Lattice QCD at non-zero temperature and density

Frithjof Karsch

Bielefeld University & Brookhaven National Laboratory

- QCD in a nutshell, non-perturbative physics, lattice-regularized QCD, Monte Carlo simulations
- the phase diagram on strongly interacting matter, chiral symmetry restoration, the equation of state
- finite density QCD, cumulants of conserved charge fluctuations, thermal masses & transport properties

Phases of strong-interaction matter

Symmetries of QCD

$$
\mathcal{L}_{E}=\frac{1}{4}F_{\mu\nu}^{a}F_{\mu\nu}^{a}+\bar{\psi}_{j,a}\left(\sum_{\nu=0}^{3}\gamma_{\nu}\left(\partial_{\nu}-i\frac{g}{2}\mathcal{A}_{\nu}^{a}\lambda^{a}\right)+m_{j}\right)^{a,b}\psi_{j,b}
$$

– symmetries of QCD: $U_V(1) \times U_A(1) \times SU_L(n_f) \times SU_R(n_f)$

– chiral decomposition: $\psi \equiv (\psi_1, ...\psi_{n_f}) = \psi_L + \psi_R$

 $P_{\epsilon} = \frac{1}{2} \left(1 + \epsilon \gamma_5 \right) \; , \; \epsilon = \pm 1 \;\;\;\;\;\;\;\;\;\; P_{\epsilon}^2 = P_{\epsilon} \; , \; P_{+} P_{-} = 0$ $\psi_L = P_+ \psi \;\; , \;\; \psi_R = P_- \psi \qquad \quad \bar \psi_L = \bar \psi P_- \;\; , \;\; \bar \psi_R = \bar \psi P_+$ $\mathcal{L}_F \sim \bar{\psi}_L \mathcal{P}_{\mu} \psi_L + \bar{\psi}_R \mathcal{P}_{\mu} \psi_R - m_q (\bar{\psi}_L \psi_R + \bar{\psi}_R \psi_L)$ $U_V(1)$: baryon number $\psi^\Theta = e^{i\Theta}\psi$, $\bar{\psi}^\Theta = \bar{\psi}e^{-i\Theta}$ $U_A(1):$ axial symmetry $\psi^\Theta = e^{i\Theta\gamma_5}\psi$, $\bar\psi^\Theta = \bar\psi e^{i\Theta\gamma_5}$ $SU_{L/R}(n_f)$: flavor symmetry $G_{\epsilon} \equiv P_{-\epsilon} \cdot 1 + P_{\epsilon} U_{\epsilon}$, $U_{\epsilon} \in U(n_f)$ $G \equiv G_{+}(U_{+})G_{-}(U_{-})$

F. Karsch, NNPSS 2017 3

Chiral phase transition

Which symmetry is restored?

$$
U_L(n_f) \times U_R(n_f) \Leftrightarrow U_V(1) \times U_A(1) \times \underbrace{SU_L(n_f) \times SU_R(n_f)}_{\text{exact: baryon}}
$$
\n
$$
U_L(n_f) \times \underbrace{SU_R(n_f)}_{\text{exact: baryon}}
$$
\n
$$
n_f = 2 (u, d) : O(4)
$$

 $n_f=2:$

standard scenario: $U_A(1)$ remains broken, chiral limit controlled by $O(4)$

alternative scenario: $U_A(1)$ "effectively" restored, first order transition possible

R. Pisarski, F. Wilczek, PRD29 (1984) 338

Chiral symmetry breaking and restoration

staggered (or Kogut-Susskind) fermions do have a global $U(1)xU(1)$ symmetry (remnant of the chiral SU(nf)xSU(nf))

 $U(1) \times U(1)$: independent phase transformations on even and odd sites of the lattice

$$
\psi'_e = \mathrm{e}^{i\theta_1}\psi_e \;\; , \;\; \bar\psi'_e = \mathrm{e}^{-i\theta_2}\bar\psi_e
$$

$$
\psi'_o = \mathrm{e}^{i\theta_2}\psi_o \;\; , \;\; \bar\psi'_o = \mathrm{e}^{-i\theta_1}\bar\psi_o
$$

one parameter, continuous global symmetry

 \longrightarrow its spontaneous breaking generates one Goldstone pion $m_\pi \sim m_l^2$

