

Lattice QCD for hadron and nuclear physics: scattering and many-particle systems

Sinéad M. Ryan Trinity College Dublin

National Nuclear Physics Summer School, MIT July 2016

P_LA_N

- A look at the spectrum of single-particle states
- **•** Resonances
- Two particles in a box
- Accessing resonance information from finite volume calculations
- Toy models
- Recent simulations
- Spectrosopy at finite temperature
- **•** Summary

The spectrum of light states

Using the technology we have discussed, the spectra of mesons and baryons can be determined precisely.

Is this everything?

Resonances and scattering states

- We have assumed that all particles in the spectrum are stable
- Many (the majority) are not.
- A resonance is a state that forms eg when colliding two particles and then decays quickly to scattering states.
- \bullet They respect conservation laws: if isospin of the colliding particles is 3/2, resonance must have isospin $3/2$ (Δ resonance)
- Usually indicated by a sharp peak in a cross section as a function of c.o.m. energy of the collision.
- Can lattice qcd distinguish resonances and scattering states?

Resonances in e+e[−] → hadrons

• Note the more or less sharp resonances on a comparably flat "continuum", coming from $e^+e^- \rightarrow q\bar{q}$

(We will discuss this in more detail!)

• They are (apart from the Z) all related to $q\bar{q}$ -bound states.

Zoom into J/Ψ

• Note: Here width around 3 MeV completely determined by detector $(\Gamma_{J/\Psi} = 87)$ keV)

イロト イ母 トイミト イミト

Ξ

Maiani-Testa no-go theorem

- Importance sampling Monte-carlo simulations rely on a path integral with positive definite probability measure: Euclidean space
- Maiani-Testa: scattering matrix (S-matrix) elements cannot be extracted from infinite-volume Euclidean-space correlation functions (except at threshold)

Michael 1989 and Maiani, Testa (1990)

Maiani-Testa (2)

- **Q** Can understand this since:
	- Minkowski space: S-matrix elements complex functions above kinematic thresholds
	- Euclidean space: S-matrix elements are real for all kinematics phase information lost
- Lattice simulations with dynamical fermions admit strong decays eg for light-enough up and down dynamical quarks ρ **→** ππ

Maiani-Testa (3)

- Can the lattice get around the no-go theorem to extract the masses and widths of such unstable particles?
- Yes use the finite volume.
- Computations done in a periodic box
	- **•** momenta quantised
	- discrete energy spectrum of stationary states **→** single hadron, 2 hadron ...
	- scattering phase shifts → resonance masses, widths deduced from finite-box spectrum
		- \bullet B. DeWitt, PR 103, (1956) sphere
		- M. Lüscher, NPB (1991) cube
	- Two-particle states and resonances identified by examining the behaviour of energies in finite volume

For elastic two-body resonances (Lüscher): ^M1M² **[→]** ^R **[→]** ^M1M²

- **−→** Volume dependence of energy spectrum
- **→→** Phase shift in infinite volume
- → Mass and width of resonance parameterising the phase shift e.g. with Breit Wigner.

Note: This is a rapidly developing field. I will add some refs for recent work or see Lattice Conf talks.

PARTICLES IN A BOX

- \bullet Spatial lattice of extent L with periodic boundary conditions
- Allowed momenta are quantized: $p = \frac{2\pi}{l}$ $\frac{2\pi}{L}(n_x, n_y, n_z)$ with $n_i \in \{0, 1, 2, \dots L-1\}$
- **Energy spectrum is a set of discrete** levels, classified by p : Allowed energies of a particle of mass ^m

$$
E = \sqrt{m^2 + \left(\frac{2\pi}{L}\right)^2 N^2}
$$
 with $N^2 = n_x^2 + n_y^2 + n_z^2$

- Can make states with zero total momentum from pairs of hadrons with momenta ^p, **[−]**p.
- "Density of states" increases with energy since there are more ways to make a particular value of N^2 e.g. {3, 0, 0} and {2, 2, 1} $\rightarrow N^2 = 9$

Avoided level crossings

- Consider a toy model with two states (a resonance and a two-particle decay mode) in a box of side-length ^L
- Write a mixing hamiltonian:

$$
H = \left(\begin{array}{cc} m & g \\ g & \frac{4\pi}{L} \end{array}\right)
$$

Now the energy eigenvalues of this hamiltonian are given by

$$
E_{\pm} = \frac{(m + \frac{4\pi}{L}) \pm \sqrt{(m - \frac{4\pi}{L})^2 + 4g^2}}{2}
$$

Avoided level crossings

Avoided level crossings

- **Ground-state** smoothly changes from resonance to two-particle state
- Need a large box. This example, levels cross at mL ⁼ ⁴^π **[≈]** ¹².⁶
- **Example:** $m = 1$ GeV state, decaying to two massless pions avoided level crossing is at $L = 2.5$ fm.
- **If the decay product pions have** $m_{\overline{n}} = 300$ **MeV, this increases to** $L = 3.1$ **fm**

Lüscher's method

 \bullet Relates the spectrum in a finite box to the scattering phase shift (and so resonance properties)

Lüscher's formula

det \int cot δ(E_n^* \int_{n}^{*} **)** + cot $\phi(E_n, \vec{P}, L)$ = 0

and $\cot \phi$ a known function (containing a generalised zeta function).

