Lecture 2

Neutrinoless Double Beta Decay

Krishna Kumar Stony Brook University

National Nuclear Physics Summer School 2017 Boulder, CO

Resources and Acknowledgements

- The Physics of Massive Neutrinos: Boehm and Vogel, Cambridge University Press, 2nd Edition, 1992
- The Dynamics of the Standard Model: Donoghue, Golowich and Holstein, Cambridge Monographs on Particle Physics, Nuclear Physics and Cosmology, Second Edition, 2014
- 2016 NNPSS Lectures of Vincenzo Cirigliano at MIT
- Writeup of Lectures by Petr Vogel, Massive Neutrinos, 1997 Mexican Summer School on Astrophysics and Cosmology
- Slides from the opening workshop of the INT Program on Neutrinoless Double-Beta Decay, June 2017: http://www.int.washington.edu/talks/WorkShops/int_17_2a/

The EXO-200 and nEXO collaborations and many other colleagues: J. Detwiler, J. Engel, K. Heeger, Y. Kolomensky, R. Maruyama, M. Ramsey-Musolf, W. Rodejohann, J. Wilkerson...

Plan for Lectures

• Lecture 1

necessary general knowledge for experimentalists

- Nomenclature, Theoretical Overview, Physics Motivation, Goal for Experiments
- Lecture 2

necessary general knowledge for theorists

 Overview of Experimental Techniques, Overview of Experimental Program Worldwide, Details of 2 Initiatives aiming for the Ton-Scale, Detailed Description of EXO-200 and nEXO (the 3rd ton-scale initiative)

CPT transformation: left-handed particle to right-handed anti-particle

A profound question:

What is the Discovery Measurement?

The most pragmatic approach to discover the Majorana nature of neutrinos is to search for Lepton Number Violation (LNV)

Practically: discover Neutrinoless Double-Beta Decay (0νββ)

Lepton Number Conserving Standard Model Process 2v Double Beta Decay

Ov Double Beta Decay

 $(N,Z) \rightarrow (N-2,Z+2) + e^- + e^-$

Ov Double Beta Decay Experimental Signature

Ov Double Beta Decay Experimental Signature

If observed, it would unambiguously signal that Lepton Number is NOT a conserved quantity, and that neutrinos are Majorana particles i.e. their own anti-particles

Choosing a Nuclide $\frac{1}{T^{0 u}}$ $G^{^{2 u}}\!(Q,\!Z)\!\left|\!M^{^{2 u}}\!\right|^{^{2}}$ **Typical 2** $\nu\beta\beta$ half-life is very long: second-order weak process

Atomic mass affected by nuclear pairing term: even A nuclei occupy 2 parabolas, even-even below odd-odd

but double-beta

decay is possible

nd. Choose nuc	Abund. (%)	Q (MeV)	Candidate
7	0.187	4.271	⁴⁸ Ca→ ⁴⁸ Ti
but double-b	7.8	2.040	⁷⁶ Ge→ ⁷⁶ Se
decay is nos	9.2	2.995	⁸² Se→ ⁸² Kr
	2.8	3.350	⁹⁶ Zr→ ⁹⁶ Mo
Candidate nucle	9.6	3.034	¹⁰⁰ Mo→ ¹⁰⁰ Ru
with O>2 MeV	11.8	2.013	¹¹⁰ Pd→ ¹¹⁰ Cd
	7.5	2.802	¹¹⁶ Cd→ ¹¹⁶ Sn
Double	5.64	2.228	¹²⁴ Sn→ ¹²⁴ Te
a second	34.5	2.533	¹³⁰ Te→ ¹³⁰ Xe
order	8.9	2.479	¹³⁶ Xe→ ¹³⁶ Ba
energeti	5.6	3.367	¹⁵⁰ Nd→ ¹⁵⁰ Sm

