Lecture 2

Neutrinoless Double Beta Decay

Krishna Kumar Stony Brook University

National Nuclear Physics Summer School 2017 Boulder, CO

Resources and Acknowledgements

- The Physics of Massive Neutrinos: Boehm and Vogel, Cambridge University Press, 2nd Edition, 1992
- The Dynamics of the Standard Model: Donoghue, Golowich and Holstein, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Second Edition, 2014
- 2016 NNPSS Lectures of Vincenzo Cirigliano at MIT
- Writeup of Lectures by Petr Vogel, Massive Neutrinos, 1997 Mexican Summer School on Astrophysics and Cosmology
- Slides from the opening workshop of the INT Program on Neutrinoless Double-Beta Decay, June 2017: http://www.int.washington.edu/talks/WorkShops/int_17_2a/

The EXO-200 and nEXO collaborations and many other colleagues: J. Detwiler, J. Engel, K. Heeger, Y. Kolomensky, R. Maruyama, M. Ramsey-Musolf, W. Rodejohann, J. Wilkerson…

Plan for Lectures

• Lecture 1

necessary general knowledge for experimentalists

- Nomenclature, Theoretical Overview, Physics Motivation, Goal for Experiments
- **• Lecture 2**

necessary general knowledge for theorists

• Overview of Experimental Techniques, Overview of Experimental Program Worldwide, Details of 2 Initiatives aiming for the Ton-Scale, Detailed Description of EXO-200 and nEXO (the 3rd ton-scale initiative)

CPT transformation: left-handed particle to right-handed anti-particle

A profound question:

What is the Discovery Measurement?

The most pragmatic approach to discover the Majorana nature of neutrinos is to search for **Lepton Number Violation (LNV)**

Practically: discover **Neutrinoless Double-Beta Decay (0)**

2 Double Beta Decay Lepton Number Conserving Standard Model Process

0 Double Beta Decay

 $(N,Z) \rightarrow (N-2,Z+2) + e^- + e^-$

0 Double Beta Decay Experimental Signature

0 Double Beta Decay Experimental Signature

If observed, it would unambiguously signal that Lepton Number is NOT a conserved quantity, and that neutrinos are Majorana particles i.e. their own anti-particles

Choosing a Nuclide

al 2v_{BB} half-life is very long: $\frac{1}{T^{0\nu}_a}=G^{2\nu}(Q,Z) |M^{2\nu}|^2$ **Typical 2** $\nu\beta\beta$ half-life is very long: **second-order weak process**

Atomic mass affected by nuclear pairing term: even A nuclei occupy 2 parabolas, even-even below odd-odd

with Q>2 MeV

but double-beta

Choose nuclei where single beta decay forbidden

Neutrinoless Double-Beta Decay: Lecture 2 9 Krishna Kumar, NNPSS 2017

Decay Rate for Oνββ	
$\Gamma^{0\nu} = G(Q,Z) M(A,Z)\eta ^2$	
transition $\alpha \frac{m}{Q^2}$ (<i>Q</i> ∼ <i>m_e</i>)	Phase Space $G \sim G_F^4 g_A^4 m_e^5$
$M(A,Z)$ Nuclear Matrix Element	
η Particle Physics of the Black Box PMNS Matrix	
For light neutrino exchange	All 3 neutrinos will contribute: $\eta \sim m \rightarrow \langle m_{\beta\beta} \rangle = \sum_i U_{i_e}^2 m_i$

