Nuclear structure IV: Nuclear physics and Neutron stars

Stefano Gandolfi

Los Alamos National Laboratory (LANL)

National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear astrophysics:

- What's the relation between nuclear physics and neutron stars?
- What are the composition and properties of neutron stars?
- How do supernovae explode?
- How are heavy elements formed?

Nuclei and neutron stars

 $^{208}\textit{Pb},\,\sim\,10^{-15}\text{m},\,10^{-25}~\text{kg}$

3

イロン イ団 とくほ とくほとう

Nuclei and neutron stars

 $^{208} Pb$, $\sim 10^{-15}$ m, 10^{-25} kg

neutron star, \sim 10 Km, 10^{30} kg (2 $\mathit{M}_{\rm solar})$

・ロト ・回ト ・ヨト ・ヨト

Can we really describe nuclei and neutron stars starting from the same forces???

э

イロン 不同 とくほう イヨン

Neutron matter and neutron star structure

TOV equations:

$$\frac{dP}{dr} = -\frac{G[m(r) + 4\pi r^3 P/c^2][\epsilon + P/c^2]}{r[r - 2Gm(r)/c^2]}, \qquad \frac{dm(r)}{dr} = 4\pi\epsilon r^2,$$

Boundary conditions: $P(r = 0) = P_c$ and $P(r = R_{max}) = 0$ (surface). An equation of state $P(\rho)$ is needed.

イロン 不同 とくほう イヨン

TOV equations:

$$\frac{dP}{dr} = -\frac{G[m(r) + 4\pi r^3 P/c^2][\epsilon + P/c^2]}{r[r - 2Gm(r)/c^2]}, \qquad \frac{dm(r)}{dr} = 4\pi\epsilon r^2,$$

Boundary conditions: $P(r = 0) = P_c$ and $P(r = R_{max}) = 0$ (surface). An equation of state $P(\rho)$ is needed.

Other useful quantities to know: $\epsilon(\rho) = \rho [E(\rho) + m_N)]$ energy density $P(\rho) = \rho^2 \frac{\partial E}{\partial \rho}$ pressure

The total mass of the star is given by

$$M(R) = \int_0^R dr \, 4\pi r^2 \epsilon(r)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Neutron matter and neutron star structure

э

문어 세 문어

Equation of state of neutron matter

Many many EOS of neutron matter exist! Just "some":

Which one(s) (if any) support neutron stars observations?

< ∃ >

Neutron matter and neutron star structure

The main constrain: maximum mass.

Demorest, et al., Nature 467, 1081 (2010)

Neutron star structure test the EOS!

э

글 > : < 글 >

A >

Neutron star radius sensitive to the EOS at nuclear densities. Maximum mass depends mostly to the composition.

3

・ロト ・回ト ・ヨト ・ヨト

Neutron star structure

Accurate measurement of E_{sym} put a constraint to the radius of neutron stars, **OR** observation of M and R would constrain $E_{sym}!$

Steiner, Lattimer, Brown, ApJ (2010)

Neutron star observations can be used to 'measure' the EOS and constrain E_{sym} and L. (Systematic uncertainties still under debate...)

Neutron stars

1

Steiner, Gandolfi, PRL (2012), Gandolfi et al. EPJA (2014)

- What is the equation of state of dense matter?
- What is the composition of neutron stars?
- How do supernovae explode?
- How are heavy elements formed?

D. Page

- Atmosphere: atomic and plasma physics
- Crust: physics of superfluids (neutrons, vortex), solid state physics (nuclei)
- Inner crust: deformed nuclei, pasta phase
- Outer core: nuclear matter
- Inner core: hyperons? quark matter? π or K condensates?
 ...?

3

D. Page

- Atmosphere: atomic and plasma physics
- Crust: physics of superfluids (neutrons, vortex), solid state physics (nuclei)
- Inner crust: deformed nuclei, pasta phase
- Outer core: nuclear matter

< A >

 Inner core: hyperons? quark matter? π or K condensates?
 ...?

(*) *) *) *)

Let's discuss only one possible scenario: hyperons

If chemical potential large enough ($\rho\sim2-3\rho_0),$ heavier particles form, i.e. A, $\Sigma,$...

For example: it might be energetically convenient to change a neutron(ddu) into a $\Lambda(uds).$

3

イロン 不同 とくほう イヨン

Hypernuclei

In order to infer the hyperon-nucleon interactions, hypernuclei can be created in experiments!