Choose nuclei where single beta decay forbidden

Neutrinoless Double-Beta Decay: Lecture 2

$$\begin{array}{l} \textbf{Decay Rate for OrbB}\\ \Gamma^{0\nu} = G(Q,Z) \big| M(A,Z) \eta \big|^{2} \\ Transition & \alpha \frac{m}{Q^{2}} & (Q \sim m_{e}) & \text{Phase Space } G \sim G_{F}^{4} g_{A}^{4} m_{e}^{5} \\ \text{Probability} & \alpha \frac{m}{Q^{2}} & (Q \sim m_{e}) & \text{Phase Space } G \sim G_{F}^{4} g_{A}^{4} m_{e}^{5} \\ M(A,Z) & \text{Nuclear Matrix Element} \\ \eta & \text{Particle Physics of the Black Box} \\ \textbf{For light neutrino exchange} \\ \text{All 3 neutrinos will contribute: } \eta \sim m \rightarrow \langle m_{\beta\beta} \rangle = \sum_{i}^{V} U_{ie}^{2} m_{i} \end{array}$$

Decay Rate for Orbb

$$\Gamma^{0\nu} = G(Q,Z) |M(A,Z)\eta|^{2}$$
Transition $\alpha \frac{m}{Q^{2}}$ $(Q \sim m_{e})$ Phase Space $G \sim G_{F}^{4}g_{A}^{4}m_{e}^{5}$
Factor $M(A,Z)$ Nuclear Matrix Element
 η Particle Physics of the Black Box
For light neutrino exchange
All 3 neutrinos will contribute: $\eta \sim m \rightarrow \langle m_{\beta\beta} \rangle = \sum_{i}^{N} U_{ie}^{2}m_{i}$
 $m_{\beta\beta} \sim 1 \text{ eV} \Longrightarrow T_{1/2} \sim 10^{24} \text{ years}$
 $m_{\beta\beta} \sim 0.1 \text{ eV} \Longrightarrow T_{1/2} \sim 10^{26} \text{ years}$
 $m_{\beta\beta} \sim 0.01 \text{ eV} \Longrightarrow T_{1/2} \sim 10^{28} \text{ years}$

Absolute Neutrino Mass Scale

11

Discovery Reach

• Strong correlation of $0\nu\beta\beta$ with neutrino phenomenology: $\Gamma \propto (m_{\beta\beta})^2$

$$\langle m_{\beta\beta} \rangle^2 = |\sum_{i} U_{ei}^2 m_{\nu i}|^2$$

Discovery possible for inverted spectrum OR mlightest > 50 meV

Other Possibilities for the Black Box

In summary: ton-scale $0\nu\beta\beta$ probes LNV from variety mechanisms, involving different scales (M) and coupling strengths (g)

Towards Discovery Experiments

Nuclear Matrix Elements

$$M_{
m Ov}=M_{
m Ov}^{GT}-rac{g_V^2}{g_A^2}\,M_{
m Ov}^F+\dots$$

with

$$M_{Ov}^{GT} = \langle F | \sum_{i,j} H(r_{ij}) \sigma_i \cdot \sigma_j \tau_i^+ \tau_j^+ | I \rangle + \dots$$
$$M_{Ov}^F = \langle F | \sum_{i,j} H(r_{ij}) \tau_i^+ \tau_j^+ | I \rangle + \dots$$

$$H(r) \approx rac{2R}{\pi r} \int_0^\infty dq rac{\sin qr}{q + \overline{E} - (E_i + E_f)/2}$$
 roughly $\propto 1/r$

Contribution to integral peaks at $q \approx 100$ MeV inside nucleus.

Corrections are from "forbidden" terms, weak nucleon form factors, many-body currents ...

Neutrinoless Double-Beta Decay: Lecture 2

NME Current Status

For light neutrino exchange

Significant spread. And all the models could be missing important physics.

Uncertainty hard to quantify.

One must do different calculations if other mechanisms are in play

Signal and Background

An experimental challenge of rare events

Most measured half-lives of $2\nu\beta\beta$ are $O(10^{21})$ years

- Compare to lifetime of Universe: 10¹⁰ years
- Compare to Avogadro's number 6×10^{23}
- Mole of isotope will produce ~ 1 decay/day

If it exists, half-lives of $0v\beta\beta$ would be longer (Current limits > few x 10^{25} years)

Half life	Signal
(years)	(cts/tonne-year)
10 ²⁵	500
5x10 ²⁶	10
5x10 ²⁷	1
5 x10 ²⁸	0.1