Decay Rate for Oνββ	
$\Gamma^{0\nu} = G(Q,Z) M(A,Z)\eta ^{2}$	
Transformation\n $\alpha \frac{m}{Q^{2}} \quad (Q \sim m_{e})$ Phase Space\n $G \sim G_{F}^{4} g_{A}^{4} m_{e}^{5}$ \n	
$M(A,Z)$ Nuclear Matrix Element\n η Particle Physics of the Black Box PMNS Matrix	
For light neutrino exchange	All 3 neutrinos will contribute: $\eta \sim m \rightarrow \langle m_{\beta\beta} \rangle = \sum_{i} U_{ie}^{2} m_{i}$ \n
$m_{\beta\beta} \sim 1 \text{ eV} \Longrightarrow T_{1/2} \sim 10^{24} \text{ years}$ \n	
$m_{\beta\beta} \sim 0.1 \text{ eV} \Longrightarrow T_{1/2} \sim 10^{26} \text{ years}$ \n	

Absolute Neutrino Mass Scale

Discovery Reach

• Strong correlation of 0νββ with neutrino phenomenology: ^Γ∝(mββ)2

$$
\langle m_{\beta\beta} \rangle^2 \ = \ |\sum_i U_{ei}^2 m_{\nu i}|^2
$$

Discovery *possible* for inverted spectrum OR m_{lightest} > 50 meV

Other Possibilities for the Black Box

In summary: ton-scale $0\nu\beta\beta$ probes LNV from variety mechanisms, involving different scales (M) and coupling strengths (g)

Towards Discovery Experiments

Nuclear Matrix Elements

$$
M_{Ov} = M_{Ov}^{GT} - \frac{g_V^2}{g_A^2} M_{Ov}^F + \dots
$$

with

$$
M_{0\nu}^{GT} = \langle F | \sum_{i,j} H(r_{ij}) \sigma_i \cdot \sigma_j \tau_i^+ \tau_j^+ | I \rangle + \dots
$$

$$
M_{0\nu}^F = \langle F | \sum_{i,j} H(r_{ij}) \tau_i^+ \tau_j^+ | I \rangle + \dots
$$

$$
H(r) \approx \frac{2R}{\pi r} \int_0^\infty dq \frac{\sin qr}{q + \overline{E} - (\overline{E}_i + \overline{E}_f)/2} \quad \text{roughly} \propto 1/r
$$

Contribution to integral peaks at $q \approx 100$ MeV inside nucleus.

Corrections are from "forbidden" terms, weak nucleon form factors, many-body currents ...

Neutrinoless Double-Beta Decay: Lecture 2 Neutrinoless

NME Current Status

For light neutrino exchange

Significant spread. And all the models could be missing important physics.

Uncertainty hard to quantify.

One must do different calculations if other mechanisms are in play

Signal and Background

An experimental challenge of rare events

Most measured half-lives of 2νββ are O(1021) years

- **- Compare to lifetime of Universe: 1010 years**
- **- Compare to Avogadro's number 6 x 1023**
- **- Mole of isotope will produce ~ 1 decay/day**

If it exists, half-lives of 0νββ would be longer (Current limits > few x 1025 years)

Natural radioactivity: a nanogram produces more than 1 decay/day! Cosmogenically induced radioactivity exacerbates technical challenge

$$
\begin{aligned}\n\left[T_{1/2}^{0\nu}\right] &\approx \varepsilon_{ff} \cdot I_{\text{abundance}} \cdot Source\ Mass \cdot Time & background\ free \\
\left[T_{1/2}^{0\nu}\right] &\approx \varepsilon_{ff} \cdot I_{\text{abundance}} \cdot \sqrt{\frac{Source\ Mass \cdot Time}{Bkg \cdot \Delta E}} & background\ limited\n\end{aligned}
$$

backgrounds do not always scale with detector mass

Natural Abundances

For the others, Isotopic enrichment (\$s) is needed

The Experimental Challenge

0νββ source with h**igh isotopic abundance**

Detector with **high detection efficiency good energy resolution low-background**

Experiment

long exposure time large total mass of isotope

To reach IH region requires sensitivities of

 $0\nu\beta\beta$ T_{1/2} ~ 10²⁷- 10²⁸ years

 $(2\nu\beta\beta T_{1/2} \sim 10^{19} - 10^{21} \text{ years})$

 $T_{1/2}^{0\nu}$ sensitivity $\propto a \cdot \epsilon \sqrt{\frac{M \cdot t}{b \cdot \delta E}}$

