Nuclear structure III: Nuclear and neutron matter

Stefano Gandolfi

Los Alamos National Laboratory (LANL)

National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Physics of nuclei:

- **How do nucleons interact?**
- How are nuclei formed? How can their properties be so different for different A?
- What's the nature of closed shell numbers, and what's their evolution for neutron rich nuclei?
- What is the equation of state of dense matter?
- Can we describe simultaneously 2, 3, and many-body nuclei?

御き メモメ メモメ

Uniform nuclear and neutron matter

What is **nuclear** matter? Easy, an infinite system of nucleons!

- Infinite systems
- Symmetric nuclear matter: equal protons and neutrons
- Pure neutron matter: only neutrons
- W/o Coulomb: homogeneous
- **•** Nuclear matter saturates (heavy nuclei, "bulk")
- Neutron matter positive pressure
- Properties of infinite matter important to constrain energy density functionals

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A$

Low-density neutron matter and Cold atoms

"Low-density" means $\rho \ll \rho_0$

A + + 3 + + 3 +

- \bullet T fraction of $T_F \rightarrow T \sim 0$
- Experimentally tunable interaction
- Crossover from weakly interacting Fermions (paired) to weakly repulsive Bosons (molecules)

メタメ メミメ メミメ

 -111

- \bullet T fraction of $T_F \rightarrow T \sim 0$
- Experimentally tunable interaction
- **Crossover from weakly interacting Fermions (paired) to weakly** repulsive Bosons (molecules)

メタメメ ミメメ ミメ

- T fraction of $T_F \rightarrow T \sim 0$
- Experimentally tunable interaction
- **Crossover from weakly interacting Fermions (paired) to weakly** repulsive Bosons (molecules)

メタメメ ミメメ ミメ

-
- T fraction of $T_F \rightarrow T \sim 0$
- Experimentally tunable interaction
- **Crossover from weakly interacting Fermions (paired) to weakly** repulsive Bosons (molecules)

メタメメ ミメメ ミメ

- T fraction of $T_F \rightarrow T \sim 0$
- **•** Experimentally tunable interaction
- Crossover from weakly interacting Fermions (paired) to weakly repulsive Bosons (molecules)

 \overline{A} \overline{B} \rightarrow \overline{A} \overline{B} \rightarrow \overline{A} \overline{B} \rightarrow

Two-body system with attractive interaction:

活

メ御 ドメ きょくきょう

Very Low Density Neutron Matter: cold atoms

Low density neutron matter \rightarrow unitary limit:

$$
r_{\text{eff}} \ll r_0 \ll |a| \,, \quad r_{\text{eff}} = 0 \,, \, |a| = \infty
$$

Only one scale: $\rightarrow E = \xi E_{FG}$

• NN scattering length is large and negative, $a = -18.5$ fm
• NN effective range is small, $r_{\text{eff}} = 2.7$ fm **Low Density Neutron Matter: cold atoms

density neutron matter** \rightarrow **unitary limit:
** $r_{\text{eff}} \ll r_0 \ll |a|, \quad r_{\text{eff}} = 0, |a| = \infty$ **

y one scale:** $\rightarrow E = \xi E_{\text{FG}}$ **

NN scattering length is large and negative,** $a = -18.5$ **fm

NN eff**

メ御 メメ きょうぼきょう

Very Low Density Neutron Matter: cold atoms **Low Density Neutron Matter: cold atoms**

density neutron matter \rightarrow unitary limit:
 $r_{\text{eff}} \ll r_0 \ll |a|$, $r_{\text{eff}} = 0$, $|a| = \infty$

y one scale: $\rightarrow E = \xi E_{\text{FG}}$

neutron matter and cold atoms are so similar?

NN scatterin

Low density neutron matter \rightarrow unitary limit:

$$
r_{\text{eff}} \ll r_0 \ll |a| \,, \quad r_{\text{eff}} = 0 \,, \, |a| = \infty
$$

Only one scale: $\rightarrow E = \xi E_{FG}$

Why neutron matter and cold atoms are so similar?