The idea dates from the quenched era. To use it in a dynamical simulation need energy levels at extraordinary precision. This is why it has taken a while

An alternative approach called the potential method by HALQCD is also in use [PRL99 (2007), 022001] - less robust, certainly less widely used.

Lüscher's method

 \bullet Z_{00} is a generalised Zeta function:

$$
Z_{js}(1, q^2) = \sum_{n \in \mathbb{Z}^3} \frac{r^j Y_{js}(\theta, \phi)}{(n^2 - q^2)^s}
$$

[Commun.Math.Phys.105:153-188,1986.]

 \bullet With the phase shift, and for a well-defined resonance, can fit a Breit-Wigner to extract the resonance width and mass.

$$
\delta(p) \approx \tan^{-1} \left(\frac{4p^2 + 4m_{\pi}^2 - m_{\sigma}^2}{m_{\sigma} \Gamma \sigma} \right)
$$

Lüscher (3): considering ρ **→** ππ

For non-interacting pions, the energy levels of a 2 pion system in a periodic box of length ^L are

$$
E = 2\sqrt{m_{\pi}^2 + p^2} \ p = 2\pi |\vec{n}|/L
$$

and \vec{n} has components n_i **∈** N.

 \bullet In the interacting case the energy levels are shifted

$$
E=2\sqrt{m_{\pi}^2+p^2}\;\;p=(2\pi/L)q
$$

where q is no longer constrained to orginate from a quantised momentum mode.

- In the presence of the interaction, energy eigenvalues deviate from the noninteracting case
- These deviations contain the information on the underlying strong interaction yielding resonance information via Luscher formulism.

Schrödinger equation

Exercise: find the phase shift for a 1-d potential

```
V(x) = V_0 \delta(x - a) + V_0 \delta(x + a)
```
Now compute the spectrum in a finite box and use Lüscher's method to compare the two

Test: O(4) Sigma model

M.Peardon and P. Giudice Spectrum of $O(4)$ model in broken phase

Phase shift inferred from Lüscher's method

ρ **→** ππ

- **Start with an "easy" system,** $I = 2\pi\pi$ **and test methods there. Interaction not strong** enough to form a resonance, but is weak and repulsive.
- In the real world want to study $rho \rightarrow \pi \pi$ in isospin $I = 1$
- This involves disconnected diagrams which is already a complication although in principle doable.
- \bullet $I = 1$ case is now studied (distillation has helped a lot here)

$I=2 \pi \pi$ scattering

- \bullet Resolve shifts in masses away from non-interacting values
- Orange boxes: possible $\pi \pi^*$ scattering states
- Dashed lines: non-interacting pion pairs

$I=2 \pi \pi$ scattering - not physical pions

• Non-resonant scattering in S-wave and D-waves.

TOWARDS PHYSICAL PIONS IN $I=2 \pi \pi$.

NPLQCD, 1107.5023. Combines chiral perturbation theory and lattice results at $mπ$ ~ 396MeV to predict phase shift at the physical pion mass.

 $\pi\pi$ in I=1

THE INFLASTIC THRESHOLD

- Lüscher's method is based on elastic scattering.
- **•** Since $m_{\overline{n}}$ is small, most resonances are above this threshold
- It will be crucial to ensure we have a comprehensive **basis of operators that create** multi-hadron states.
- Going beyond elastic. The method is generalised for: moving frames; non-identical particles; multiple two-particle channels, particles with spin, by many authors.

 $det [t^{-1}(E) + i\rho(E) - M(E, L)] = 0$

relates the scattering t matrix to the discrete spectrum of states in finite volume (coupled channels).

- The precision and robustness of some numerical implementations is now very impressive. [See e.g. talks at Lattice 2015 $& 2016$]
- First coupled-channel resonance in a lattice calculation

πK **→** ηK by D. Wilson et al 1406.4158 and 1507.02599

Recent (and very recent) results

More coupled channels!

Is a_0 a $q\bar{q}$ state or dominated by a $K\bar{K}$ molecular configuration?

HSC, Wilson et al 1602.05122

- **•** Phase shifts, inelasticity and amplitudes (for $m_\pi \sim 400$ MeV)
- **•** Find an S-wave resonance in a two-coupled channel region πn , $K\bar{K}$, includes limited 3-channel scattering - (π η, $K\bar{K}$, π η'). Resonance pole has large coupling to $K\bar{K}$.

H-DIBARYON

- \bullet A bound 6-quark state (udsuds) first proposed by Jaffe (1977) in MIT bag-model at 81MeV below ΛΛ threshold.
- Lattice calculations [NPLQCD, HALQCD] find H-dibaryon bound but at quark masses larger than physical pion.
- **Extracting resonance parameters from ΛΛ**
- A linear chiral extrapolation does not discriminate between bound/unbound at the physical pion mass. Does suggest a state in I=0, J=0, s=-2 $(A \wedge)$ that is just bound/unbound.

