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The Little Bang (Credit: Chun Shen/Paul Sorensen)
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Event-by-event shape and flow fluctuations rule!
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e Each event has a different initial shape and density distribution, characterized by different set of
harmonic eccentricity coefficients ¢,

e Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow
coefficients v,, and flow angles 1,

e At small impact parameters fluctuations (“hot spots”) dominate over geometric overlap effects
(Alver & Roland, PRC81 (2010) 054905; Qin, Petersen, Bass, Miiller, PRC82 (2010) 064903)
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Panta rhei! “soft ridge” ="“Mach cone” = flow!

ATLAS (J. Jia), Quark Matter 2011 ALICE (J. Grosse-Oetringhaus), QM11
ALICE preliminary

PP Vsyy = 2.76 TeV
centrality 0-1%, |0 |< 0.8

1.010

1.008

C(a9)

A (rad.)

e anisotropic flow coefficients v,, and flow angles v,, correlated over large rapidity range!
M. Luzum, PLB 696 (2011) 499: All long-range rapidity correlations seen at RHIC are consistent with being entirely
generated by hydrodynamic flow.

e in the 1% most central collisions v3 > vy
= prominent “Mach cone”-like structure!
— event-by-event eccentricity fluctuations dominate!
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Event-by-event shape and flow fluctuations rule!

ALICE preliminary ALICE (A. Bilandzic) Quark Matter 2011

1010 POPb Vsyy = 2.76 TeV
1,008 | centrality 0-1%, n|< 0.8

* |Mn]>1 0.1
1.006 | a5 (2. |An[>1) L

charged hadrons
o V{2, An>1}

r m v,{2,An > 1}
L * V{2, An > 1}
3 O Vg{4}
g 0.05 o Vo,
t ¢ 100X 3y,

O T T
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centrality percentile

A¢ (rad.)
e in the 1% most central collisions v3 > vo == prominent “Mach cone”-like structure!

e triangular flow angle uncorrelated with reaction plane and elliptic flow angles
—> due to event-by-event eccentricity fluctuations which dominate the anisotropic flows in the

most central collisions
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Relativistic Heavy lon Collisions: Theory

Kinetic theory vs. hydrodynamics
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Kinetic theory vs. hydrodynamics

Both simultaneously valid if weakly coupled and small pressure gradients.
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Kinetic theory vs. hydrodynamics

Both simultaneously valid if weakly coupled and small pressure gradients.
Form of hydro equations remains unchanged for strongly coupled systems

Boltzmann Equation in Relaxation Time Approximation (RTA):

i _ _ pu(x)
POuf(x,p) = Cloxsp) = =5 (ool )~ x,))

For conformal systems 7y1(x) = ¢/ T(x) = 5n/(sT) = 57/ T(x).
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Kinetic theory vs. hydrodynamics

Both simultaneously valid if weakly coupled and small pressure gradients.
Form of hydro equations remains unchanged for strongly coupled systems.

Boltzmann Equation in Relaxation Time Approximation (RTA):

i _ _ pu(x)
POuf(x,p) = Cloxsp) = =5 (ool )~ x,))

For conformal systems 7y1(x) = ¢/ T(x) = 5n/(sT) = 57/ T(x).

Macroscopic currents:

j(x) = / o F(xp) = (P TH(x) = / b B Flx,p) = (p9")

g d*p
where /p E E, (...)
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Kinetic theory vs. hydrodynamics

Hydrodynamics for strongly anisotropic expansion (1)

Account for large viscous flows by including their effect already at leading

order in the Chapman-Enskog expansion:
Expand the solution f(x, p) of the Boltzmann equation as

f(x, p) = fo(x, p) + 6F(x, p) (|5f/foy < 1)

where fy is parametrized through macroscopic observables as

= B k)

T(x)

where =M (x) = v (x)u”(x) — D(x)A*(x) + " (x).
u"(x) defines the local fluid rest frame (LRF).
AW = gh¥ —yty¥ is the spatial projector in the LRF.
T(x), ji(x) are the effective temperature and chem. potential in the LRF.
®(x) accounts for bulk viscous effects in expanding systems.
&M (x) describes deviations from local momentum isotropy in
anisotropically expanding systems due to shear viscosity.
Ulrich Heinz (Ohio State) RHIC Theory 7/17/2017
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Kinetic theory vs. hydrodynamics

Hydrodynamics for strongly anisotropic expansion (1)

ut(x), T(x), fi(x) are fixed by the Landau matching conditions:
nov T o~ . . _ )2 _