Universality and the Chiral Phase Transition

$$
\frac{p}{T^4} = \frac{1}{VT^3} \ln Z(V,T) = -f_s(t/h^{1/\beta\delta}) - f_r(V,T)
$$
\n
$$
\frac{t}{t} = 0 \text{ , } h \equiv 0 \qquad t \sim \frac{T - T_c}{T_c} \text{ , } h \sim \frac{m_l}{T}
$$
\n
$$
M_b \equiv \frac{m_s \langle \bar{\psi}\psi \rangle_l}{T^4} = \frac{1}{VT^3} \frac{m_s}{T} \frac{1}{2} \frac{\partial \ln Z}{\partial m_l/T} = h^{1/\delta} f_G(z)
$$
\n
$$
\frac{\chi_l}{T^2} = \frac{\partial \langle \bar{\psi}\psi \rangle_l/T^3}{\partial m_l/T} \sim h^{1/\delta - 1} f_\chi(t/h^{1/\beta\delta}) \text{ , } z = t/h^{1/\beta\delta}
$$
\n
$$
v = t/h^{1/\beta\delta}
$$

$$
\frac{\mathrm{d}f_{\chi}(z)}{\mathrm{d}z} = 0 \Leftrightarrow z_{max} \begin{cases} - \text{ defines pseudo-critical } T_c(m_l) \\ - \text{scaling: } \chi_l(m_l) / T^2 \sim m_l^{1/\delta - 1} \end{cases}
$$

Chiral phase transition

3-flavor QCD:

1) A. Bazavov et al., arXiv:1701.03548 2) X.-J. Jin et al., arXiv:1706.01178

2 and (2+1)-flavor QCD: **O(4) scaling?**

magnetic equation of state: $M = h^{1/\delta} f_G(z)$

– scaling analysis in (2+1)-flavor QCD with HISQ fermions

 $\implies m_{\pi}^{crit} < 80 \rm{MeV}$

not yet sensitive to $O(4)$ scaling in the chiral limit vs. $Z(2)$ critical behavior at $m_c > 0$

staggered fermions: O(2) instead of O(4) for non-zero cut-off

The QCD crossover transition – extracting the pseudo-critical temperature –

Crossover transition temperature

$T_c = (154 \pm 9) \;{\rm MeV}$

- well defined pseudo-critical temperature
- quark mass dependence of susceptibilities consistent with O(4) scaling
- A. Bazavov et al. (hotQCD), Phys. Rev. D85, 054503 (2012), arXiv:1111.1710

lattice:
$$
N_{\sigma}^{3} \cdot N_{\tau}
$$

temperature: $T = 1/N_{\tau}a$

Critical temperature from location of peak in the fluctuation of the chiral condensate (order parameter):

Symmetries and in-medium properties of hadrons

Which symmetries are restored at Tc?

 \bullet thermal hadron correlation functions

Greens functions G of quark-antiquark pair in different quantum number channels H, controlled by operators J

$$
\boldsymbol{J_H(x)} = \bar{q}(x)\Gamma_H q(x)
$$

scalar, pseudo-scalar, vector, axial-vector

$$
q(\bar{q}) = u(\bar{u}), \ d(\bar{d}), \dots \Rightarrow \qquad \qquad \bar{q}q = \bar{u}u \text{ flavor singlet}
$$

 $qq = ua$ flavor non-singlet

$$
G_H(\tau, \vec{x}) = \langle J_H(\tau, \vec{x}) \, J_H^{\dagger}(0, \vec{0}) \rangle \sim e^{-m_H \tau}
$$

at T=0

Thermal modification of the hadron spectrum

quark propagator:
$$
\bar{q}(x)q(0) = M_q^{-1}(x,0)
$$
connected
\n
$$
G_{\pi}(x) = \langle \text{Tr } \gamma_5 M_l^{-1}(x,0) \gamma_5 M_l^{-1}(0,x) \rangle
$$

\n
$$
G_{\eta}(x) = G_{\pi}(x) - \langle \text{Tr } [\gamma_5 M_l^{-1}(x,x)] \text{Tr } [\gamma_5 M_l^{-1}(0,0)] \rangle
$$

\n
$$
G_{\delta}(x) = -\langle \text{Tr } M_l^{-1}(x,0) M_l^{-1}(0,x) \rangle
$$

\n
$$
G_{\sigma}(x) = G_{\delta}(x) + \langle \text{Tr } M_l^{-1}(x,x) \text{Tr } M_l^{-1}(0,0) \rangle
$$

\n
$$
-\langle \text{Tr } M_l^{-1}(x,x) \rangle \langle \text{tr } M_l^{-1}(0,0) \rangle
$$

hadronic susceptibilities

$$
\chi_{\pi} = \sum_{x} G_{\pi}(x) \equiv \chi_{5,con} , \quad \chi_{\delta} = \sum_{x} G_{\delta}(x) = \chi_{con}
$$

$$
\chi_{\eta} = \sum_{x} G_{\eta}(x) \equiv \chi_{5,con} - \chi_{5,disc}
$$

$$
\chi_{\sigma} = \sum_{x} G_{\sigma}(x) = \chi_{con} + \chi_{disc}
$$

disconnected

 \cup \cup

Thermal modification of the hadron spectrum

 \mathbf{T} \leq \mathbf{T}_c : broken chiral symmetry is reflected in the hadron spectrum