- NN scattering length is large and negative, $a = -18.5$ fm
• NN effective range is small, $r_{\text{eff}} = 2.7$ fm
-

メ御き メミメ メミメー

Very Low Density Neutron Matter: cold atoms Low Density Neutron Matter: cold atoms

density neutron matter → unitary limit:
 $r_{\text{eff}} \ll r_0 \ll |a|$, $r_{\text{eff}} = 0$, $|a| = \infty$

y one scale: → $E = \xi E_{\text{FG}}$

neutron matter and cold atoms are so similar?

NN scattering le

Low density neutron matter \rightarrow unitary limit:

$$
r_{\text{eff}} \ll r_0 \ll |a| \,, \quad r_{\text{eff}} = 0 \,, \, |a| = \infty
$$

Only one scale: $\rightarrow E = \xi E_{FG}$

Why neutron matter and cold atoms are so similar?

- NN scattering length is large and negative, $a = -18.5$ fm
• NN effective range is small, $r_{\text{eff}} = 2.7$ fm
-

 $\left\{ \left(\left| \mathbf{P} \right| \right) \in \mathbb{R} \right\} \times \left\{ \left| \mathbf{P} \right| \right\} \times \left\{ \left| \mathbf{P} \right| \right\}$

Very Low Density Neutron Matter: cold atoms

Low density neutron matter \rightarrow unitary limit:

$$
r_{\text{eff}} \ll r_0 \ll |a| \,, \quad r_{\text{eff}} = 0 \,, \, |a| = \infty
$$

Only one scale: $\rightarrow E = \xi E_{FG}$

Why neutron matter and cold atoms are so similar?

- NN scattering length is large and negative, $a = -18.5$ fm
- NN effective range is small, $r_{\text{eff}} = 2.7$ fm

Unitary Fermi gas

Exact calculation of ξ using AFMC:

 $\xi = 0.372(5)$ Carlson, Gandolfi, Schmidt, Zhang, PRA 84, 061602 (2011) $\xi = 0.376(5)$ Ku, Sommer, Cheuk, Zwierlein, Science 335, 563 (2012)

Validation of Quantum Monte Carlo calculations

重き

Fermi gas and neutron matter

Carlson, Gandolfi, Gezerlis, PTEP 01A209 (2012).

Ultracold atoms very useful for nuclear physics!

BCS (Bardeen-Cooper-Schrieffer) pairs: an arbitrarily small attraction between Fermions can cause a paired state of particles and the system has a lower energy than the normal gas.

 $\Box \Box \Box \rightarrow \Box \rightarrow \Box \rightarrow \Box$

BCS and Fermi superfluidity

BCS (Bardeen-Cooper-Schrieffer) pairs: an arbitrarily small attraction between Fermions can cause a paired state of particles and the system has a lower energy than the normal gas.

The (condensate) pairs may then form a superfluid:

The pairing gap is basically the energy needed to "break" a pair, and then excite the system to its normal energy.

 $\left\{ \left\vert \Theta\right\vert \right\}$, and the set of \mathbb{R} is

Pairing gap and neutron stars

The pairing gap is fundamental for the cooling of neutron stars.

Neutron star crust made of nuclei arranged on a lattice surrounded by a gas of neutrons.

Specific heat suppressed by superfluidity (similarly to the superconducting mechanism).

Cooling dependent to the pairing gap!

K 御 と K 君 と K 君 と …

Pairing gap and neutron stars

The pairing gap is fundamental for the cooling of neutron stars.

Neutron star crust made of nuclei arranged on a lattice surrounded by a gas of neutrons.

Specific heat suppressed by superfluidity (similarly to the superconducting mechanism).

Cooling dependent to the pairing gap!

Dilute neutron matter

The pairing gap is the energy cost to excite one particle from a BCS (collective) state.