More work to be done for good understanding

X(3872) - a first look

Prelovsek & Leskovec 1307.5172

ground state: $\chi_{c1}(1P)$ $D\overline{D}$ ^{*} scattering mx: pole just below thr. Threshold ∼ mu_d and m_c discretisation?

Padmanath, Lang, Prelovsek 1503.03257

Also results from Lee et al 1411.1389 Within 1MeV of $D^0\bar{D}^{0*}$, 8MeV of D^+D^* thresholds: isospin breaking effects important? An "exotic" hadron i.e. does not fit in the quark model picture.

There are a number of exploratory calculations on the lattice.

Challenges:

- The Z_c^+ (and most of the XYZ states) lies above several thresholds and so decay to several two-meson final states
- requires a coupled-channel analysis for a rigorous treatment
- \bullet on a lattice the number of relevant coupled-channels is large for high energies.

State of the art in coupled-channel analysis:

- Lüscher: $K\pi$, $K\eta$ [HSC 2014,2015]
- \bullet HALQCD: Z_c [preliminary results]

 Z_{c}^{+} c FIRST LOOK ON THE LATTICE

Prelovsek, Lang, Leskovec, Mohler: 1405.7615

- 13 expected 2-meson e'states found (black)
- no additional state below 4.2GeV
- no Z_c^+ candidate below 4.2GeV

Similar conclusion from Lee et al [1411.1389] and Chen et al [1403.1318]

Why no eigenstate for Zc? Is Z_c^+ a coupled channel effect? What can other groups say? Work needed!

Many other states being investigated

Tetraquarks:

- Double charm tetraquarks $(J^P = 1^+, I = 0)$ by HALQCD [PLB712 (2012)]
	- attractive potential, no bound tetraquark state
- Charm tetraquarks: variational method with DD^* , D^*D^* and tetraquark operators finds no candidate.

Y(4140)

. . .

- Ozaki and Sasaki [1211.5512] no resonant Y(4140) structure found
- Padmanath, Lang, Prelovsek [1503.03257] considered operators: $c\bar{c}$, (\bar{c} s)(\bar{s} c), (\bar{c} s), \bar{c} s \bar{s}][cs] in $J^P=1^+$. Expected 2-particle states found and χ_{c1} , $\chi(3872)$ not Y(4140).

See Prelovsek @ Charm2015 for more

Exploratory studies of scattering/many-body systems

Characterised by:

- New methods (developed/applied in last 5 years)
	- algorithmic: distillation allows access to all elements of propagators and construction of sophisticated basis of operators.
	- theoretical: spin-identification; construction of multi-hadron operators etc
- Generally high statistics, improved actions etc results can be very precise.
- Systematic errors not all controlled in exploratory studies: e.g. no continuum extrapolation, relatively heavy pions ...

A different frontier: finite temperature and density QCD

Spectroscopy at finite temperature

- We have heard about finite temp QCD.
- One avenue of investigations: States made from heavy quarks are expected to act as a probe of dynamics of the QGP
- There are interesting results coming from RHIC and CERN for the melting and suppresion of such states.
- Can lattice say anything? It is a challenge!
- (Without details here) the thermal correlator is

 $C(\tau) \sim \int_{0}^{\infty}$ $d\omega \rho(\omega, T) K(\omega, \tau, T)$, $(p = 0)$.

- $C(\tau)$ sampled discretely but ρ has values for continuous ω
- An ill-posed problem!
- Maximum entropy methods (MEM) can be used but can be unstable and model-dependent
- New ideas needed!

Effective masses at finite T

- Anisotropic lattices $\xi = 6$, $N_f = 2$, $a_s = 0.15$ fm
- Note P wave behaviour at $T > T_c$
- \bullet Appears to rule out pure exponential decay at high τ for P waves.

Results: maximum entropy analysis

- 1S survives to highest τ examined.
- \bullet excited states not discernable at $1.4 \leq T/T_c \leq 1.68$ ⇒ melting or suppression?

Finite density QCD

- Would like to explore in finite μ with lattice qcd
- $\bullet \mu \neq 0 \Rightarrow M$ not γ_5 hermitian.
- No longer have a (positive) probability weight for Monte Carlo simulations sign problem
- **There are "work-arounds" but no** solutions (yet!)

EXECUTIVE SUMMARY $\hat{\mathcal{C}}$ Outlook

- There is much that I did not cover in these lectures
- I chose to focus on methods, new and old, for the "basic" building blocks of spectroscopy
- ... and described their successful applications as well as some pitfalls
- Lattice hadron/nuclear physics is moving rapidly at the moment as new techniques emerge
- \bullet Many challenges remain e.g. no general framework for extracting scattering amplitudes involving more than two hadrons. Clever ideas needed!
- There will be lots more experimental data in the near future and to keep pace will be challenging

Thanks for listening and enjoy the rest of the school!