Natural radioactivity: a nanogram produces more than 1 decay/day! Cosmogenically induced radioactivity exacerbates technical challenge

$$\begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix} \propto \varepsilon_{ff} \cdot I_{abundance} \cdot Source Mass \cdot Time \qquad background free \\ \begin{bmatrix} T_{1/2}^{0\nu} \end{bmatrix} \propto \varepsilon_{ff} \cdot I_{abundance} \cdot \sqrt{\frac{Source Mass \cdot Time}{Bkg \cdot \Delta E}} \qquad background limited \\ \end{bmatrix}$$

backgrounds do not always scale with detector mass

Natural Abundances

For the others, Isotopic enrichment (\$s) is needed

The Experimental Challenge

 $0\nu\beta\beta$ source with high isotopic abundance

Detector with high detection efficiency good energy resolution low-background

Experiment long exposure time large total mass of isotope

To reach IH region requires sensitivities of

 $0\nu\beta\beta T_{1/2} \sim 10^{27}$ - 10²⁸ years

 $(2\nu\beta\beta T_{1/2} \sim 10^{19} - 10^{21} \text{ years})$

$$T_{1/2}^{0\nu}$$
 sensitivity $\propto a \cdot \epsilon$

- *a* = source isotopic abundance
- ϵ = detection efficiency
- M =total mass
 - t = exposure time
 - $b = background rate at 0 \nu \beta \beta energy$
- δE = energy resolution

2nu Half-Life

Longer $2\nu\beta\beta T_{1/2}$ (better) \Rightarrow lower background rate Irreducible background \Rightarrow minimize with good resolution

Effect of Resolution

From Zdesenko, Danevich, Tretyak, J. Phys. G 30 (2004) 971

Backgrounds

- Primordial, natural radioactivity in the detector and array components: U, Th, K
- Backgrounds from cosmogenic activation while material is above ground ($\beta\beta$ -isotope or shield specific, 60 Co, 3 H, 39 Ar, 42 Ar, ...)
- Backgrounds from the surrounding environment: external γ, (α,n), (n,α), Rn plate-out, etc.
- μ-induced backgrounds generated at depth:
 Cu, Pb(n,n' γ), ββ-decay specific(n,n),(n,γ), direct μ
- 2 neutrino double beta decay (for ton-scale, impact depends on resolution)
- neutrino backgrounds (for ton-scale, can be a contribution)

Attacking Backgrounds

- Directly reduce intrinsic, extrinsic, & cosmogenic activities
 - Select and use ultra-pure materials
 - Minimize all non "source" materials
 - Clean (low-activity) shielding
 - Fabricate ultra-clean materials (underground fab in some cases)
 - Go deep reduced μ 's & related induced activities
- Utilize background measurement & discrimination techniques

 $0\nu\beta\beta$ is a localized phenomenon, many backgrounds have multiple site interactions or different energy loss interactions

- Energy resolution
- -Active veto detector
- -Tracking (topology)
- Particle ID, angular, spatial,& time correlations

- Fiducial self-consistent fits
- Single site / multi site fitting
- Granularity [multiple detectors]
- Pulse shape discrimination (PSD)

Best:

source = detector!

⁷⁶Ge, ¹³⁰Te, ¹³⁶Xe

- Ion Identification

Sensitivity vs Exposure $T_{1/2}^{0\nu}(background free) \propto MT$ $T_{1/2}^{0\nu}(backgrounds) \propto \sqrt{\frac{MT}{b\Delta E}}$

International Program

2016 - 2025

2016 - 2025

26

Discovery Strategy

• Evidence : a combination of

- Correct peak energy
- Single-site or localized energy deposit
- Proper detector distributions (spatial, temporal)
- Rate scales with isotope fraction
- Good signal to background (3 σ discovery)
- Full energy spectrum (backgrounds) understood.
- More direct confirmation : very difficult
 - Observe the two-electron nature of the event
 - Measure kinematic dist. (energy sharing, opening angle)
 - Observe the daughter
 - Observe the excited state decay(s)
- Convincing
 - Observe 0vββ in several different isotopes, using a variety of experimental techniques that meet the above definition of evidence