Pairing gap of low–density neutron matter vs cold atoms:

Gezerlis, Carlson (2008)

Cold atoms results confirmed by experiments!

경계 세종계

Dense neutron matter

"Dense" means $\rho \sim (0.5$ −few times) ρ_0

目

(何) イミン イミン

Fermi gas $(1/2)$

Non interacting two-components Fermi gas (non-relativistic):

$$
\frac{E}{N}(k_F) = \frac{3}{5} \frac{\hbar^2}{2m} k_F^2 = E_{FG}(k_F),
$$

where $k_F = (3\pi^2 \rho)^{1/3}$.

 \equiv

メ 御 メ メ 君 メ メ 君 メー

Fermi gas $(1/2)$

Non interacting two-components Fermi gas (non-relativistic):

$$
\frac{E}{N}(k_F) = \frac{3}{5} \frac{\hbar^2}{2m} k_F^2 = E_{FG}(k_F) ,
$$

where $k_F = (3\pi^2 \rho)^{1/3}$. For a system made of neutrons and protons, define:

$$
\rho = \rho_n + \rho_p, \qquad \alpha = \frac{\rho_n - \rho_p}{\rho_n + \rho_p},
$$

Useful relations:

$$
\rho_p = \frac{1-\alpha}{2}\rho\,, \qquad \rho_n = \frac{1+\alpha}{2}\rho\,,
$$

目

メ都 メメミメメ ミメ

Fermi gas $(1/2)$

Non interacting two-components Fermi gas (non-relativistic):

$$
\frac{E}{N}(k_F) = \frac{3}{5} \frac{\hbar^2}{2m} k_F^2 = E_{FG}(k_F) ,
$$

where $k_F = (3\pi^2 \rho)^{1/3}$. For a system made of neutrons and protons, define:

$$
\rho = \rho_n + \rho_p, \qquad \alpha = \frac{\rho_n - \rho_p}{\rho_n + \rho_p},
$$

Useful relations:

$$
\rho_p = \frac{1-\alpha}{2}\rho\,, \qquad \rho_n = \frac{1+\alpha}{2}\rho\,,
$$

The nuclear matter energy is given by:

$$
\frac{E}{A}(\rho, x) = \frac{N}{A} \frac{E}{N} \left(k_F^{(n)} \right) + \frac{Z}{A} \frac{E}{Z} \left(k_F^{(p)} \right) = \frac{3}{5} \frac{\hbar^2}{2m} k_F^2 \frac{1}{2} \left[(1 + \alpha)^{5/3} + (1 - \alpha)^{5/3} \right] = f(\alpha) E_{FG} (k_F).
$$

メ御 ドメ きょくきょう

Fermi gas (2/2)

For small asymmetries, $\alpha \approx 0$, the function $f(\alpha)$ can be expanded

$$
f(\alpha) = 1 + \frac{5}{9}\alpha^2 + \frac{5}{243}\alpha^4 + \dots,
$$

And thus the equation of state is given by:

$$
\frac{E}{A}(\rho,x)=\frac{3}{5}E_{FG}(\rho)+\frac{5}{9}E_{FG}(\rho)\alpha^2+\cdots=E_{SNM}+\alpha^2S(\rho)+\alpha^4S_4(\rho)+\ldots,
$$

where E_{SNM} is the energy of symmetric nuclear matter $(\alpha = 0)$ and $S(\rho)$ is the symmetry energy given by

$$
S(\rho) = \frac{1}{2} \frac{\partial^2}{\partial \alpha^2} \left[E(\rho, x) \right]_{\alpha=0} \simeq E_{\text{PNM}}(\rho) - E_{\text{SNM}}(\rho) \,,
$$

and E_{PNM} is the energy of pure neutron matter $(\alpha = 1)$.