 $T \geq T_c$: restoration of symmetries is reflected in the (thermal) hadron spectrum

 $SU(2)_L \times SU(2)_R: (\pi, \sigma), (a_1, \rho)$ degenerate

 $U(1)_A: (\pi, \delta)$ degenerate

Symmetry restoration and correlation functions

Restoration of the axial symmetry

 $T \nvert T_c$: broken chiral symmetry is reflected in the hadron spectrum

 $U(1)_A$ restored \implies $\chi_{5,con} = \chi_{con}$

 $\Leftrightarrow \chi_{disc} = 0 \Leftrightarrow \chi_{\pi}(x) - \chi_{\delta}(x) = 0?$

U(1) remains broken

the difference of the scalar (δ) and pseudo-scalar (π) drops by an order of magnitude but stays non-zero

above Tc (but still for m>0):

$$
\frac{\chi_{\pi}-\chi_{\delta}}{T^2}=\frac{\chi_{disc}}{T^2}=\frac{\chi_{5,disc}}{T^2}>0
$$

thermodynamics with domain wall fermions hotQCD, arXiv:1205.3535 nonetheless, chiral limit remains controversial

S. Aoki et al., PR D86 (2012) 114512

Lattice QCD at non-zero baryon number density $\mu > 0$

THE PROBLEM in QCD Thermodynamics

partition function again:

$$
Z(V, T, \mu) = \int \mathcal{D}A \mathcal{D}\psi \mathcal{D}\bar{\psi} e^{\bar{\psi} \mathcal{M}(\mathcal{A}, m_q, \mu)\psi} e^{-S_G}
$$

$$
= \int \mathcal{D}A \det M(\mathcal{A}, m_q, \mu) e^{-S_G}
$$

The fermion determinant **– is no longer positive definite standard simulation techniques fail**

$$
\mathrm{det M}(\mathcal{A},\mathrm{m}_\mathrm{q},\mu)=\mathrm{e}^{i\theta(\mu)}|\mathrm{det} M(\mathcal{A},m_q,\mu)|
$$

Lattice QCD at non-zero baryon number density – the infamous sign problem –

 $Z(\boldsymbol{V},\boldsymbol{T},\mu)=\int \mathcal{D}\mathcal{A} \ \mathrm{det} M(\mathcal{A},m_q,\mu) \ \mathrm{e}^{-S_G}$ partition function: $M(\mu)=m_q\delta_{i,j} \hspace{3mm} + \hspace{3mm} \frac{1}{2}\eta_i\biggl(\sum_{i=1}^3(U_{i,k}\delta_{i,j-\hat k}-U^\dagger_{i-\hat k,k}\delta_{i,j+\hat k})\biggr)$ staggered fermion matrix: $+ \qquad \ \ \mathrm{e}^{\mu} \; U_{i,0} \delta_{i,j-\hat{0}} - \mathrm{e}^{-\mu} \; U_{i-\hat{0},0}^{\dagger} \delta_{i,j+\hat{0}} \bigg)$ $\lambda=m_q\cdot 1+\sum D_i+D_0(\mu)$ e o e o

Lattice QCD at non-zero baryon number density – the infamous sign problem –

Probing the properties of matter through the analysis of conserved charge fluctuations

Taylor expansion of the **QCD** pressure:
$$
\frac{P}{T^4} = \frac{1}{VT^3} \ln Z(T, V, \mu_B, \mu_Q, \mu_S)
$$

$$
\frac{P}{T^4}=\sum_{i,j,k=0}^\infty \frac{1}{i!j!k!}\chi^{BQS}_{ijk}(T)\left(\frac{\mu_B}{T}\right)^i\left(\frac{\mu_Q}{T}\right)^j\left(\frac{\mu_S}{T}\right)^k
$$

cumulants of net-charge fluctuations and correlations:

$$
\chi_{ijk}^{BQS}=\left.\frac{\partial^{i+j+k}P/T^4}{\partial\hat{\mu}_B^i\partial\hat{\mu}_Q^j\partial\hat{\mu}_S^k}\right|_{\mu_{B,Q,S}=0}\quad,\quad\hat{\mu}_X\equiv\frac{\mu_X}{T}
$$

the pressure in hadron resonance gas (**HRG**) models:

$$
\frac{p}{T^4} = \sum_{m \in meson} \ln Z_m^b(T, V, \mu) + \sum_{m \in baryon} \ln Z_m^f(T, V, \mu)
$$

$$
\sim e^{-m_H/T} e^{(B\mu_B + S\mu_S + Q\mu_Q)/T}
$$

Equation of state of (2+1)-flavor QCD: $\,\mu_B/T > 0$

$$
\frac{P}{T^4}=\sum_{i,j,k=0}^\infty \frac{1}{i!j!k!}\chi_{i,j,k}^{BQS}(T)\left(\frac{\mu_B}{T}\right)^i\left(\frac{\mu_Q}{T}\right)^j\left(\frac{\mu_S}{T}\right)^k
$$

the simplest case: $\mu_S = \mu_Q = 0$

$$
\frac{P(T, \mu_B)}{T^4} = \frac{P(T, 0)}{T^4} + \frac{\chi_2^B(T)}{2} \left(\frac{\mu_B}{T}\right)^2 + \frac{\chi_4^B(T)}{24} \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}((\mu_B/T)^6)
$$
\nAn $\mathcal{O}((\mu_B/T)^4)$ expansion is
\nexact in a QGP up to $\mathcal{O}(g^2)$
\nHRG vs. QCD:
\n $\mathcal{O}((\mu_B/T)^4)$:difference is less
\nthan 3% at $\mu_B/T = 2$
\n
$$
\mathcal{O}((\mu_B/T)^6)
$$
:difference is less
\nthan 2% at $\mu_B/T = 3$

Equation of state of (2+1)-flavor QCD: $\mu_B/T > 0$

– leading and next-to-leading order corrections agree well with HRG for T<150 MeV – already in the crossover region deviations from HRG can reach ~40% for T~165 MeV

Equation of state of (2+1)-flavor QCD: $\,\mu_B/T > 0$

$$
\frac{\Delta(T,\mu_B)}{T^4} = \frac{P(T,\mu_B) - P(T,0)}{T^4} = \frac{\chi_2^B}{2} \left(\frac{\mu_B}{T}\right)^2 \left(1 + \frac{1}{12} \frac{\chi_4^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^2\right)
$$

$$
+ \frac{1}{720} \frac{\chi_6^B}{\chi_2^B} \left(\frac{\mu_B}{T}\right)^6
$$

$$
\frac{\chi_6}{T^2} \left(\frac{\mu_B}{T}\right)^6
$$

$$
\frac{\chi_6}{T^2} \left(\frac{\mu_B}{T}\right)^6
$$

$$
\frac{\chi_6}{T^2} \left(\frac{\mu_B}{T}\right)^{6.5}
$$
<

or equivalently

Searching for a critical point at $\mu_B > 0$

Does it exist?

– signatures for a critical point: large fluctuations in e.g. the net baryon-number

 break-down of Taylor series expansion → **radius of convergence**

Chiral transition, hadronization and freeze-out

- pseudo-critical temperature $T_c = 154(9) \text{MeV}$
- hadronization temperatures $T_h = 164(3) \text{ MeV}$
- freeze-out temperatures:

$$
T_{fo} = [164(5)-168(4)]~{\rm MeV}
$$

Where does hadronization set in?

physics is quite different at lower and upper end of the current error bar on Tc

probed with net-charge correlations&fluctuations

HRG vs. QCD net baryon-number fluctuations

$$
\mathcal{L}_2^B(T,\mu_B) = \chi_2^B + \frac{1}{2}\chi_4^B \left(\frac{\mu_B}{T}\right)^2 + \frac{1}{24}\chi_6^B \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}(\mu_B^6)
$$

- **agreement between HRG and QCD will start to deteriorate for T>150 MeV**
- **net baryon-number fluctuations in QCD always smaller than in HRG for T>150 MeV**

HRG vs. QCD net baryon-number fluctuations

$$
\mathcal{L}_2^B(T,\mu_B) = \chi_2^B + \frac{1}{2}\chi_4^B \left(\frac{\mu_B}{T}\right)^2 + \frac{1}{24}\chi_6^B \left(\frac{\mu_B}{T}\right)^4 + \mathcal{O}(\mu_B^6)
$$

- **agreement between HRG and QCD will start to deteriorate for T>150 MeV**
- **net baryon-number fluctuations in QCD always smaller than in HRG for T>150 MeV**

no evidence for enhanced net baryon-number fluctuations for $T\geq~135{\rm MeV} \; , \; \mu_B\leq 2T$ no evidence for getting closer to a ''critical region''