Overview of Techniques
Multi-Prong Detection Strategy

World Program

CUORE

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
CANDLES	Ca-48	305 kg CaF2 crystals - liq. scint	0.3 kg	Construction
CARVEL	Ca-48	⁴⁸ CaWO ₄ crystal scint.	$\sim ton$	R&D
GERDA I	Ge-76	Ge diodes in LAr	15 kg	Complete
GERDA II	Ge-76	Point contact Ge in LAr	31	Operating
MAJORANA DEMONSTRATOR	Ge-76	Point contact Ge	25 kg	Operating
LEGEND	Ge-76	Point contact	~ ton	R&D
NEMO3	Mo-100 Se-82	Foils with tracking	6.9 kg 0.9 kg	Complete
SuperNEMO Demonstrator	Se-82	Foils with tracking	7 kg	Construction
SuperNEMO	Se-82	Foils with tracking	100 kg	R&D
LUCIFER (CUPID)	Se-82	ZnSe scint. bolometer	18 kg	R&D
AMoRE	Mo-100	CaMoO ₄ scint. bolometer	1.5 - 200 kg	R&D
LUMINEU (CUPID)	Mo-100	$ZnMoO_4$ / Li_2MoO_4 scint. bolometer	1.5 - 5 kg	R&D
COBRA	Cd-114,116	CdZnTe detectors	10 kg	R&D
CUORICINO, CUORE-0	Te-130	TeO ₂ Bolometer	10 kg, 11 kg	Complete
CUORE	Te-130	TeO ₂ Bolometer	206 kg	Operating
CUPID	Te-130	TeO ₂ Bolometer & scint.	~ ton	R&D
SNO+	Te-130	0.3% natTe suspended in Scint	160 kg	Construction
EXO200	Xe-136	Xe liquid TPC	79 kg	Operating
nEXO	Xe-136	Xe liquid TPC	~ ton	R&D
KamLAND-Zen (I, II)	Xe-136	2.7% in liquid scint.	380 kg	Complete
KamLAND2-Zen	Xe-136	2.7% in liquid scint.	750 kg	Upgrade
NEXT-NEW	Xe-136	High pressure Xe TPC	5 kg	Operating
NEXT	Xe-136	High pressure Xe TPC	100 kg - ton	R&D
PandaX - 1k	Xe-136	High pressure Xe TPC	\sim ton	R&D
DCBA	Nd-150	Nd foils & tracking chambers	20 kg	R&D

GERDA

Majorana

SNO+

Ton Scale Experiments

- Active international collaborations building on current efforts.
 - ⁷⁶Ge : LEGEND, HPGE crystals, ~ton (builds on GERDA & MAJORANA)
 - ⁸²Se : SuperNEMO : Se foils, tracking and calorimeter, 100 kg scale
 - ¹⁰⁰Mo : AMoRE : CaMoO₄ scint. bolometer, 200 kg scale
 - ¹³⁶Xe : nEXO Liquid TPC, 5 tons

NEXT — High pressure gas TPC, ton scale PandaX - III — High pressure gas TPC, ton scale KamLAND-Zen — ¹³⁶Xe in scintillator, 800 kg scale LZ — ^{nat}Xe liquid TPC, 7 tons, operating 2019

- ¹³⁰Te : CUPID (CUORE with Particle ID) Bolometer Scintillation SNO+ Phase I & II — ¹³⁰Te in scintillator
- Experiments can be done in a staged (phased) approach. Most are considering stepwise increments.
- Isotope enrichment (⁷⁶Ge, ⁸²Se, ¹³⁶Xe) requires time and \$s.
- Potential underground lab sites
 - SNOLAB, JingPing, Gran Sasso, SURF, CanFranc, Frejus, Kamioka, ANDES, Y2L

Germanium-76

Advantages of Germanium

- Intrinsic high-purity Ge detectors = source
- Excellent energy resolution: approaching 0.1% at 2039 keV (~2.4 keV ROI)
- Demonstrated ability to enrich from 7.44% to ≥87%
- Powerful background rejection: multiplicity, timing, pulse-shape discrimination

Majorana and GERDA

MAJORANA

"Traditional" configuration: Vacuum cryostats in a passive graded shield with ultraclean materials

GERDA

"Novel" configuration: Direct immersion in active LAr shield

Majorana Demonstrator

Funded by DOE Office of Nuclear Physics, NSF Particle Astrophysics, NSF Nuclear Physics with additional contributions from international collaborators.