Tl/ S(Taurga (D)u ) <U P>5f <(U P) >6f 0
& is the LRF energy density. We introduce the true local temperature
T(T,[i;&, ®) and chemical potential pu(T, fi; £, ®) by demanding
E(T, 1§, ®)=Eeq(T, 1) and N (T, fi; §, )= (up)p =Neq(T, 1)
Writing

T =T +6TH = T +NHY, =t =+ ve
the conservation laws

N(x) = Neg(x)

0T () =0, Bu(x) = == —5

are sufficient to determine u*(x), T(x), ©(x), but not the dissipative corrections
&Yoo, T#Yand V# whose evolution is controlled by microscopic physics.
Ulrich Heinz (Ohio State) RHIC Theory 7/17/2017 11 /36



Kinetic theory vs. hydrodynamics

Hydrodynamics for strongly anisotropic expansion (I11)

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

m ldeal hydro: local momentum isotropy (¢# =0), & = N*" = V# =0.
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Hydrodynamics for strongly anisotropic expansion (I11)

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

m ldeal hydro: local momentum isotropy (¢# =0), & = N*" = V# =0.

m Navier-Stokes (NS) theory: local momentum isotropy (£#” = 0), ® = 0, ignores
microscopic relaxation time by postulating instantaneous constituent relations for
ne, vk,

m Israel-Stewart (IS) theory: local momentum isotropy (§#” = 0), ® = 0, evolves
Mn*, V# dynamically, keeping only terms linear in Kn = Am¢p/Amacro

= Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps
nonlinear terms up to order Kn?, Kn - Re™! when evolving ", V*,
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Hydrodynamics for strongly anisotropic expansion (I11)

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

Ideal hydro: local momentum isotropy (§** =0), & =" = V¥ =0.

Navier-Stokes (NS) theory: local momentum isotropy (¢*” =0), ® =0, ignores
microscopic relaxation time by postulating instantaneous constituent relations for
ne, vk,

Israel-Stewart (IS) theory: local momentum isotropy (§# = 0), ® = 0, evolves
Mn*, V# dynamically, keeping only terms linear in Kn = Am¢p/Amacro
Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps
nonlinear terms up to order Kn?, Kn - Re™! when evolving ", V*,

Anisotropic hydrodynamics (aHydro): allows for leading-order local momentum
anisotropy (£"”, ® # 0), evolved according to equations obtained from low-order
moments of BE, but ignores residual dissipative flows: MN*" = V#* = 0.
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Hydrodynamics for strongly anisotropic expansion (I11)

Different hydrodynamic approaches can be characterized by the different assumptions
they make about the dissipative corrections and/or the different approximations they use
to derive their dynamics from the underlying Boltzmann equation:

Ideal hydro: local momentum isotropy (§** =0), & =" = V¥ =0.

Navier-Stokes (NS) theory: local momentum isotropy (¢*” =0), ® =0, ignores
microscopic relaxation time by postulating instantaneous constituent relations for
ne, vk,

Israel-Stewart (IS) theory: local momentum isotropy (§# = 0), ® = 0, evolves
Mn*, V# dynamically, keeping only terms linear in Kn = Am¢p/Amacro
Denicol-Niemi-Molnar-Rischke (DNMR) theory: improved IS theory that keeps
nonlinear terms up to order Kn?, Kn - Re™! when evolving ", V*,

Anisotropic hydrodynamics (aHydro): allows for leading-order local momentum
anisotropy (£"”, ® # 0), evolved according to equations obtained from low-order
moments of BE, but ignores residual dissipative flows: MN*" = V#* = 0.

Viscous anisotropic hydrodynamics (vaHydro): improved aHydro that
additionally evolves residual dissipative flows M*”, V#* with IS or DNMR theory.
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Exact BE solutions

Relativistic Heavy lon Collisions: Theory

Exact solutions of the Boltzmann equation
m Systems undergoing Bjorken flow
m Systems undergoing Gubser flow

Ulrich Heinz (Ohio State) RHIC Theory 7/17/2017
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Exact BE solutions
°