- a = source isotopic abundance
- ϵ = detection efficiency
- $M =$ total mass
	- $t =$ exposure time
	- $b =$ background rate at $0\nu\beta\beta$ energy
- δE = energy resolution

2nu Half-Life

1020 years

Longer $2\sqrt{6\beta}$ T_{1/2} (better) \Rightarrow lower background rate Irreducible background \Rightarrow minimize with good resolution

Effect of Resolution

From Zdesenko, Danevich, Tretyak, J. Phys. G 30 (2004) 971

Backgrounds

- Primordial, natural radioactivity in the detector and array components: U, Th, K
- Backgrounds from cosmogenic activation while material is above ground (ββ-isotope or shield specific, ${}^{60}Co$, ${}^{3}H$, ${}^{39}Ar$, $^{42}Ar, ...$
- Backgrounds from the surrounding environment: external γ , (α, n) , (n, α) , Rn plate-out, etc.
- µ-induced backgrounds generated at depth: Cu, Pb(n,n' γ), $\beta\beta$ -decay specific(n,n),(n, γ), direct μ
- 2 neutrino double beta decay (for ton-scale, impact depends on resolution)
- neutrino backgrounds (for ton-scale, can be a contribution)

Attacking Backgrounds

- Directly reduce intrinsic, extrinsic, & cosmogenic activities
	- Select and use ultra-pure materials
	- Minimize all non "source" materials
	- Clean (low-activity) shielding
	- Fabricate ultra-clean materials (underground fab in some cases)
	- $-$ Go deep reduced μ 's $\&$ related induced activities
- Utilize background measurement & discrimination techniques

0νββ is a localized phenomenon, many backgrounds have multiple site interactions or different energy loss interactions

- –Energy resolution
- –Active veto detector
- –Tracking (topology)
- Particle ID, angular, spatial, & time correlations
- Fiducial self-consistent fits
- Single site / multi site fitting
- Granularity [multiple detectors]
- Pulse shape discrimination (PSD)

Best:

source = detector!

76Ge, 130Te, 136Xe

– Ion Identification

Sensitivity vs Exposure MT

 $T_{1/2}^{0\nu}$ (background free)∝ MT *T*_{1/2}⁰(backgrounds)∝

International Program

Discovery Strategy

• Evidence : a combination of

- Correct peak energy
- Single-site or localized energy deposit
- Proper detector distributions (spatial, temporal)
- Rate scales with isotope fraction
- Good signal to background $(3 \sigma$ discovery)
- Full energy spectrum (backgrounds) understood.
- More direct confirmation : very difficult
	- Observe the two-electron nature of the event
	- Measure kinematic dist. (energy sharing, opening angle)
	- **Observe the daughter**
	- Observe the excited state decay(s)
- Convincing
	- Observe 0νββ in several different isotopes, using a variety of experimental techniques that meet the above definition of evidence

Overview of Techniques
Multi-Prong Detection Strategy

World Program

CUORE

 $\overline{}$

GERDA

MAJORANA

SNO+

Ton Scale Experiments

- Active international collaborations building on current efforts.
	- **76Ge : LEGEND**, HPGE crystals, ~ton (builds on GERDA & MAJORANA)
	- ⁸²Se : SuperNEMO : Se foils, tracking and calorimeter, 100 kg scale
	- ¹⁰⁰Mo : AMoRE : CaMoO₄ scint. bolometer, 200 kg scale
	- 136 **Xe** : n **EXO** Liquid TPC, 5 tons

NEXT — High pressure gas TPC, ton scale PandaX - III — High pressure gas TPC, ton scale KamLAND-Zen $-$ 136Xe in scintillator, 800 kg scale LZ — natXe liquid TPC, 7 tons, operating 2019

