Hadron Spectroscopy Lecture 2 Heavy Quark Spectroscopy

National Nuclear Physics Summer School at MIT

Matthew Shepherd Indiana University

- I. Overview and Motivation
- 2. Spectroscopy of Heavy Quark Systems
 - 2.1. Low lying heavy quarkonium: a QCD laboratory
 - 2.2. Excited heavy quarkonium: a QCD puzzle
- 3. Spectroscopy of Light Quark Systems
- 4. Summary and Outlook: Present and Future Facilities

The charmonium system

- Why do we believe this is a spectrum of charm anti-charm?
- How can we study QCD through properties of the states?

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

Producing Charmonium

• Probes the ratio of quark to lepton couplings in QED: Q_q^2 / Q_{μ}^2

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

ТIJ

Producing Charmonium

An ideal machine for charmonium study: e^+e^- collisions measured necting the XV//t# BESHIIat BEPCII

Electromagnetic Transitions

M. R. Shepherd NNPSS at MIT July 2016

College of Arts and Sciences Bloomington X_{cJ} Decays

- Study:
 - $\psi' \rightarrow \gamma \pi^+ \pi^-$
 - ψ' → γ p anti-p
- Homework: why does a third peak appear in p anti-p but not ππ?
 - J^P of a pion: 0^-
 - J^P of a proton: $I/2^-$

X_c Decays to YY

$$R = \frac{\Gamma_{YY}(\chi_{c2}) = 4(|\Psi'(0)|^2 \alpha_{EM}^2/m_c^4) \times [1 - 1.70\alpha_S + ...]}{\Gamma_{YY}(\chi_{c0}) = 15(|\Psi'(0)|^2 \alpha_{EM}^2/m_c^4) \times [1 + 0.06\alpha_S + ...]} = (4/15) [1 - 1.76\alpha_S + ...]$$

prediction: $\alpha_s = 0.32 \rightarrow R=0.12$

Expt: $R = 0.27 \pm 0.04$

Higher order corrections significant!

U DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

July 2016

$J/\psi \rightarrow \gamma\gamma\gamma$

• Test of non-perturbative QCD corrections to a QED process (at first order):

$$\mathcal{R} \equiv \frac{\mathcal{B}(J/\psi \to 3\gamma)}{\mathcal{B}(J/\psi \to e^+e^-)} = \frac{64(\pi^2 - 9)}{243\pi}\alpha(1 - 7.3\frac{\alpha_s(r)}{\pi})$$

- Leading order: $R = 5.3 \times 10^{-4}$; Using $\alpha_s = 0.19$: $R = 3.0 \times 10^{-4}$
- Suppress EM bkg. by using J/ψ from $\psi' \rightarrow \pi \pi J/\psi$ Measure: $B(J/\psi \rightarrow \gamma \gamma \gamma) = (11.3 \pm 1.8 \pm 2.0) \times 10^{-6}$
- Combine w/CLEO-c [PRL 101, 101801 (2008)] From experiment: $R = (1.95 \pm 0.37) \times 10^{-4}$

BESIII, PRD 87, 032003 (2013)

U DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Bottom Quarks

- Similar production
- All state below 2 M_B with L \leq I experimentally established (recently)
- Probe of QCD at different mass scale

U DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Electromagnetic Transitions

Discovery of η_b

DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences

Ш

Bloomington

M. R. Shepherd NNPSS at MIT July 2016

Hyperfine Structure

UI DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

Emerging Message

- Heavy quarkonia systems provide an opportunity to study the QCD interaction between two quarks
- There is little debate about the quark content and spin configuration of the lowest lying heavy quarkonium states
- Puzzles:
 - Strong decays of quarkonium to light quarks
 - Excited spectrum of quarkonium

Charmonium

- Directly produce J/ψ or ψ' in e⁺e⁻ collisions
 - study spectrum and transitions
 - spectrum of low-lying charmonium states and transitions between them seem understandable
- Surprises:
 - decays to light quarks
 - excited charmonium spectrum
- Handling light quark degrees of freedom in QCD is challenging

M. R. Shepherd NNPSS at MIT July 2016

Surprises in Strong Decays

- Naive picture of strong decay
- J/ψ and ψ ' are very similar
 - same J^{PC}
 - ψ ' is a radial excitation of J/ψ
- How does the initial state influence which light quark hadrons are produced in the final state?

DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

$J/\psi,\psi' \rightarrow \gamma(\eta,\eta')$

• Measure:

$$R_n \equiv \frac{\mathcal{B}(\psi(nS) \to \gamma\eta)}{\mathcal{B}(\psi(nS) \to \gamma\eta')}$$

- Existing measurements of R_1 consistent with expected mechanism and known η/η nixing
- R_2 expected to be equal to R_1

"Cut and count" analysis in region of meson mass

CLEO Collaboration PRD 79, 111101(R) (2009)

DEPARTMENT OF PHYSICS

ТIJ

 $/\psi,\psi' \rightarrow \gamma(\eta,\eta')$

Why is $\Psi(2S) \rightarrow \gamma \eta$ strongly suppressed?

CLEO Collaboration PRD 79, 111101(R) (2009)

Ш

3π Decays of J/ ψ and ψ '

- In the naive picture both decays should be very similar
 - cc annihilation
 - same parent J^{PC}
 - hadronization into 3π at about the same energy scale
- The two Dalitz plots couldn't look any more different!
 - J/ψ is dominated by ρ
 - Ψ' is strongly populated by higher mass states absent in J/Ψ decay

Bloomington

BESIII, PLB 710, 594 (2012)

- I. Overview and Motivation
- 2. Spectroscopy of Heavy Quark Systems
 - 2.1. Low lying quarkonium: a QCD laboratory
 - 2.2. Excited quarkonium: a QCD puzzle
- 3. Spectroscopy of Light Quark Systems
- 4. Summary and Outlook: Present and Future Facilities

Excited Charmonium Spectrum

- Center of spectroscopy activity in the last decade
- Simplicity of charmonium system makes it easy to notice unusual states

State	m (MeV) Γ (MeV) J^{PC} Process (mode) Experimentary		Experiment (# σ)	Year	Status		
X(3872)	3871.52 ± 0.20	1.3 ± 0.6	$1^{++}/2^{-+}$	$B \to K(\pi^+\pi^- J/\psi)$	Belle [85, 86] (12.8), BABAR [87] (8.6)	2003	OK
		(<2.2)		$p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) + \cdots$	CDF [88–90] (np), DØ [91] (5.2)		
				$B \to K(\omega J/\psi)$	Belle [92] (4.3), BABAR [93] (4.0)		
				$B \to K(D^{*0}\bar{D^0})$	Belle [94, 95] (6.4), BABAR [96] (4.9)		
				$B \to K(\gamma J/\psi)$	Belle [92] (4.0), BABAR [97, 98] (3.6)		
				$B \to K(\gamma \psi(2S))$	BABAR [98] (3.5), Belle [99] (0.4)		
<i>X</i> (3915)	3915.6 ± 3.1	28 ± 10	$0/2^{?+}$	$B \to K(\omega J/\psi)$	Belle [100] (8.1), BABAR [101] (19)	2004	OK
				$e^+e^- \to e^+e^-(\omega J/\psi)$	Belle [102] (7.7)		
X(3940)	3942^{+9}_{-8}	37^{+27}_{-17}	$?^{?+}$	$e^+e^-\to J/\psi(D\bar{D}^*)$	Belle [103] (6.0)	2007	NC!
				$e^+e^- \rightarrow J/\psi \; (\ldots)$	Belle [54] (5.0)		
G(3900)	3943 ± 21	52 ± 11	1	$e^+e^- \to \gamma(D\bar{D})$	BABAR [27] (np), Belle [21] (np)	2007	OK
Y(4008)	4008^{+121}_{-49}	226 ± 97	1	$e^+e^- \to \gamma (\pi^+\pi^-J/\psi)$	Belle [104] (7.4)	2007	NC!
$Z_1(4050)^+$	4051_{-43}^{+24}	82^{+51}_{-55}	?	$B \to K(\pi^+ \chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4140)	4143.4 ± 3.0	15^{+11}_{-7}	$?^{?+}$	$B \to K(\phi J/\psi)$	CDF [106, 107] (5.0)	2009	NC!
X(4160)	4156^{+29}_{-25}	139^{+113}_{-65}	$?^{+}$	$e^+e^-\to J/\psi(D\bar{D}^*)$	Belle [103] (5.5)	2007	NC!
$Z_2(4250)^+$	4248^{+185}_{-45}	177^{+321}_{-72}	?	$B\to K(\pi^+\chi_{c1}(1P))$	Belle [105] (5.0)	2008	NC!
Y(4260)	4263 ± 5	108 ± 14	1	$e^+e^- \to \gamma (\pi^+\pi^- J/\psi)$	BABAR [108, 109] (8.0)	2005	OK
					CLEO [110] (5.4)		
					Belle [104] (15)		
				$e^+e^- \to (\pi^+\pi^-J/\psi)$	CLEO [111] (11)		
				$e^+e^- \to (\pi^0\pi^0J/\psi)$	CLEO [111] (5.1)		
Y(4274)	$4274.4_{-6.7}^{+8.4}$	32^{+22}_{-15}	$?^{?+}$	$B \to K(\phi J/\psi)$	CDF [107] (3.1)	2010	NC!
X(4350)	$4350.6^{+4.6}_{-5.1}$	$13.3^{+18.4}_{-10.0}$	0,2++	$e^+e^- \to e^+e^-(\phi J/\psi)$	Belle [112] (3.2)	2009	NC!
Y(4360)	4353 ± 11	96 ± 42	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	BABAR [113] (np), Belle [114] (8.0)	2007	OK
$Z(4430)^+$	4443_{-18}^{+24}	107^{+113}_{-71}	?	$B \to K(\pi^+ \psi(2S))$	Belle [115, 116] (6.4)	2007	NC!
X(4630)	4634^{+9}_{-11}	92^{+41}_{-32}	1	$e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$	Belle [25] (8.2)	2007	NC!
Y(4660)	4664 ± 12	48 ± 15	1	$e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$	Belle [114] (5.8)	2007	NC!
$Y_b(10888)$	10888.4 ± 3.0	$30.7^{+8.9}_{-7.7}$	1	$e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$	Belle [37, 117] (3.2)	2010	NC!

