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LECTURE PLAN

@ Key ideas to enable current and future physics programmes

e Smearing - an (old) and good idea
e Distillation - for quark propagation
e Spin identification - as discussed earlier

@ Recent results



THE TRADITIONAL IDEA - POINT PROPAGATORS

Quark propagation from orgin to all sites on the lattice.

For better simulations of hadronic quantities look again at the building blocks: the quark
propagators
Point propagator pros

@ doesn’t require vast computing resources

C(t,x) = (Tr(ysM (x, 0)TysTaiy " (x, 0)rT))

Point propagator cons
@ restricts the accessible physics

e flavour singlets and condenstates impossible: quark loops need props w sources
everywhere in space

@ restricts the interpolating basis used
@ a new inversion needed for every operator that is not restricted to a single lattice point
@ entangles propagator calculation and operator construction

@ throws away information encoded in configurations



SOLUTIONS?

@ Improve the determination point props to access the physics of interest: smearing

@ Compute all elements of the quark propagator: all-to-all propagators. Problem It’s
expensive - needs an unrealistic number of inversions.

@ Work around: Use stochastic estimators (with variance reduction). [/ won't talk about
it here but see refs for details]

@ or Rethink the problem: combine smearing and propagation ie distillation

| am picking a few methods to focus on.
See references at the end of this lecture for full descriptions of these and other methods.

J




Smearing



SMEARING TECHNIQUES

Hadrons are extended objects (O(1)fm).
So far the propagator and interpolating fields (operators) are point sources

@ they can have small overlap with the state of interest: quantified by Z,: ({n|Op]0)).
e optimise the projection onto the state we want to study

@ Gauge-invariant smearing of quark fields:

V(X t)= ZF (X, ¥, U(t))V(y, t)

=

@ Gaussian smearing: F(%,y, U(t)) = (1+ksH)™ and H is the lattice realisation of the
covariant Laplacian in 3d

Variations on a theme: Jacobi, Wuppertal ...

More improvements to gauge noise by smearing the U fields in r:

APE, HYP, Stout




AN EXAMPLE

Examples of effective mass plots

e Quenched at about 550 MeV pions:
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e Reduce gauge noise by using APE, hypercubic or stout smearing on the links U that enter the smearing

function F(X, y, U(t)).
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SMEARING

@ Smeared field: § from ¢, the “raw” quark field in the path-integral:

§(r) =o[u(D)] (1) J

Extract the essential degrees-of-freedom.

Smearing should preserve symmetries of quarks.

Now form creation operator (e.g. a meson):

om(t) = B(OT§(1) J

I': operator in {s, 0, c} = {position,spin,colour}

Smearing: overlap (n|Opml0) is large for low-lying eigenstate |n)



CAN REDEFINING SMEARING HELP?

@ Computing quark propagation in configuration generation and observable
measurement is expensive.

@ Objective: extract as much information from correlation functions as possible.

Two problems:

@ Most correlators: signal-to-noise falls exponentially
© Making measurements can be costly:
e Variational bases
Exotic states using more sophisticated creation operators

°
o Isoscalar mesons
e Multi-hadron states

v

@ Good operators are smeared; helps with problem 1, can it help with problem 2?



GAUSSIAN SMEARING

@ To build an operator that projects effectively onto a low-lying hadronic state need to
use smearing

@ Instead of the creation operator being a direct function applied to the fields in the
lagrangian first smooth out the UV modes which contribute little to the IR dynamics
directly.

@ A popular gauge-covariant smearing algorithm — Gaussian smearing: Apply the
linear operator
O; = exp(0V?)
@ V2 is a lattice representation of the 3-dimensional gauge-covariant laplace operator

on the source time-slice

3
T A~
Viy = 65x,y - Z Ui(X)EXJrT,y + Ui (X_ [)5X_T/y
i=1

@ Correlation functions look like Tr ;M 'oym 'y ..



DiISTILLATION [0905.2160]

“distill: to extract the quintessence of” [OED]

@ Distillation: define smearing to be explicitly a very low-rank operator. Rank is
ND (K Ns x Ne).

Distillation operator

a(t) = V(1) V()

with V;C(t) a Np x (Ns x Nc) matrix

@ Example (used to date): o, the projection operator into Da, the space spanned
by the lowest eigenmodes of the 3-D laplacian

@ Projection operator, so idempotent: |:|2A =0,
(] IimND_’(NsXNc) DA =1
@ Eigenvectors of V2 not the only choice...