イロト イ押 トイヨ トイヨ トー

Symmetry energy

Around density ρ_0 nuclear matter saturates, thus

$$
\frac{\partial E_{SNM}(\rho)}{\partial \rho} = 0\big|_{\rho = \rho_0}
$$

and we can expand as

$$
E_{SNM} = E_0 + \alpha \left(\frac{\rho - \rho_0}{\rho_0}\right)^2 + \beta \left(\frac{\rho - \rho_0}{\rho_0}\right)^3 + \dots,
$$

Pure neutron matter instead does not saturate, thus also linear power in ρ is fine.

目

K 御 と K 君 と K 君 と …

Symmetry energy

Around density ρ_0 nuclear matter saturates, thus

$$
\frac{\partial E_{SNM}(\rho)}{\partial \rho} = 0\big|_{\rho = \rho_0}
$$

and we can expand as

$$
E_{SNM} = E_0 + \alpha \left(\frac{\rho - \rho_0}{\rho_0}\right)^2 + \beta \left(\frac{\rho - \rho_0}{\rho_0}\right)^3 + \dots,
$$

Pure neutron matter instead does not saturate, thus also linear power in ρ is fine.

Then, around ρ_0 we can expand:

$$
E_{sym} = S_0 + \frac{L}{3} \frac{\rho - \rho_0}{\rho_0} + \frac{K_{sym}}{18} \left(\frac{\rho - \rho_0}{\rho_0} \right)^2 + \dots,
$$

where L is the slope of the symmetry energy, and K_{sym} is the symmetry compressibility.

K ロ > K @ > K 경 > K 경 > 시 경

Why do we care?

- EOS of neutron matter gives the symmetry energy and its slope.
- Assume that NN is very good fit scattering data with very high precision.

Three-neutron force $(T = 3/2)$ very weak in light nuclei, while $T = 1/2$ is the dominant part. No direct $T = 3/2$ experiments.

K 御 と K 君 と K 君 と

Why do we care?

- EOS of neutron matter gives the symmetry energy and its slope.
- Assume that NN is very good fit scattering data with very high precision.

Three-neutron force ($T = 3/2$) very weak in light nuclei, while

 $T = 1/2$ is the dominant part. No direct $T = 3/2$ experiments.

メ御き メミメ メミメ

Why do we care?

- EOS of neutron matter gives the symmetry energy and its slope.
- Assume that NN is very good fit scattering data with very high precision.

Three-neutron force $(T = 3/2)$ very weak in light nuclei, while $T = 1/2$ is the dominant part. No direct $T = 3/2$ experiments.

K 御 と K 君 と K 君 と …

Why do we care?

- EOS of neutron matter gives the symmetry energy and its slope.
- Assume that NN is very good fit scattering data with very high precision.

Three-neutron force $(T = 3/2)$ very weak in light nuclei, while $T = 1/2$ is the dominant part. No direct $T = 3/2$ experiments.

Pure neutron systems are the probe!

メ御き メミメ メミメー

Why do we care?

- EOS of neutron matter gives the symmetry energy and its slope.
- Assume that NN is very good fit scattering data with very high precision.

Three-neutron force $(T = 3/2)$ very weak in light nuclei, while $T = 1/2$ is the dominant part. No direct $T = 3/2$ experiments.

Pure neutron systems are the probe!

Why to study symmetry energy?

メ御 メメ きょうぼきょう

Why do we care?

- EOS of neutron matter gives the symmetry energy and its slope.
- Assume that NN is very good fit scattering data with very high precision.

Three-neutron force ($T = 3/2$) very weak in light nuclei, while $T = 1/2$ is the dominant part. No direct $T = 3/2$ experiments.

Pure neutron systems are the probe!

Why to study symmetry energy?

Neutron matter at nuclear densities

At nuclear densities neutron matter cannot be modeled as in the dilute regime. Nucleon-nucleon (and three-nucleon) interaction become very important.