Goals: - Demonstrate backgrounds low enough to justify building a tonne scale experiment.

- Establish feasibility to construct & field modular arrays of Ge detectors.
- Searches for additional physics beyond the standard model.
- Located underground at 4850' Sanford Underground Research Facility
- Background Goal in the 0vββ peak region of interest (4 keV at 2039 keV) 3 counts/ROI/t/y (after analysis cuts) Assay U.L. currently ≤ 3.5
- 44.1-kg of Ge detectors
 - 29.7 kg of 87% enriched ⁷⁶Ge crystals
 - 14.4 kg of ^{nat}Ge
 - Detector Technology: P-type, point-contact.
- 2 independent cryostats
 - ultra-clean, electroformed Cu
 - -22 kg of detectors per cryostat
 - naturally scalable
- Compact Shield
 - low-background passive Cu and Pb shield with active muon veto

Majorana Underground Laboratory

36

Initial Results

First results from Modules 1 and 2 in-shield

- Exposure: 1.39 kg y
- After cuts, 1 count in 400 keV window centered at 2039 keV (0vββ peak)
- Projected background rate is 5.1 ^{+8.9}-3.2 c /(ROI t y) for a 2.9 keV (Modue 1- DS3) and 2.6 keV (Module 2 DS4) ROI, (68% CL).
- Background index of 1.8 x 10^{-3} c/(keV kg y)
- Analysis cuts are still being optimized.
- Through mid-May, have 10x more exposure in hand. Analysis is in progress.

GERDA Configuration

30 BEGe (20 kg) and 7 Coax (15.6 kg) (Phase II)

GERDA Results

39

- Phase I and II Exposure: 34.4 kg y
- Projected background from 1930 to 2190 keV window excludes 2104 \pm 5 keV and 2119 \pm 5 keV. Window of \pm 20 keV around Q_{ββ} blinded.
- For Phase II BEGes, have achieved "background free" measurement with background index of 1.8 c/(FWHM-t-y) or (0.6 ^{+0.6}-0.4)) x 10⁻³ c/kky)
- T_{1/2} (0vββ) ≥ 5.3 x 10²⁵ years
 (90%CL)

LEGEND

Mission: The collaboration aims to develop a phased, ⁷⁶Ge-based doublebeta decay experimental program with discovery potential at a half-life significantly longer than 10²⁷ years, using existing resources as appropriate to expedite physics results.

Select best technologies, based on what has been learned from GERDA and the MAJORANA DEMONSTRATOR, as well as contributions from other groups and experiments.

First Phase:

- (up to) 200 kg
- modification of existing GERDA infrastructure at LNGS
- BG goal (x5 lower) 0.6 c /(FWMH t y)
- start by 2021

Subsequent Stages:

- 1000 kg (staged)
- timeline connected to U.S. DOE down selec process
- BG: goal (x30 lower)
 0.1 c /(FWHM t y)
- Location: TBD
- Required depth (^{77m}Ge) under investigation

Tellurium-130

CUORE Bolometer: Source = Detector

Time constant: $\tau = C/G = 0.5 s$ Energy resolution: ~ 5-10 keV at 2.5 MeV

A Line B Line C Line D

CUORE Overview

CUORE (2017 –)

CUORE at LNGS

Gran Sasso National Laboratory

CUORECUORECUORE

Average depth ~ 3600 m.w.e. μ: 3 x 10⁻⁸ μ/s/cm² n < 10 MeV: 4 x 10⁻⁶ n/s/cm² γ < 3 MeV: 0.73 γ/s/cm²

CUORE Cryostat

CUORE/CUPID

CUORI

- CUORE Milestones:
 - Tower installation: Jul-Aug 2016
 - Cryostat closeout: Nov 2016
 - Cooldown: Dec-Jan 2016
 - Commissioning and initial performance optimization: Jan-May 2017
 - First science run: May 2017
- Cryostat performs very well: base T < 7 mK
- >95% of detectors operational
- First data to be reported in Summer 2017