EPJ, C71 1534 (2011)

M. R. Shepherd NNPSS at MIT July 2016

DEPARTMENT OF PHYSICS

Vector (I⁻⁻) Charmonia

See EPJ, C71 1534 (2011) for details

M. R. Shepherd NNPSS at MIT July 2016

22

- Key players:
 - Y(4260): ???
 - J/ψ : $S_q = I L = 0, J^{PC} = I^{--}$
 - $h_c: S_q = 0 L = 1, J^{PC} = 1^{+-}$
- Key transitions:
 - Υ→ππJ/ψ
 - $Y \rightarrow \pi \pi h_c$

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

 Study of Y(4260) led to discovery of charged Z(3900)[±] and Z(4020)[±] structures Quark Model Prediction: Barnes *et al.*, PRD 72, 054026 (2005) (approximate — not all XYZ candidates shown!)

Belle Collaboration, PRL 110, 252002 (2013)

 mass greater than 2M(D) so we expect OZI favored decay:

τD

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

CLEO Collaboration, PRD 80, 072001 (2009)

$$\frac{\mathcal{B}(Y(4260) \to D\bar{D})}{\mathcal{B}(Y(4260) \to \pi\pi J/\psi)} < 4$$

compare with \approx 500 for ψ (3770)

Exercise: $Y(4260) \rightarrow \pi \pi J/\psi$

What do the first two lines of this table suggest about the isospin of Y(4260)? Could Y(4260) be the neutral member of an isotriplet of tetraquarks?

TABLE I: For each mode $e^+e^- \to X$, for three center-of-mass regions: the detection efficiency, ϵ ; the number of signal [background] events in data, $N_{\rm s}$ [$N_{\rm b}$]; the cross-section $\sigma(e^+e^- \to X)$; and the branching fraction of $\psi(4040)$ or $\psi(4160)$ to X, \mathcal{B} . Upper limits are at 90% CL. '-' indicates that the channel is kinematically or experimentally inaccessible.

	$\sqrt{s} = 3970 - 4060 \mathrm{MeV}$			$\sqrt{s} = 4120 - 4200 \mathrm{MeV}$					$\sqrt{s} = 4260 \mathrm{MeV}$					
Channel	ϵ	$N_{\rm s}$	$N_{\rm b}$	σ	${\mathcal B}$	ϵ	$N_{\rm s}$	$N_{\rm b}$	σ	${\mathcal B}$	ϵ	$N_{\rm s}$	$N_{\rm b}$	σ
	(%)			(pb)	(10^{-3})	(%)			(pb)	(10^{-3})	(%)			(pb)
$\pi^+\pi^- J/\psi$	37	12	3.7	$9^{+5}_{-4} \pm 2$	< 4	38	13	3.7	$8^{+4}_{-3} \pm 2$	< 4	38	37	2.4	$58^{+12}_{-10}\pm4$
$\pi^0\pi^0 J/\psi$	20	1	1.9	< 8	< 2	21	5	0.9	$6^{+5}_{-3} \pm 1$	< 3	22	8	0.3	$23^{+12}_{-8}\pm 1$
K^+K^-J/ψ				_		7	1	0.07	< 20	< 5	21	3	0.07	$9^{+9}_{-5} \pm 1$

from	CIFO-c	PRI	96	162003	(2003))
	CLLU-C,	IINL	70,	102005	(200)	1

Nota	tion:	J J M M				2 0	1 0	0 0
<i>m</i> 1	m_{2}						-	-
I	111 2			1 -	-1	1/6	1/2	1/3
m_{1}	m_2	Coefficients		_	-	_, _	_, _	_, _
	_			0	0	2/3	0 -	-1/3
•	•		-	1 -	+1	1/6	-1/2	1/3
•	•							