- **130Te : CUPID (CUORE** with Particle ID) Bolometer Scintillation SNO+ Phase I & II $-$ ¹³⁰Te in scintillator
- Experiments can be done in a staged (phased) approach. Most are considering stepwise increments.
- Isotope enrichment $(^{76}Ge, ^{82}Se, ^{136}Xe)$ requires time and \$s.
- Potential underground lab sites
	- SNOLAB, JingPing, Gran Sasso, SURF, CanFranc, Frejus, Kamioka, ANDES, Y2L

Germanium-76

Advantages of Germanium

- Intrinsic high-purity Ge detectors = source
- Excellent energy resolution: approaching 0.1% at 2039 keV (~2.4 keV ROI)
- Demonstrated ability to enrich from 7.44% to $\geq 87\%$
- Powerful background rejection: multiplicity, timing, pulse-shape discrimination

Majorana and GERDA

MAJORANA

"Traditional" configuration: Vacuum cryostats in a passive graded shield with ultraclean materials

GERDA

"Novel" configuration: Direct immersion in active LAr shield

Majorana Demonstrator

Funded by DOE Office of Nuclear Physics, NSF Particle Astrophysics, NSF Nuclear Physics with additional contributions from international collaborators.

Goals: - Demonstrate backgrounds low enough to justify building a tonne scale experiment.

- Establish feasibility to construct & field modular arrays of Ge detectors.
- Searches for additional physics beyond the standard model.
- Located underground at 4850' Sanford Underground Research Facility
- Background Goal in the 0νββ peak region of interest (4 keV at 2039 keV) 3 counts/ROI/t/y (after analysis cuts) Assay U.L. currently ≤ 3.5
- 44.1-kg of Ge detectors
	- 29.7 kg of 87% enriched 76Ge crystals
	- -14.4 kg of natGe
	- Detector Technology: P-type, point-contact.
- 2 independent cryostats
	- ultra-clean, electroformed Cu
	- 22 kg of detectors per cryostat
	- naturally scalable
- Compact Shield
	- low-background passive Cu and Pb shield with active muon veto

Majorana Underground Laboratory

Initial Results

First results from Modules 1 and 2 in-shield

- Exposure: 1.39 kg y
- After cuts, 1 count in 400 keV window centered at 2039 keV (0νββ peak)
- Projected background rate is 5.1 $^{+8.9}$ _{-3.2} c /(ROI t y) for a 2.9 keV (Modue 1- DS3) and 2.6 keV (Module 2 - DS4) ROI, (68% CL).
- Background index of 1.8×10^{-3} c/(keV kg y)
- Analysis cuts are still being optimized.
- Through mid-May, have 10x more exposure in hand. Analysis is in progress.

GERDA Configuration

30 BEGe (20 kg) and 7 Coax (15.6 kg) (Phase II)

GERDA Results

- Phase I and II Exposure: 34.4 kg y
- Projected background from 1930 to 2190 keV window excludes 2104 ± 5 keV and 2119 ± 5 keV. Window of ±20 keV around $\mathsf{Q}_{\beta\beta}$ blinded.
- For Phase II BEGes, have achieved "background free" measurement with background index of 1.8 c/(FWHM-t-y) or $(0.6 *0.6_{-0.4})$) x 10⁻³ c/kky)
- $T_{1/2}$ (0νββ) ≥ 5.3 x 10²⁵ years (90%CL)

LEGEND

Mission: The collaboration aims to develop a phased, ⁷⁶Ge-based doublebeta decay experimental program with discovery potential at a half-life significantly longer than 10²⁷ years, using existing resources as appropriate to expedite physics results.

Select best technologies, based on what has been learned from GERDA and the MAJORANA DEMONSTRATOR, as well as contributions from other groups and experiments.