Bjorken flow

BE for systems with highly symmetric flows: |. Bjorken flow

m Longitudinal boost invariance, transverse homogeneity (“physics on the light
cone”, no transverse flow) = u* = (1,0, 0,0) in Milne coordinates (7, r, ¢, n)
where 7 = (t2—z%)Y/? and n = tin[(t—2)/(t+2)] = v. = z/t
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BE for systems with highly symmetric flows: |. Bjorken flow

m Longitudinal boost invariance, transverse homogeneity (“physics on the light
cone”, no transverse flow) = u* = (1,0, 0,0) in Milne coordinates (7, r, ¢, n)
where 7 = (*—2z?)"/? and n = tin[(t—2)/(t+2)] = v. = z/t

m Metric: ds? = dr?—dr® — r’d¢? — m2dn?, guv = diag(1, -1, —r*, —72)

m Symmetry restricts possible dependence of distribution function f(x, p)

(Baym '84, Florkowski et al. '13, '14):

f(x,p) = f(7; pL,w) where w = tp, — zE = Tmy sinh(y—n).
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m Symmetry restricts possible dependence of distribution function f(x, p)

(Baym '84, Florkowski et al. '13, '14):
f(x,p) = f(7; pL,w) where w = tp, — zE = Tmy sinh(y—n).

m RTA BE simplifies to ordinary differential equation

_ f(T; PL, W) — eq(T; PL, W)

Trel(T) '

0, F(7:pL,w) =
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m Symmetry restricts possible dependence of distribution function f(x, p)

(Baym '84, Florkowski et al. '13, '14):
f(x,p) = f(7; pL,w) where w = tp, — zE = Tmy sinh(y—n).

m RTA BE simplifies to ordinary differential equation

_ f(T; PL, W) — eq(T; PL, W)

Trel(T) '

0, F(7:pL,w) =

m Solution:

f(7:p1, w) = D(7, 7o) fo(pr, w) + /‘T

70

™ "
where D(m,m) = exp(—/ dr )

1 Trel (7—//)

dr’

D ! fec /;
Trcl(Tl) (T7T) 1(7— pJ—7W)
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Exact BE solutions
©000000

Gubser flow

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)

= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where
L 22422 - .
p(r,r) = —sinh™! (”qu) and 0(r,r) =tan™* (qufﬁ).

= v, =2z/tand v, = Hléf_ﬁ where g is an arbitrary scale parameter.
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Gubser flow

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

= sop—1 (1-¢*r2+q°r _ -1 2qgr
p(7,r) = —sinh ( T and 0(r,r) = tan T )

= v, =2z/tand v, = — where g is an arbitrary scale parameter.

2q°Tr
T+a2r2+q2r?
m Metric: d§* = ds*/72 = dp®— cosh®p (d6? + sin> 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)
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Gubser flow

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics

on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh™! (M) and 0(r,r) = tan~? (L)

2q1 1+q2m2—q2r2
= v, = z/t and v,=1+q§"_l_72"'+"72
m Metric: d§* = ds*/72 = dp®— cosh®p (d6? + sin> 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)
m Symmetry restricts possible dependence of distribution function f(x, p)

P

and p, = w.
sin? 6 Pn

f(x,p) = f(p; Pa. Py) where pg = pj +

Ulrich Heinz (Ohio State) RHIC Theory 7/17/2017
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Gubser flow

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics
on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh™! (M) and 0(r,r) =tan™* (22+)

2q 14+¢?12—q%r?
Hléf_ﬁ where q is an arbitrary scale parameter.
m Metric: d§* = ds*/72 = dp®— cosh®p (d6? + sin> 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)
m Symmetry restricts possible dependence of distribution function f(x, p)
Az

= v, =2z/tand v, =

f(x,p) = f(p; ﬁé,ﬁn) where p3 = pa —|— 0 and p, = w.

m With T(r,r) = T(p(r,r))/ RTA BE simplifies to the ODE
§p (07 P B) = —M [F(pi 8. 5.) — (/T ()] -

Ulrich Heinz (Ohio State) RHIC Theory 7/17/2017 15 / 36



Exact BE solutions
©000000

Gubser flow

BE for systems with highly symmetric flows: |lI. Gubser flow

m Longitudinal boost invariance, azimuthally symmetric radial dependence (“physics

on the light cone” with azimuthally symmetric transverse flow)
(Gubser '10, Gubser & Yarom '11)
= u* = (1,0,0,0) in de Sitter coordinates (p, 0, ¢, n) where

p(r,r) = —sinh™! (M) and 0(r,r) =tan™* (22+)