目

(何) イミン イミン

Neutron matter at nuclear densities

At nuclear densities neutron matter cannot be modeled as in the dilute regime. Nucleon-nucleon (and three-nucleon) interaction become very important.

Let's start from Hamiltonians used for nuclei:

Carlson, et al., RMP (2015)

Scattering data and neutron matter

How much can we trust the nucleon-nucleon interactions?

In a scattering event with energy E_{lab} two nucleons have

$$
k \approx \sqrt{E_{lab} m/2}, \qquad \rightarrow k_F
$$

that correspond to

$$
k_F \rightarrow \rho \approx \frac{(E_{lab} m/2)^{3/2}}{2\pi^2}.
$$

 E_{lab} =150 MeV corresponds to about 0.12 fm⁻³. $E_{lab} = 350$ MeV to 0.44 fm⁻³.

Argonne potentials useful to study dense matter above $\rho_0{=}0.16\;{\rm fm}^{-3},$ other (soft) interactions not clear

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$

Assumption from experiments:

$$
E_{SNM}(\rho_0) = -16MeV
$$
, $\rho_0 = 0.16fm^{-3}$, $E_{sym} = E_{PNM}(\rho_0) + 16$

At ρ_0 we access E_{sym} by studying PNM

目

メ都 メメミメメ ミメ

 -17.5

Equation of state of neutron matter using the $AV8' + UIX$ Hamiltonian.

Incidentally these can be considered as "extremes" with respect to the measured E_{sym} .

Three-neutron interaction uncertainty:

 \Rightarrow Ε

- \bullet Experimental: E_{sym}
- Theoretical: form of three-neutron interaction not totally understood

G.

メ都 メメミメメ ミメ

- \bullet Experimental: E_{sym}
- Theoretical: form of three-neutron interaction not totally understood

 \equiv

メ御 メメミメメ ミメー

- \bullet Experimental: E_{sym}
- Theoretical: form of three-neutron interaction not totally understood

 \Rightarrow

メ都 メメミメメ ミメ

- \bullet Experimental: E_{sym}
- Theoretical: form of three-neutron interaction not totally understood

Which one dominates?

4 D F

メタメメ きょくきょうき

Neutron matter

Equation of state of neutron matter using Argonne forces:

Symmetry energy

Many experimental efforts to measure E_{sym} (or S_0) and its slope L:

Neutron matter and symmetry energy

From the EOS, we can fit the symmetry energy around ρ_0 using

$$
\mathcal{E}_{\mathsf{sym}}(\rho)=\mathcal{E}_{\mathsf{sym}}+\frac{\mathcal{L}}{3}\frac{\rho-0.16}{0.16}+\cdots
$$

Note: $AV8' + UIX$ and (almost) $AV8'$ are stiff enough to support observed neutron stars, but AV8'+IL7 too soft. \rightarrow How to reconcile with nuclei???

Neutron matter at N2LO

EOS of pure neutron matter at N2LO, R_0 =1.0 fm.

Lynn, et al., PRL (2016).

Note: the above (but not all) chiral Hamiltonian able to describe $A=3,4,5$ nuclei and neutron matter reasonably. $\leftarrow \Xi$

E

- Low-density neutron matter and cold atoms
- Superfluidity
- Dense matter: free Fermi gas
- Dense matter with interaction

ヨメ メヨメ

- Low-density neutron matter and cold atoms
- Superfluidity
- Dense matter: free Fermi gas
- Dense matter with interaction

- Low-density neutron matter and cold atoms
- Superfluidity
- Dense matter: free Fermi gas
- Dense matter with interaction

- Low-density neutron matter and cold atoms
- Superfluidity
- Dense matter: free Fermi gas
- Dense matter with interaction

- Low-density neutron matter and cold atoms
- Superfluidity
- Dense matter: free Fermi gas
- Dense matter with interaction

- Low-density neutron matter and cold atoms
- Superfluidity
- Dense matter: free Fermi gas
- Dense matter with interaction

End for today...