Taylor expansion of the pressure and critical point

$$
\boxed{\frac{P}{T^4} = \sum_{n=0}^\infty \frac{1}{n!} \chi_n^B(T) \left(\frac{\mu_B}{T}\right)^n}
$$

for simplicity : $\mu_Q = \mu_S = 0$

estimator for the radius of convergence:

$$
\left(\frac{\mu_B}{T}\right)_{crit,n}^{\chi} \equiv r_n^{\chi} = \sqrt{\left|\frac{n(n-1)\chi_n^B}{\chi_{n+2}^B}\right|}
$$

– radius of convergence corresponds to a critical point only, iff

 $\chi_n > 0$ for all $n \geq n_0$

forces P/T^4 and $\chi_n^B(T,\mu_B)$ to be monotonically growing with μ_B/T

at $T_{CP}: \kappa_B \sigma_B^2 = \frac{\chi_4^B(T,\mu_B)}{\gamma_2^B(T,\mu_B)} > 1$

if not:

- radius of convergence does not determine the critical point
- Taylor expansion can not be used close to the critical point

estimates/constraints on critical point location

01/01/17: based on ongoing calculations of $6th$ order Taylor expansion coefficients performed by the Bielefeld-BNL-CCNU collaboration A. Bazavov et al., arXiv:1701.04325

estimates/constraints on critical point location

01/01/17:

based on ongoing calculations of $6th$ order Taylor expansion coefficients performed by the Bielefeld-BNL-CCNU collaboration A. Bazavov et al., arXiv:1701.04325

 $\chi^B_6< 0$

estimates/constraints on critical point location

01/01/17:

based on ongoing calculations of $6th$ order Taylor expansion coefficients performed by the Bielefeld-BNL-CCNU collaboration A. Bazavov et al., arXiv:1701.04325

 $\chi^B_6 < 0$

Explore the **structure of matter** close to the QCD transition temperature using **fluctuations of conserved charges**

baryon number, strangeness, electric charge

ideal quark (fermi) gas, m=0

fractional charges integer charges

baryon number: $B = +/- 1/3$

electric charge: $Q = +/- 1/3, +/- 2/3$

Low T: HRG

hadron resonance gas

Correlations and Fluctuations of conserved charges

- construct QCD observables that would project onto specific quantum numbers, $if QCD = HRG$
- obtain fluctuations of quantum numbers and correlations between them from the grand canonical potential (~pressure)

$$
\frac{P}{T^4} = \ln Z(T, V, \mu_B, \mu_Q, \mu_S, ...)
$$

charge fluctuations charge correlations:

$$
\chi_n^X = \frac{\partial^n \ln Z(T, V, .. \mu_X ..)}{\partial \mu_X^n} \bigg|_{\mu=0}
$$

$$
n = 2: \ \chi_2^X = \langle X^2 \rangle - \langle X \rangle^2
$$

$$
\chi_{XY}^{nm} = \frac{\partial^{n+m} \ln Z(T, V, .. \mu_X, \mu_Y..)}{\partial \mu_X^n \partial \mu_Y^m}
$$

$$
n = m = 1: \ \chi_{11}^{XY} = \langle XY \rangle - \langle X \rangle \langle Y \rangle
$$

Net baryon-number fluctuations

ratio of $4th$ and $2nd$ order cumulants:

BNL-Bielefeld-CCNU: Phys. Rev. Lett. 111, 082301 (2013) Phys. Lett. B737, 210 (2014)

Net baryon-number fluctuations

ratio of $4th$ and $2nd$ order cumulants:

BNL-Bielefeld-CCNU: Phys. Rev. Lett. 111, 082301 (2013) Phys. Lett. B737, 210 (2014)

Net baryon-number fluctuations

ratio of $4th$ and $2nd$ order cumulants:

Ratio of baryon number – strangeness correlation and net strangeness fluctuations

PDG-HRG: uses experimentally known hadron spectrum listed by the Particle Data Group QM-HRG: uses additional hadrons predicted to exist in Quark Model calculations

Probing the hadron spectrum using QCD thermodynamics

Probing the hadron spectrum using QCD thermodynamics

F. Karsch, NNPSS 2017 39

Correlations and Fluctuations: HRG vs. LQCD

- construct QCD observables that would project onto specific quantum numbers, if QCD = HRG
- E.g.: HRG pressure:

Evidence for many charmed baryons in thermodynamics

F. Karsch, NNPSS 2017 41

Evidence for many charmed baryons in thermodynamics

F. Karsch, NNPSS 2017 42

Thank you for your attention and the

many interested/interesting questions

you asked during the lectures and the breaks

Brookhaven National Laboratory

Bielefeld University