@ Using eigenmodes of the gauge-covariant laplacian preserves lattice symmetries.



Distillation

@ Distillation: a redefinition of smearing as explicitly a low-rank operator.
o Effect: project out eigenmodes that do not contribute to hadronic physics.

@ In the low-rank space M~ can be calculated exactly.

@ Consider an isovector meson two-point function with {s, o, ¢} for position, spin,
colour.
Cm(t1 = to) = {(@(t1)04 T O d(11) d(0)04, Tty O, (o))

@ Integrating over quark fields yields

Cm(ti—10) = (Trgs,0,c3 (B4 To O M (11, 10) 04 Te, O, M (20, 1))

@ Substituting the low-rank distillation operator o reduces this to a much smaller

trace:
Cm(t1—to) = (Tr{glp} [@(t1)T(t1, to)P(t0)T(t0, t1)]) A
° “’2,’2 and T,‘?,’Z are (Ng x Np) x (Ng x Np) matrices.
o =vOrve | (e )= VIOV OV |

The “perambulator”



GoOD NEWS: PRECISION SPECTROSCOPY (2)
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LIMITATION

@ Distillation does not give direct access to all modes of the Dirac operator, only those
low-modes relevant for spectroscopy

@ Cannot use the method to calculate eg the strangeness content of the nucleon.

(Nt ) D e T3, )Ts(¢, %)IN(0, D)

@ Use standard all to all instead.



BAD NEWS: THE BILL!

@ For constant resolution distillation space scales with Ns

@ The cost of a calculation scales with V2

The problem:

@ To maintain constant resolution, need Np o N

@ Budget:
Fermion solutions construct T | O(MN)
Operator constructions | construct ® | O(N?)
Meson contractions Tr[®ToT] O(N3)
Baryon contractions BtTTB O(NH)

v

@ Ok for reasonable lattices (eg with N = 163, Np = 64) but scaling this to a 323 volume
requires Np = 512. Numerically costly.

@ Distillation does not preclude stochastic estimation - use both for large v. [See refs
for more on stochastic distillation methods and other methods.]



Interpolating Operators



THE INTERPOLATING OPERATORS

@ We have spent some time looking at methods for quark propagation
@ What about the operators O = Ujq(%, ) qgW¥ig (%, £)?

@ The simplest objects are colour-singlet local fermion bilinears:

On =dysu, Op =dYiu, On = gabe (uaC}’sdb) ut,

Op = e (uaCY,,udb) u¢

or more correctly!

Op, = dysu, Ot, = dYiu, Og, = eabc(uaC‘stb) uf,
Oy = e (u“C‘Ynudb) u¢

Access to JPC =o=t, 0T+, 17—, 1+, 11, 1/2, 3/2



EXTENDED OPERATORS

@ We would like to access states with j > 1

@ Would like many more operators that all transform irreducibly under some irrep
enabling variational analysis.

@ Lattice operators are bilinears with path-ordered products between the quark and
anti-quark field; different offsets, connecting paths and spin contractions give
different projections into lattice irreps.

Meson operators examples

o—>—e

Oag = O4p = ol =
S ba()yp(x) T Wa(UiPe(x+1)  Ey ba()Uil)Ui(x +D¥g(x +T+])



EXTENDED BARYON OPERATORS

@ The same idea for baryons gives prototype extended operators

® @ I

single- singly- triply-
site displaced displaced

With thanks: 0810.1469

@ We can make arbitrarily complicated operators in this way

@ An early success was glueball calculations



GLUEBALLS

@ QCD nonAbelian = allows bound states of glue

@ Candidates observed experimentally: f,(1370), f(1500), fo(2220)

@ Glueballs can be calculated in lattice QCD

@ The interpolating fields are purely gluonic, built from Wilson loops
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GOOD OPERATORS

What makes a good operator?

An operator of definite momentum that transforms under a lattice irrep

°
°
@ An operator that has strong overlap with the (continuum) state you are interested in.
@ An operator is not noisy ie that produces an acceptable correlator

°

Note that smearing and distillation are rotationally symmetric operations and do not
change the quantum numbers.



@ But recall from earlier that subduction leads to

Lattice irrep, A Dimension  Continuum irreps, J

Al 1 0,4, ..
A 1 3,5, ..
E 2 2,4, ..
T 3 1,3, ...
T 4 2,3, ...
G 3 1/2,7/2, ...
G 3 5/2,7/2, ...
H 4 3/2,5/2, ...