First Phase:

- (up to) 200 kg
- modification of existing GERDA infrastructure at LNGS
- BG goal (x5 lower) 0.6 c $/(FWMH t y)$
- start by 2021

Subsequent Stages:

- 1000 kg (staged)
- timeline connected to U.S. DOE down select process
- BG: goal (x30 lower) 0.1 c /(FWHM t y)
- Location: TBD
- Required depth (77mGe) under investigation

Tellurium-130

CUORE Bolometer Heat sink: Cu structure (10 mK) **Thermal coupling**: Teflon $(G = 4$ pW/mK) **Thermometer**: **TeO2 Bolometer: Source = Detector**

deposited energy

sealer 1.0 side

Ch 537 (NONE - C2-17) - 50 m/n dv

Teflon Si heater σ

NTD-Ge

Thermistor

 $\frac{1}{3}$ **Isotopic abundance: 34%** 3200 **Q-value: 2526.515 ± 0.013 keV main candidate isotope: 130Te**

For $E = 1$ MeV: $\Delta T = E/C \approx 0.1$ mK Signal size: 1 mV

Copper

Time constant: $\tau = C/G = 0.5$ s Energy resolution: \sim 5-10 keV at 2.5 MeV

 \blacksquare

NTD Ge-thermistor (100 kΩ/μK)

 $(C \cong 2 \text{ nJ/K} \cong 1 \text{ MeV} / 0.1 \text{ mK})$

27.01.2017

First pulse

Absorber:

 \neg TeO₂ crystal

V. Anglia Smart Sov

0 0.5 1 1.5 2 2.5 3 3.5 4

CUORE Overview

CUORE $(2017 -)$

CUORE at LNGS

Gran Sasso National Laboratory

CUORE CUORE-0 **Hall A**

Average depth ~ 3600 m.w.e. μ: 3 x 10-8 μ/s/cm2 n < 10 MeV: 4 x 10-6 n/s/cm2 γ < 3 MeV: 0.73 γ/s/cm2

CUORE Cryostat

45

CUORE/CUPID towers installation July - August 2016 \overline{C} $\overline{$ **The cool down of the cryostat started in December 2016**

CUORE CUORE COMMISSIONING

TOWERS INSTALLATION

- **CUORE Milestones:**
	- Tower installation: Jul-Aug 2016
	- Cryostat closeout: Nov 2016
	- Cooldown: Dec-Jan 2016
	- Commissioning and initial performance optimization: Jan-May 2017
	- First science run: May 2017
- Cryostat performs very well: base $T < 7$ mK
- >95% of detectors operational
- First data to be reported in Summer 2017

CUORE/CUPID towers installation July - August 2016 \overline{C} $\overline{$ **The cool down of the cryostat started in December 2016** Light Detector

CUORE CUORE COMMISSIONING

TOWERS INSTALLATION

46

Thermometers Light Energy release Scintillating bolometer

 $\boldsymbol{\epsilon}$ experiment based on the CHORE. **experiment based on the CUORE Next-generation bolometric tonne-scale design, proven CUORE cryogenics**

- **CUORE Milestones:**
	- Tower installation: Jul-Aug 2016
	- Cryostat closeout: Nov 2016
	- Cooldown: Dec-Jan 2016
	- Commissioning and initial performance optimization: Jan-May 2017
	- First science run: May 2017
- Cryostat performs very well: base $T < 7$ mK
- >95% of detectors operational
- First data to be reported in Summer 2017
- 268 3. The isotopic abundance can be maximized through enrichment (except for \sim • Intense CUPID R&D effort in the next 2-3 years
	- ²⁷⁰ 4. As discussed later in this paper, the background can be minimized with a ☞ US focus: ¹³⁰TeO₂ enrichment and purification, ²⁷² The CUORE experiment represents the most advanced stage in the use of high-resolution sensors for Cherenkov light for a total mass of $1/2$ ton of $1/2$ 74 α 7