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences Bloomington M. R. Shepherd NNPSS at MIT July 2016

Charmonium from Lattice QCD

L. Liu et al. [Hadron Spectrum Collab.], JHEP07 126 (2012)

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

$e^+e^- \rightarrow \pi^+\pi^- J/\psi$ at $E_{cm} = 4260 \text{ MeV}$

• Structure in $\pi^+ J/\psi$ mass that does not arise from $\pi^+\pi^-$ interactions

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

$Z(3900)^{\pm} \rightarrow \pi^{\pm}J/\psi$

T

INDIANA UNIVERSITY

Bloomington

College of Arts and Sciences

$e^+e^- \rightarrow \pi^+ (D\overline{D}^*)^+$ at $E_{cm} = 4260 \text{ MeV}$

BESIII Collaboration, PRL 112, 022001 (2013)

DEPARTMENT OF PHYSICSINDIANA UNIVERSITY
College of Arts and Sciences
Bloomington

What is Z(3900)?

How is it connected to Y(4260)?

What is a Resonance?

U DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

NNPSS at MIT

July 2016

Y(4260) hybrid test?

• Lattice QCD predicts the hybrid I^{--} state to have spin S = 0

Using LQCD Dudek et al. predict [PRD 79, 094504 (2009)]

Potential "hybrid test" for Y(4260), but no experimental sensitivity...yet

Two decays that we can attempt to compare instead:

DEPARTMENT OF PHYSICS

INDIANA UNIVERSITY College of Arts and Sciences

Bloomington

$$Y(4260) \rightarrow \pi \pi h_c \qquad Y(4260) \rightarrow \pi \pi J/\psi$$

$$?? \qquad ?? \qquad ??$$

BESIII Collaboration, PRL 111, 242001 (2013)

M. R. Shepherd NNPSS at MIT July 2016

Z(4020)[±] → π '[⊥]h_c

- No Y(4260)-like peaking structure in $\pi^+\pi^-h_c$ cross section, which is comparable to peak in $\sigma(\pi^+\pi^-J/\psi)$
- Very narrow charged $\pi^{\pm}h_{c}$ structure near DD^{*} threshold
- Not conventional charmonium

Study: $e^+e^- \rightarrow \pi^+\pi^-h_c$

College of Arts and Sciences

Bloomington

T

Questions

- Have we discovered some new bound state of QCD?
- What does it tell us about the state we set out to study: Y(4260)?
- Can we observe similar physics in other systems?

U DEPARTMENT OF PHYSICS INDIANA UNIVERSITY College of Arts and Sciences Bloomington

TI

What about b quarks?

Belle Collaboration, arXiv:1501.01137

- Same story, heavier characters
 - $Y(4260) \rightarrow Y \text{ or } \Upsilon(10860)$
 - $J/\psi \rightarrow \Upsilon$
 - $h_c \rightarrow h_b$
- at 10890 MeV: peak in ππ transitions to Y(nS) states
- Study $\pi \Upsilon$ and πh_b structure in transitions

Production of $\pi\pi\Upsilon(nS)$ and $\pi\pi h_b(mP)$

Belle Collaboration, PRL 108, 032001 (2012)

Why are production of h_b (S=0) and Υ (S=1) of the same scale? Seems impossible starting from vector bottomonium (S=1).

Observation of $Z_b(10610)^{\pm}$ and $Z_b(10650)^{\pm}$

- Belle observes two charged states in the bottomonium spectrum
 - couple to $\pi^{\pm}h_b$ and $\pi^{\pm}\Upsilon$
- consistent masses and widths in five different decay modes
- masses at or just above BB* and B*B* thresholds
- decays to B^(*)B^{*}:
 [Belle Collaboration arXiv:1209.6450]

Belle Collaboration, PRL 108, 122001 (2012)

INDIANA UNIVERSITY College of Arts and Sciences Bloomington

DEPARTMENT OF PHYSICS

Summary

- Similar unconventional spectroscopy (?) in both bottom and charm systems
 - Signs of new states bound of QCD?
 - Meson meson interactions? Complications from light quark degrees of freedom?
 - (Many more results from more experiments than shown here, including candidates for unconventional baryons.)
- Need tools to try to probe the complete scattering amplitude: magnitude and phase
 - more about this tomorrow