@ So a correlator C(t) = (0|¢(1)$T(0)[0) contains in principle information about all
(continuum) spin states subduced in APC.



OPERATOR BASIS — DERIVATIVE CONSTRUCTION

@ A closer link to (or “memory” of) the continuum would be good

@ There are different approaches to optimise lattice operators. This is one.



OPERATOR BASIS — DERIVATIVE CONSTRUCTION

@ A closer link to (or “memory” of) the continuum would be good
@ There are different approaches to optimise lattice operators. This is one.

@ Start with continuum operators, built from n derivatives:

b = ll_l r(DilezDi3...D;n)lp

@ Construct irreps of SO(3), then subduce these representations to oy

@ Now replace the derivatives with lattice finite differences:

1
DY (x) = — (Ui +1) = Uf (=D (x=])

@ On a discrete lattice covariant derivative become finite displacements of quark fields
connected by links

arXiV:0707.4162



ExAMPLE: JP€ = 27" MESON CREATION OPERATOR

@ Trying to gain more information to discriminate spins. Consider continuum operator
that creates a 27+ meson:

_ 2
b=y (%‘Dj +¥iDi— 18y D) Y

@ Lattice: Substitute gauge-covariant lattice finite-difference Djq for D

@ A reducible representation:
o2 = {d1y, dp3, P31}

1 1
of = {E@n —d2), %(%1 +¢22—2¢33)}

@ Look for signature of continuum symmetry:

2z = (0|02 H(T2)) = (o]0 (A2 +(5))

up to rotation-breaking effects



THIS IDEA APPEARS TO WORK WELL

E.g. in charmonium - arXiv:1204.5425

Spin-3 identification

Spin-4 identification
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@ operators of definite J”° constructed in step 1 are ]

o 1 2 3
subduced into the relevant irrep A l1 0 0 o0 1
@ a subduced irrep carries a “memory” of continuum spin J A0 0 0 1 0
from which it was subdduced - it overlaps E o 0 1 0 1
predominantly with states of this . Lopo 1.0 11
T 0o 0 1 1 1

@ Using Z = (0|®|k), helps to identify continuum spins
@ For high spins, can look for agreement between irreps

@ Data below for 7,7~ irrep, colour-coding is Spin 1, Spin 3 and

Lol ]

726(4) 0 646(1) 0.6713(5) 0.676(1) 0.727(5) 0.753(2 0. 0.767(3)




Spectroscopy - selected results



SINGLE HADRON STATES: CHARMONIUM EXOTICS

Precision calculation of high spin () > 2) and exotic states is relatively new
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SINGLE-HADRON STATES: LIGHT EXOTICS

negative parity positive parity exotics
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SINGLE-HADRON STATES: BARYONS (@ 396 MEV
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HYBRIDS
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ENERGY SCALE FOR HYBRIDS
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THE NU

A. Walker-Loud @Lat2014

CLEON MASS - UNEXPECTED BEHAVIOUR!
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A ruler plot ie linear in quark mass

Taking this seriously then My(MeV) = alY + al mp = 800 + mn parameterises the
numerial results in the available range and agrees with the physical point!

But it predicts the wrong quark mass dependence at/near the chiral limit.



NUCLEON SIZE WITH PHYSICAL QUARK MASSES
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NUCLEON STRANGENESS - SNAPSHOT OF ACTIVITY

@ needs disconnected diagrams - distillation not suitable so other all-to-all methods

needed.
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A COMPLILATION - NUCLEON STRANGENESS

From Junnakar & Walker-Loud (PRD.87 (2013))

[29]ny=2+1
[22]ny =2
[24] ny =2
[25]n; =24+ 1+1
[26]ny=2+1
[36]ny =2+1
B7n=2+1
2+1

Excluded

Direct

[21]ny =2+1, SU(3)
[Bllny=2+1
[B2]ny=2+1

[83] ny =2+ 1, SU(3)
[84] ny =2+ 1, SU(3)
= [85] ny =2+ 1, SU(3)
—a— 0.053(19) present work

Feynman-Hellmann

A 0.043(11) lattice average (see text)

0.00 0.05 0.10

Their average: ms(N|[3s|N) = 48 + 10 % 15MeV and f; = 0.051% 0.011 % 0.076.



SUMMARY

@ New ideas are enabling rapid progress.
@ Lots of precision and pioneering calculations of hadronic and nuclear quantities.

@ Next - multi-hadron, many-body systems. A rapidly moving field!
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