CUORE/CUPID

Diode thermometer at 10mK plate **CUORE start of operations** 300 250 Cooldown Dec 2016-Jan 2017 200 pumping € ₩ 150 exchange gas in IVC 100 electronics optimization 50 12/05-10:47 12/22-14:10 01/08-17:33 01/25-20:56 Time

46

Next-generation bolometric tonne-scale experiment based on the CUORE design, proven CUORE cryogenics

- CUORE Milestones:
 - Tower installation: Jul-Aug 2016
 - Cryostat closeout: Nov 2016
 - Cooldown: Dec-Jan 2016
 - Commissioning and initial performance
 optimization: Jan-May 2017
 - First science run: May 2017
- Cryostat performs very well: base T < 7 mK
- >95% of detectors operational
- First data to be reported in Summer 2017

- Intense CUPID R&D effort in the next 2-3 years
 - Series Serie

Complementary European efforts

- Background goal is 0.1 cts/ROI-t-yr; achieve sensitivity to the full Inverted Hierarchy
- Other important R&D: detailed background analysis, cosmogenic backgrounds @ LNGS
 to be addressed before downselect
- Image: Worldwide efforts: 8 countries, 32 institutions
- Data from CUORE and pilot detectors will drive technology and isotope choice

Xenon-136

Kamland-ZEN

- 136 Xe (90% enr) in liquid scintillator, balloon R=1.5 m
- $Q_{\beta\beta}=2457.8 \text{ keV}$; $\sigma \sim 114 \text{ keV} (4.6\%)$
- Phase II (PRL **117** 082503 (2016))
 - 380 kg (2.96% by Xe wt.)
 - R=1 m fiducial cut
 - 534.5 days, with 126 kg y exposure
 - 110m Ag contamination reduced by x10 T ${}_{1/2} > 1.07 \text{ x } 10^{26} \text{ y } (90\% \text{ CL})$

Sensitivity T 1/2 > 5.6 x 10²⁵ y (90% CL)

Unsuccessful new larger mini balloon deployment - 2016

Construction and deployment of new mini balloon with improved welding procedure for 800 kg (750 kg_{iso}) phase - 2017

Kamland-ZEN Future KamLAND2-Zen

Higher energy resolution for reducing 2v BG □

1000+ kg xenon

Far future:

Winston cone

light collection ×1.8

high q.e. PMT $17"\phi \rightarrow 20"\phi \varepsilon = 22 \rightarrow 30+\%$

New LAB LS (better transparency)

light collection ×1.9

light collection ×1.4

expected $\sigma(2.6 \text{MeV}) = 4\% \rightarrow \sim 2\%$ target sensitivity: 20 meV

Super-KamLAND-Zen in connection with Hyper-Kamiokande

target sensitivity 8 meV

Advantages of Xenon

Isotopic enrichment easier & known: Xe is a gas and ¹³⁶Xe is the heaviest isotope.

Xenon is "reusable": can be re-purified (noble gas: relatively easy) during measurement and easily recycled into a different detector (no crystal growth)

.... replace ¹³⁶Xe with ^{nat'l}Xe if signal observed

Monolithic detector: LXe is self shielding, surface contamination minimized.

Minimal cosmogenic activation: no long lived radioactive isotopes of Xe.

Energy resolution in LXe improved: scintillation light + ionization anti-correlation.

Standard 2vßß is slow! (see later): get away with modest energy resolution

... admits a novel coincidence technique: background reduction by Ba tagging

.... potentially access normal hierarchy

Waste Isolation Pilot Plant, Carlsbad, NM EXO-200 at WIPP

Waste Isolation Pilot Plant, Carlsbad, NM EXO-200 at WIPP

- EXO-200 installed at WIPP (Waste Isolation Pilot Plant), in Carlsbad, NM
- 1600 mwe flat overburden (2150 feet, 650 m)
- Salt mine for low-level radioactive waste storage
- Salt "rock" low activity relative to hard-rock mine

 $\Phi_{\mu} \sim 1.5 \times 10^5 \, yr^{-1} m^{-2} sr^{-1}$ $U \sim 0.048 \, ppm$ $Th \sim 0.25 ppm$ *K* ~ 480 *ppm* U-30 ppb