(ロ) (部) (E) (E) (E)

Nuclei and hypernuclei

Few thousands of binding energies for normal nuclei are known. Only few tens for hypernuclei.

17 / 30

Hypernuclei and hypermatter:

$$H = H_N + \frac{\hbar^2}{2m_\Lambda} \sum_{i=1}^A \nabla_i^2 + \sum_{i < j} v_{ij}^{\Lambda N} + \sum_{i < j < k} V_{ijk}^{\Lambda NN}$$

 $\Lambda\text{-binding}$ energy calculated as the difference between the system with and without $\Lambda.$

э

Λ hypernuclei

 $v^{\Lambda N}$ and $V^{\Lambda NN}(I)$ are phenomenological (Usmani).

Lonardoni, Pederiva, Gandolfi, PRC (2013) and PRC (2014).

 $V^{\Lambda NN}$ (II) is a new form where the parameters have been fine tuned. As expected, the role of ΛNN is crucial for saturation. Neutrons and Λ particles:

$$\rho = \rho_n + \rho_\Lambda, \qquad \qquad x = \frac{\rho_\Lambda}{\rho}$$

$$E_{\text{HNM}}(\rho, x) = \left[E_{\text{PNM}}((1-x)\rho) + m_n \right] (1-x) + \left[E_{\text{PAM}}(x\rho) + m_\Lambda \right] x + f(\rho, x)$$
where E_{PAM} is the non-interacting energy (no $v_{\Lambda\Lambda}$ interaction),

$$E_{PNM}(\rho) = a \left(\frac{\rho}{\rho_0}\right)^{lpha} + b \left(\frac{\rho}{\rho_0}\right)^{eta}$$

and

$$f(\rho, x) = c_1 \frac{x(1-x)\rho}{\rho_0} + c_2 \frac{x(1-x)^2 \rho^2}{\rho_0^2}$$

・ロト ・回ト ・ヨト ・ヨト

2

Λ -neutron matter

EOS obtained by solving for $\mu_{\Lambda}(\rho, x) = \mu_n(\rho, x)$

Lonardoni, Lovato, Pederiva, Gandolfi, PRL (2015)

No hyperons up to $\rho = 0.5 \text{ fm}^{-3}$ using ΛNN (II)!!!

э

Λ-neutron matter

Lonardoni, Lovato, Pederiva, Gandolfi, PRL (2015)

Drastic role played by ΛNN . Calculations can be compatible with neutron star observations.

Note: no $v_{\Lambda\Lambda}$, no protons, and no other hyperons included

э

< 17 >

- \sim 4500 NN scattering data available, \sim 30 ΛN
- few thousands of binding energies for nuclei known. Only few tens for hypernuclei.

- \sim 4500 NN scattering data available, \sim 30 ΛN
- few thousands of binding energies for nuclei known. Only few tens for hypernuclei.

э

- \bullet \sim 4500 NN scattering data available, \sim 30 ΛN
- few thousands of binding energies for nuclei known. Only few tens for hypernuclei.

- 4 同 6 - 4 三 6 - 4 三 6

- \bullet \sim 4500 NN scattering data available, \sim 30 ΛN
- few thousands of binding energies for nuclei known. Only few tens for hypernuclei.

- 4 同 6 - 4 三 6 - 4 三 6

- \bullet \sim 4500 NN scattering data available, \sim 30 ΛN
- few thousands of binding energies for nuclei known. Only few tens for hypernuclei.

- 4 同 2 4 日 2 4 日 2

Hyperons

Future, more AN experiments and/or Lattice QCD. Example: phase-shifts calculated with Lattice QCD.

Beane et al., Nuclear Physics A794, 62 (2007)

Hyperons

Future, more ΛN experiments and/or Lattice QCD. Example: attempt to extract the potential with Lattice QCD:

HAL QCD collaboration.

() <) <)
 () <)
 () <)
</p>

Stay tuned...

Remember, hyperons in dense matter is only **one possible** scenario. Very active field...

- Neutron star structure from the EOS
- Maximum mass and radii
- Hyperons and dense matter

- Neutron star structure from the EOS
- Maximum mass and radii
- Hyperons and dense matter

- Neutron star structure from the EOS
- Maximum mass and radii
- Hyperons and dense matter

- Neutron star structure from the EOS
- Maximum mass and radii
- Hyperons and dense matter

28 / 30

The last but very important lesson.

э

★ 문 ► ★ 문 ►

A >

The last but very important lesson.

Always acknowledge the funding agencies!!!

www.computingnuclei.org