atary European efforte ☞ Complementary European efforts

- 2777×10^{-4} . In the future CUORE may lead the set of way to way to way to way to way to way to ward a few to ☞Background goal is 0.1 cts/ROI-t-yr; achieve sensitivity to the full Inverted Hierarchy
- ²⁸¹ In the previous section we enumerated the many advantages of using bolome-☞ Other important R&D: detailed background 233 rejects radioactive particle in particle in particle in particle in the second via particle in the second analysis, cosmogenic backgrounds @ LNGS 285 in recently both formulations both for α — to be addressed before downselect
- ²⁸⁷ (which are part of the background only) from ⇥*/*⇤ interactions (which can be a ²⁸⁸ part of both the background and signal). ☞ Worldwide efforts: 8 countries, 32 institutions
- 10 ☞ Data from CUORE and pilot detectors will drive technology and isotope choice

Xenon-136

Kamland-ZEN

- ¹³⁶Xe (90% enr) in liquid scintillator, balloon R=1.5 m
- $Q_{\beta\beta}$ =2457.8 keV ; $\sigma \sim 114$ keV (4.6%)
- Phase II (PRL **117** 082503 (2016))
	- 380 kg (2.96% by Xe wt.)
	- $R=1$ m fiducial cut
	- 534.5 days, with 126 kg y exposure
	- $110mAg$ contamination reduced by $x10$ **T 1/2 > 1.07 x 1026 y (90% CL)**

Sensitivity T 1/2 > 5.6 x 1025 y (90% CL)

Unsuccessful new larger mini balloon deployment - 2016

Construction and deployment of new mini balloon with improved welding procedure for 800 kg (750 kgiso) phase - 2017

Neutrinoless Double-Beta Decay: Lecture 2 Neutrinoless Double-Beta Decay: Lecture 2

Kamland-ZEN Future

Higher energy resolution for reducing 2*v* **BG** \Box **KamLAND2-Zen**

1000+ kg xenon

Far future:

Winston cone light collection ×1.8

high q.e. PMT 17"φ→20"^φ ^ε=22→30+%

New LAB LS (better transparency)

light collection ×1.9

light collection ×1.4

expected σ (2.6MeV)= $4\% \rightarrow \sim 2\%$ **target sensitivity: 20 meV**

Super-KamLAND-Zen in connection with Hyper-Kamiokande

target sensitivity 8 meV

Advantages of Xenon

Isotopic enrichment easier & known: Xe is a gas and 136Xe is the heaviest isotope.

Xenon is "reusable": can be re-purified (noble gas: relatively easy) during measurement and easily recycled into a different detector (no crystal growth)

 replace 136Xe with nat'lXe if signal observed

Monolithic detector: LXe is self shielding, surface contamination minimized.

Minimal cosmogenic activation: no long lived radioactive isotopes of Xe.

Energy resolution in LXe improved: scintillation light + ionization anti-correlation.

Standard 2νββ is slow! (see later): get away with modest energy resolution

… admits a novel coincidence technique: background reduction by Ba tagging

.... potentially access normal hierarchy

EXO-200 at WIPP Waste Isolation Pilot Plant, Carlsbad, NM

EXO-200 at WIPP Waste Isolation Pilot Plant, Carlsbad, NM

51

(2004)

- • *EXO-200 installed at WIPP (Waste Isolation Pilot Plant), in Carlsbad, NM*
- • *1600 mwe flat overburden (2150 feet, 650 m)*
- • *Salt mine for low-level radioactive waste storage*
- • *Salt "rock" low activity relative to hard-rock mine*

Older experimental cavities potentially useable for research

€

Salt

Rock overburden

Areas made available for research

 $\Phi_{\mu} \sim 1.5 \times 10^5 \,\mathrm{yr}^{-1} m^{-2} \mathrm{sr}^{-1}$ *U* ~ 0.048*ppm* **Characteristics** The sait formation

Th ~ 0.25*ppm K* ~ 480*ppm*

WIPP's Low Background surrounding WIPP contains extremely low levels of naturally occuring radioactive materials. $U - 30$ ppb $Th - 80$ ppb K-40 ~170 ppb Rn <7Ba/m