WIPP's Low Background Characteristics The sait formation surrounding WIPP. contains extremely low levels of naturally occuring radioactive materials. Th ~80 ppb K-40 ~170 ppb Rn <7Ba/m

Esch et al., arxiv:astro-ph/0408486 (2004)

Waste Disposal Area

Rock overburden

Older experimental cavities potentially useable for research

Salt

Areas made available for research

Waste Isolation Pilot Plant, Carlsbad, NM EXO-200 at WIPP

 • EXO-200 installed at WIPP (Waste Isolation Pilot Plant), in Carlsbad, NM
 • 1600 mwe flat overburden (2150 feet, 650 m)
 • Salt mine for low-level radioactive waste storage
 • Salt "rock" low activity relative to hard-rock mine

$U \sim 0.048 ppm$	WIPP's Low Backgrou Characteristics
$Th \sim 0.25 ppm$	surrounding WIPP contains extremely low levels of naturally occur
<i>K</i> ~ 480 <i>ppm</i>	U ~30 ppb Th ~80 ppb K-40 ~170 ppb Rn <7Bo/m ¹

131

51

Esch et al., arxiv:astro-ph/0408486 (2004) Waste Dispose

Waste Disposal Area

Ind

rina

EXO-200 Concept

EXO RED showed the way to improved energy resolution in LXe: Use (anti)correlations between ionization and scintillation signals

- Two TPCs with common cathode in middle
- PMT charge APD planes observe prompt scintillation for drift time measurement.
- V-position given by induction signal on shielding grid.
- U-position and energy given by charge collection grid. Neutrinoless Double-Beta Decay: Lecture 2

EXO-200 at WIPP

Neutrinoless Double-Beta Decay: Lecture 2

TITTT

Krishna Kumar, NNPSS 2017

Module 1

Low Activity Copper

- •Different parts e-beam welded together
- Field TIG weld(s) to seal the vessel after assembly (TIG technology tested for radioactivity)
- All machining done in cosmic-ray shielded building)

TPC: The Innards

TPC Construction (1 full drift region)

wire "triplet" detail

Neutrinoless Double-Beta Decay: Lecture 2

TPC Entering the Cryostat

TPC Entering the Cryostat

175 kg LXe, 80.6% enr. in ¹³⁶Xe Copper conduits (6) for:

- APD bias and readout cables
- U+V wires bias and readout
- LXe supply and return
 Epoxy feedthroughs at cold and warm doors
 Dedicated HV bias line

Neutrinoless Double-Beta Decay: Lecture 2

Krishna Kumar, NNPSS 2017

Xenon Recirculation

Xenon Recirculation

Neutrinoless Double-Beta Decay: Lecture 2

Xenon Recirculation

Neutrinoless Double-Beta Decay: Lecture 2

Calibration System

Miniaturized sources

Source	Weak (kBq)	Strong (kBq)	
60-Co	3.0	15.0	new ²²⁶ Ra
137-Cs	0.5	7.2	source also
228-Th	1.5	38.0	added

Stainless steel capsule

6m long, low friction cable

Provide 4 full energy deposition peaks in the energy range 662 keV - 2615 keV

weak ²²⁸Th 150 100 -100 -150 -150 -100 -50 150 50 100 X (mm)

Ĩ

Time

Top display is charge readout (V are induction wires and U are collection wires).

Time

Left display is light readout. APD map refers to the sample with max signal.

Scintillation light is seen from both sides, although more intense and localized on side 2, where the event occurred.

Small depositions produce induction signals on more than one V wires but are collected by a single U wire. V signal always comes before U.

Light signals precede in time the charge ones

Time

62

Top display is charge readout (V are induction wires and U are collection wires).

Left display is light readout. APD map refers to the sample with max signal.

Scintillation light is seen from both sides, although more intense and localized on side 2, where the event occurred.

Small depositions produce induction signals on more than one V wires but are collected by a single U wire. V signal always comes before U.

Light signals precede in time the charge ones

62

Top display is charge readout (V are induction wires and U are collection wires).

Time

Left display is light readout. APD map refers to the sample with max signal.

Scintillation light is seen from both sides, although more intense and localized on side 2, where the event occurred.

Small depositions produce induction signals on more than one V wires but are collected by a single U wire. V signal always comes before U.