2q 1+q272—q%r2
= v; = z/t and v,=1+q§:’_72"+’qzr
m Metric: d§* = ds*/72 = dp®— cosh®p (d6? + sin> 0 d¢?) — dn?,
guv = diag(1, — cosh? p, — cosh? p sin? 0, —1)
m Symmetry restricts possible dependence of distribution function f(x, p)
B2
f(x,p) = f(p; ﬁé,ﬁn) where p3 = pa —|— 0 and p, = w.
» With T(r,r) = T(p(r,r))/m RTA BE simplifies to the ODE
0 2 P 22 A ap 5
8[7 ( ?Z? C) = _L [f<l)vp§27p<) - féq(pﬂ/T(p))] N
m Solution:
f(pi B, w) = D(p, po)fo(Ba, w) + ¢ [7 dp'T(p") D(p. p') fealp; B2, w)

Ulrich Heinz (Ohio State) RHIC Theory 7/17/2017
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Exact BE solutions
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Gubser flow

Hydrodynamic equations for systems with Gubser flow:

m The exact solution for f can be worked out for any “initial” condition
fr(p3, w) = f(po; pa, w). Here | use equilibrium initial conditions, fy = fuq.
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Exact BE solutions
0@00000

Gubser flow

Hydrodynamic equations for systems with Gubser flow:

m The exact solution for f can be worked out for any “initial” condition
fr(p3, w) = f(po; pa, w). Here | use equilibrium initial conditions, fy = fuq.

m By taking hydrodynamic moments, the exact f yields the exact evolution of all
components of TH”. Here, """ has only one independent component, 7"".

m This exact solution of the BE can be compared to solutions of the various
hydrodynamic equations in de Sitter coordinates, using identical initial conditions.

m Ideal: Tigeal(p) = Cosh%%(p)

= NS: if“f) + 2 tanhp = 17](p) tanhp  (viscous T-evolution)

with 7! *d ;{/(Ts) and A7l = ﬁ:anhp where g =f= %'IA'ﬂel
. ™ 4 Uy o 4
m IS: E+§(7Tn) tanthrT_r—;]’l——tanhp
= DNMR: dip" + % (WZ) tanh p + % tanthr 517, tanh p

m aHydro: see M. Nopoush et al., PRD 91 (2015) 045007
m vaHydro: see M. Martinez et al., PRC95 (2017) 054907
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Exact BE solutions
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Gubser flow

Exact BE vs. hydrodynamic approximations: Gubser flow

Optimal evolution of the momentum deformation parameter £7

m “Standard” viscous hydrodynamics (IS or DNMR):
expansion around local equilibrium = £ =0
m Anisotropic hydrodynamics:
expansion around a locally momentum-anisotropic state = & # 0
B P;-matching (Tinti 2015; Molnar, Niemi, Rischke, 2016):
Additional Landau matching condition that matches & evolution to
that of the longitudinal pressure Pi = no 6f corrections to Py.
In this case £ can be eliminated, and the evolution equations can be
written entirely in terms of macroscopic variables, as in standard
viscous hydrodynamics
m NSR approach (Nopoush, Strickiand, Ryblewski 2015):
obtain £ evolution equation from second moments of the BE
= P, evolution not fully captured by & evolution.
m NLO-NSR approach (vartinez, McNelis, UH 2017):
Same ¢ evolution but includes residual 6f contribution to P;
This captures the missing part of the pressure anisotropy.

Ulrich Heinz (Ohio State) RHIC Theory 7/17/2017 17 / 36



Gubser flow

Exact BE solutions
000®000

Exact BE vs. hydrodynamic approximations:

Martinez, McNelis, UH,

2.0

PRCO5 (2017) 054907

Gubser flow
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Gubser flow

Exact BE vs. hydrodynamic approximations: Gubser flow

Martinez, McNelis, UH, PRC95 (2017) 054907
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Gubser flow

Exact BE vs. hydrodynamic approximations: Gubser flow

Martinez, McNelis, UH, PRC95 (2017) 054907
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Exact BE solutions Hydro work! Small systems Summary

Prologue Kinetic theory vs. hydrodynamics
o
Exact BE vs. hydrodynamic approximations: Gubser flow
Martinez, McNelis, UH, PRC95 (2017) 054907
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0.1
0.05]

0.01
0.005

-5

21/ 36

7/17/2017

RHIC Theory

Ulrich Heinz (Ohio State)



Hydro work!

Relativistic Heavy lon Collisions: Theory

Phenomenological evidence: Hydro works!
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Hydro work!

