a critical point at $\mu_B>0$

**Does it exist?** 



- signatures for a critical point: large fluctuations in e.g. the net baryon-number

break-down of Taylor series expansion → radius of convergence

#### **Chiral transition, hadronization and freeze-out**

- pseudo-critical temperature  $T_c = 154(9) \mathrm{MeV}$
- hadronization temperatures  $T_h = 164(3) \text{ MeV}$
- freeze-out temperatures:



$$T_{fo} = [164(5) - 168(4)] \; {
m MeV}$$



# Where does hadronization set in?

physics is quite different at lower and upper end of the current error bar on Tc

probed with net-charge correlations&fluctuations

# HRG vs. QCD net baryon-number fluctuations

$$\left(\frac{\mu_B/T>0}{\chi_2^B(T,\mu_B)} = \chi_2^B + \frac{1}{2}\chi_4^B\left(\frac{\mu_B}{T}\right)^2 + \frac{1}{24}\chi_6^B\left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}(\mu_B^6)$$

- agreement between HRG and QCD will start to deteriorate for T>150 MeV
- net baryon-number fluctuations in QCD always smaller than in HRG for T>150 MeV



# HRG vs. QCD net baryon-number fluctuations

$$\left(\frac{\mu_B/T > 0}{\chi_2^B(T,\mu_B)} = \chi_2^B + \frac{1}{2}\chi_4^B \left(\frac{\mu_B}{T}\right)^2 + \frac{1}{24}\chi_6^B \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}(\mu_B^6)$$

- agreement between HRG and QCD will start to deteriorate for T>150 MeV
- net baryon-number fluctuations in QCD always smaller than in HRG for T>150 MeV

no evidence for enhanced net baryon-number fluctuations for  $T \geq 135 \mathrm{MeV} \ , \ \mu_B \leq 2T$ no evidence for getting closer to a "critical region"



F. Karsch, NNPSS 2017

27

# Taylor expansion of the pressure and critical point

$$\left(rac{P}{T^4} = \sum_{n=0}^\infty rac{1}{n!} \chi^B_n(T) \left(rac{\mu_B}{T}
ight)^n
ight)$$

for simplicity :  $\mu_Q=\mu_S=0$ 

estimator for the radius of convergence:

$$\left(rac{\mu_B}{T}
ight)_{crit,n}^{\chi}\equiv r_n^{\chi}=\sqrt{\left|rac{n(n-1)\chi_n^B}{\chi_{n+2}^B}
ight|}$$

 radius of convergence corresponds to a critical point only, iff

 $\chi_n > 0 ext{ for all } n \geq n_0$ 

forces  $P/T^4$  and  $\chi^B_n(T,\mu_B)$  to be monotonically growing with  $\mu_B/T$ 

at  $T_{CP}$ :  $\kappa_B \sigma_B^2 = \frac{\chi_4^B(T, \mu_B)}{\chi_2^B(T, \mu_B)} > 1$ 

#### if not:

- radius of convergence does not determine
   the critical point
- Taylor expansion can not be used close to the critical point

#### estimates/constraints on critical point location



01/01/17: based on ongoing calculations of 6<sup>th</sup> order Taylor expansion coefficients performed by the Bielefeld-BNL-CCNU collaboration A. Bazavov et al., arXiv:1701.04325

#### estimates/constraints on critical point location



#### 01/01/17:

based on ongoing calculations of 6<sup>th</sup> order Taylor expansion coefficients performed by the Bielefeld-BNL-CCNU collaboration A. Bazavov et al., arXiv:1701.04325  $\chi_6^B < 0$ 

## estimates/constraints on critical point location



01/01/17:

based on ongoing calculations of 6<sup>th</sup> order Taylor expansion coefficients performed by the Bielefeld-BNL-CCNU collaboration A. Bazavov et al., arXiv:1701.04325

 $\chi_6^B < 0$ 

Explore the **structure of matter** close to the QCD transition temperature using **fluctuations of conserved charges** 

baryon number, strangeness, electric charge



ideal quark (fermi) gas, m=0



#### fractional charges

baryon number: B= +/- 1/3

electric charge: Q= +/- 1/3, +/- 2/3

strangeness: S= 0, +/- 1

# Low T: HRG

#### hadron resonance gas



#### integer charges

| baryon number:   | B= +/-1                   |
|------------------|---------------------------|
| electric charge: | Q= 0 =+/- 1, +/- 2        |
| strangeness:     | S= 0, +/- 1, +/- 2, +/- 3 |

#### **Correlations and Fluctuations of conserved charges**

- construct QCD observables that would project onto specific quantum numbers, if QCD = HRG
- obtain fluctuations of quantum numbers and correlations between them from the grand canonical potential (~pressure)

$$\left[ rac{P}{T^4} = \ln Z(T,V,\mu_B,\mu_Q,\mu_S,...) 
ight]$$

charge fluctuations

#### charge correlations:

$$egin{aligned} \chi^X_n &= rac{\partial^n \ln Z(T,V,..\mu_X..)}{\partial \mu^n_X} \Big|_{\mu=0} \ &&&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ &&& \ && \ &&& \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \ && \$$

$$\chi_{XY}^{nm} = rac{\partial^{n+m} \ln Z(T, V, ..\mu_X, \mu_Y..)}{\partial \mu_X^n \partial \mu_Y^m} igg|_{\mu=0}$$
 $n = m = 1: \ \chi_{11}^{XY} = \langle XY 
angle - \langle X 
angle \langle Y 
angle$ 

#### **Net baryon-number fluctuations**

ratio of 4<sup>th</sup> and 2<sup>nd</sup> order cumulants:



BNL-Bielefeld-CCNU: Phys. Rev. Lett. 111, 082301 (2013) Phys. Lett. B737, 210 (2014)

#### **Net baryon-number fluctuations**

ratio of 4<sup>th</sup> and 2<sup>nd</sup> order cumulants:



BNL-Bielefeld-CCNU: Phys. Rev. Lett. 111, 082301 (2013) Phys. Lett. B737, 210 (2014)

#### **Net baryon-number fluctuations**

ratio of 4<sup>th</sup> and 2<sup>nd</sup> order cumulants:



# Ratio of baryon number – strangeness correlation and net strangeness fluctuations



PDG-HRG: uses experimentally known hadron spectrum listed by the Particle Data Group QM-HRG: uses additional hadrons predicted to exist in Quark Model calculations

#### Probing the hadron spectrum using QCD thermodynamics



38

#### Probing the hadron spectrum using QCD thermodynamics



F. Karsch, NNPSS 2017

39

# **Correlations and Fluctuations: HRG vs. LQCD**

- construct QCD observables that would project onto specific quantum numbers, if QCD = HRG
- E.g.: HRG pressure:



## **Evidence for many charmed baryons in thermodynamics**



F. Karsch, NNPSS 2017 41

## Evidence for many charmed baryons in thermodynamics



F. Karsch, NNPSS 2017 42

# Thank you for your attention and the

many interested/interesting questions

# you asked during the lectures and the breaks

Brookhaven National Laboratory



**Bielefeld University** 