Light signals precede in time the charge ones

Top display is charge readout (V are induction wires and U are collection wires).

Time

Left display is light readout. APD map refers to the sample with max signal.

Scintillation light is seen from both sides, although more intense and localized on side 2, where the event occurred.

Small depositions produce induction signals on more than one V wires but are collected by a single U wire. V signal always comes before U.

Light signals precede in time the charge ones

Time

Time 63

Time

тіте 63

Time 63

Time

Time

Time 63

Rn Content in Liquid Xenon

²²²Rn dissolving in ^{enr}LXe: 360 ± 65 µBq (Fid. vol.)

EXO-200 2014 Result

 $T_{1/2}^{0\nu\beta\beta} > 1.1 \cdot 10^{25} yr$ (90%CL)

<m_v> < 190 – 450 meV

 $T_{1/2}^{0\nu\beta\beta}$ sensitivity:

1.9 · 10²⁵ yr

J.B.Albert et al. (EXO-200) Nature 510 (2014) 229

Phase-II Running

- EXO-200 Phase-II operation begins on 31 Jan 2016, after enriched liquid xenon fill.
- Data shows that the detector reached excellent xenon purity and ultra-low internal Rn level shortly after restart.

Towards the Ton Scale

- Att. Length of 2.4MeV γ

Because one can take full advantage of:
1) Compton tag and rejection (if detector has double-hit recognition ability)
2) External background identification and rejection

5000kg

The larger the detector the more useful this is. → Ton scale is where these features become dominant.

Shielding a detector from gammas is difficult! Gamma Shielding

Example:

 γ interaction length in Ge is 4.6 cm, comparable to the size of a germanium detector.

Shielding ββ decay detectors is much harder than shielding Dark Matter ones We are entering the "golden era" of *ββ* decay experiments as detector sizes exceed int lengths

nEXO Concept

Preliminary artist view of nEXO in the SNOIab Cryopit

One essential point: **nEXO IS NOT A PURE CALORIMETER** To think about nEXO exclusively in terms of energy resolution is misleading

nEXO uses optimally more than just the energy measurement.

The signal/background discrimination is based on four parameters:

- 1. Energy measurement
- 2. Event multiplicity (SS/MS in EXO-200)
- 3. Distance from the TPC surface
- 4. Particle ID (a-electron)

There is no rational reason to prefer the use of an "Energy ROI" over a "topology ROI" or a "topology \otimes energy ROI". In fact, more independent axes provide a more powerful constraint on the signal.

nEXO Strategy

Flexible program based on the initial nEXO investment

nEXO R&D

- High Voltage
- SiPMs: QE, radiopurity...
- Internal Electronics
- TPC Internals
- Calibration Concepts

Local R&D

- BNL Instrumentation Division: Internal Electronics
- SBU/BNL: Novel Calibration Concepts

Particularly in the larger nEXO, background identification and rejection fully use a fit that considers simultaneously energy, multiplicity and event position.

 \rightarrow The power of the homogeneous detector,

this is not just a calorimetric measurement!

SS

MS

nEXO Sensitivity Reach

105 (2010) 252503

Lett.

Phys. Rev.

GCM: Rodriguez, Martinez-Pinedo,

Outlook for the Field

Discovery Sensitivity Comparison

Discovery probability of next-generation neutrinoless double-beta decay experiments Matteo Agostini, Giovanni Benato, and Jason Detwiler arXiv:1705.02996v1

Red : Achieved Backgrounds; Black : Projected Backgrounds

Width of bands based on range of NME values

arXiv:1705.02996v1

Discovery Probability

Closing Thoughts

- Given the compelling theoretical motivation and discovery of neutrino mass, the search for neutrinoless double-beta decay has become one of the highest priorities for experimental nuclear physics research worldwide
- The field of experimental searches for neutrinoless double beta decay is now maturing and coalescing into a handful of ton-scale discovery experiments

In these lectures, I have tried to educate you on the above

- With a little bit of luck, we may learn whether neutrinos are their own antiparticles within a decade
- With a further bit of luck we might have a new paradigm for the origin of all matter in the universe
- In any case, this research will have tremendous impact well beyond nuclear physics, touching particle physics, astrophysics and cosmology