Esch et al., arxiv:astro-ph/0408486

Waste Disposal Area

SALTSTORAGEPLES SALTHANGLING SUPPORTBUILDING **Waste Isolation Pilot Plant, Carlsbad, NM**

 51

(2004)

• *EXO-200 installed at WIPP (Waste Isolation Pilot Plant), in Carlsbad, NM* • *1600 mwe flat overburden (2150 feet, 650 m)* • *Salt mine for low-level radioactive waste storage* • *Salt "rock" low activity relative to hard-rock mine*

4777

Esch et al., arxiv:astro-ph/0408486

Waste Disposal Area

und

irina

EXO-200 Concept

EXO R&D showed the way to improved energy resolution in LXe: Use (anti)correlations between ionization and scintillation signals

- **Two TPCs with common cathode in middle**
- **APD planes observe prompt scintillation for drift time measurement.**
- **V-position given by induction signal on shielding grid.**
- Neutrinoless Double-Beta Decay: Lecture 2 Commercial Comm \bullet U-position and energy given by charge collection grid.

EXO-200 at WIPP

Neutrinoless Double-Beta Decay: Lecture 2 Krishna Kumar, NNPSS 2017

Module 1

Low Activity Copper

- •**Different parts e-beam welded together**
- • **Field TIG weld(s) to seal the vessel after assembly (TIG technology tested for radioactivity)**
- • **All machining done in cosmic-ray shielded building)**

TPC: The Innards

TPC Construction (1 full drift region)

wire "triplet" detail

TPC Entering the Cryostat

TPC Entering the Cryostat

175 kg LXe, 80.6% enr. in ¹³⁶Xe Copper conduits (6) for:

- APD bias and readout cables
- U+V wires bias and readout

• LXe supply and return Epoxy feedthroughs at cold and warm doors Dedicated HV bias line

Xenon Recirculation

Xenon Recirculation

Neutrinoless Double-Beta Decay: Lecture 2 Krishna Kumar, NNPSS 2017

Xenon Recirculation

Calibration System

Miniaturized sources

6m long, low friction cable

Neutrinoless Double-Beta Decay: Lecture 2 Krishna Kumar, Neutrinoless Double-Beta Decay: Lecture 2 Krishna Kumar, Northern Automorphical Contract Contract Contract Contract Contract Contract Contract Contract Contract Cont

Stainless steel

capsule

Provide 4 full energy deposition peaks in the energy range 662 keV – 2615 keV

x

100

 -100

 -150

 -150

 -100

 -50

(mm)

50

150

100

weak 228Th

Neutrinoless Double-Beta Decay: Lecture 2 61 Krishna Kumar, NNPSS 2017

Time

Top display is charge readout (V are induction wires and U are collection wires).

Left display is light readout. APD map refers to the sample with max signal.

Scintillation light is seen from both sides, although more intense and localized on side 2, where the event occurred.

Small depositions produce induction signals on more than one V wires but are collected by a single U wire. V signal always comes before U.

Top display is charge readout (V are induction wires and U are collection wires).

Left display is light readout. APD map refers to the sample with max signal.

Scintillation light is seen from both sides, although more intense and localized on side 2, where the event occurred.

Small depositions produce induction signals on more than one V wires but are collected by a single U wire. V signal always comes before U.

Top display is charge readout (V are induction wires and U are collection wires).

Time

Left display is light readout. APD map refers to the sample with max signal.

Scintillation light is seen from both sides, although more intense and localized on side 2, where the event occurred.

Small depositions produce induction signals on more than one V wires but are collected by a single U wire. V signal always comes before U.

Top display is charge readout (V are induction wires and U are collection wires).

Time

Left display is light readout. APD map refers to the sample with max signal.

Scintillation light is seen from both sides, although more intense and localized on side 2, where the event occurred.

Small depositions produce induction signals on more than one V wires but are collected by a single U wire. V signal always comes before U.