Towards a really predictive theory of relativistic heavy-ion
collision dynamics

After tuning initial conditions and viscosity at RHIC to obtain a good
description of all soft hadron data simultaneously (Song et al. 2010) we
successfully predicted the first LHC spectra and elliptic flow measurements:

ALICE, Quark Matter 2011 (VISH2+1 prediction: Shen et al., PRC84 (2011) 044903)

~
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Hydro work!

Hybrid (hydro+cascade) approaches work even better:

Data: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011)
Dashed lines: Shen et al., PRC84 (2011) 044903 (VISH2+1, MC-KLN, (n/s)qap=0.2)
Solid lines: Song, Shen, UH 2011 (VISHNU, MC-KLN, (n/s)qGp=0.16)
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VISHNU vyields correct magnitude and centrality dependence of v,(p1) for

pions, kaons and protons!
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Prologue Kinetic theory vs. hydrodynamics Exact BE solutions Hydro work! Small systems Summary
00000000

The state of the art (Bernhard, Moreland, Bass, QM2015)
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Small systems

Relativistic Heavy lon Collisions: Theory

Hydrodynamic behavior in small systems
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Small systems

Flow in Pb+Pb, p+Pb and even p+p at the LHC!
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R.D. Weller, P. Romatschke, arXiv:1701.07145

superSONIC for p+p, Vs=5.02 TeV, 0-1%

superSONIC for p+Pb, Vs=5.02 TeV, 0-5%

superSONIC for Pb+Pb, Vs=5.02 TeV, 0-5%
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Requires fluctuating proton substructure (gluon clouds clustered around

valence quarks (K. Welsh et al. PRC94 (2016) 024919))
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Small systems

Radial flow in pp collisions at the LHC

Werner, Guiot, Karpenko, Pierog (EPOS3), 1312.1233;
Data: CMS Collaboration (8, 84, 160, 235 charged tracks)
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Elliptic flow (double ridge) discovered in high-multiplicity pp by CMS at
7 TeV (and confirmed by ATLAS at 13 TeV) also reproduced by EPOS.
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Small systems

Validity of viscous hydro: Knudsen number check

— /s=016

Niemi & Denicol, arXiv:1404.7327 08— e HH-1Q

s = HH-HQ

Kn = Tmicro 8= tmicro /Tmacro 02
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Earlier freeze-out in p+A than A4+A
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Small systems

Validity of viscous hydro: Knudsen number check

Niemi & Denicol, arXiv:1404.7327 o8| i o

- nfs=HH-HQ

Kn = Tmicro 0= tmicro /tmacro 02
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Strong linear rise of /s above T, testing the limits of applicability of
hydrodynamics in p+A collisions?
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Prologue Kinetic theory vs. hydrodynamics EVMT ﬂ[ so\uﬂons Hydro work! Small systems Summary

Validity of viscous hydro: Exact solution at oo coupling

Chesler, arXiv:1506.02209, coIIiding shock waves in AdSs for p+A
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Exact BE solutions Hydro work! Small systems Summary

Prologue Kinetic theory vs. hydrodynamics
00000000

Validity of viscous hydro: Exact solution at co coupling

Chesler, arXiv:1506.02209, coIIiding shock waves in AdSs for p+A
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First-order terms in Re ™! large, but second-order terms small almost everywhere!
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Small systems

Importance of second-order terms in Kn and Re™! in A+A
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with transport coefficients from Boltzmann equation for massless
Boltzmann gas.
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Prologue

Kinetic theory vs. hydrodynamics
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Bulk viscosity matters

Exact BE solutions

Hydro work! Small systems Summary

Non-linear second-order terms make almost no difference

Ulrich Heinz (Ohio State)
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Summary

Relativistic Heavy lon Collisions: Theory

@ Summary
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Summary

Summary

m Viscous relativistic hydrodynamics provides a robust, reliable, efficient and
accurate description of QGP evolution in heavy-ion collisions.

m It is valid even when the expansion is fast and highly anisotropic, causing large
local momentum anisotropies = local thermalization not strictly required.

m While first-order viscous corrections are large in nuclear collisions, especially in
small systems, they can be handled efficiently in an optimized anisotropic
hydrodynamic approach that accounts for local momentum anisotropies at
leading order; residual dissipative flows remain small.

m New exact solutions of the Boltzmann equation enable powerful tests of the
efficiency and accuracy of various hydrodynamic expansion schemes, providing
strong support for the validity and robustness of second-order viscous
hydrodynamics (especially their anisotropic variants).
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