Time
63

Time
OS

Time
O_J

Time
O_J

Rn Content in Liquid Xenon

222Rn dissolving in enrLXe: 360 ± 65 µBq (Fid. vol.)

EXO-200 2014 Result

T1/20νββ>1.1·1025yr (90%CL)

<mν> < 190 – 450 meV

T1/20νββ sensitivity:

 1.9·1025 yr

J.B.Albert et al. (EXO-200) Nature 510 (2014) 229

Phase-II Running

- **EXO-200 Phase-II operation begins on 31 Jan 2016, after enriched liquid xenon fill.**
- **Data shows that the detector reached excellent xenon purity and ultra-low internal Rn level shortly after restart.**

Towards the Ton Scale

Att. Length of 2.4MeV γ

Because one can take full advantage of: 1) Compton tag and rejection (if detector has double-hit recognition ability) 2) External background identification and rejection

5000kg

The larger the detector the more useful this is. → Ton scale is where these features become dominant.

Gamma Shielding Shielding a detector from gammas is difficult!

Example:

 γ interaction length in Ge is 4.6 cm, comparable to the size of a germanium detector.

Shielding ββ decay detectors is much harder than shielding Dark Matter ones We are entering the "golden era" of ββ decay experiments as detector sizes exceed int lengths

nEXO Concept

Preliminary artist view of nEXO in the SNOlab Cryopit

One essential point: *One essential point:* **nEXO IS NOT A PURE CALORIMETER To think about nEXO exclusively in terms of energy resolution is misleading**

 nEXO uses optimally *more* **than just the energy measurement.**

The signal/background discrimination is based on four parameters:

- **1. Energy measurement**
- **2. Event multiplicity (SS/MS in EXO-200)**
- **3. Distance from the TPC surface**
- **4. Particle ID (α-electron)**

There is no rational reason to prefer the use of an "Energy ROI" over a "topology ROI" or a "topology ⊗ **energy ROI". In fact, more independent axes provide a more powerful constraint on the signal.**

nEXO Strategy

Flexible program based on the initial nEXO investment

nEXO R&D

- **• High Voltage**
- **• SiPMs: QE, radiopurity…**
- **• Internal Electronics**
- **• TPC Internals**
- **• Calibration Concepts**

Local R&D

- **• BNL Instrumentation Division: Internal Electronics**
- **• SBU/BNL: Novel Calibration Concepts**

Particularly in the larger nEXO, background identification and rejection fully use a fit that considers simultaneously energy, multiplicity and event position.

➔ *The power of the homogeneous detector,*

 this is not just a calorimetric measurement!

MS

nEXO Sensitivity Reach

GCM: Rodriguez, Martinez-Pinedo,

GCM: Rodriguez, Martinez-Pinedo,

Phys. Rev. Lett. 105 (2010) 252503

Lett.

Rev.

Phys.

105 (2010) 252503

Outlook for the Field

Discovery Sensitivity Comparison

Discovery probability of next-generation neutrinoless double-beta decay experiments Matteo Agostini, Giovanni Benato, and Jason Detwiler arXiv:1705.02996v1

Red : Achieved Backgrounds; Black : Projected Backgrounds

Width of bands based on range of NME values

Discovery Probability arXiv:1705.02996v1

Closing Thoughts

- Given the compelling theoretical motivation and discovery of neutrino mass, the search for neutrinoless double-beta decay has become one of the highest priorities for experimental nuclear physics research worldwide
- The field of experimental searches for neutrinoless double beta decay is now maturing and coalescing into a handful of ton-scale discovery experiments

In these lectures, I have tried to educate you on the above

- With a little bit of luck, we may learn whether neutrinos are their own antiparticles within a decade
- With a further bit of luck we might have a new paradigm for the origin of all matter in the universe
- In any case, this research will have tremendous impact well beyond nuclear physics, touching particle physics, astrophysics and cosmology