Detector Techniques and RHIC

a passion for discovery

Transverse Momentum (Lorentz invariant)

KINEMATICS

Strange but very	common variables:	Useful relations:		
		γ	=	$\cosh y$
Transverse Energy:	$E_T = E\sin\theta$	$oldsymbol{eta}$	=	anh y
Transverse Mass.	$\sqrt{m^2 + m^2}$	E	=	$m_T \cosh y$
	$m_T = \sqrt{p_T^2 + m^2}$	$p_{oldsymbol{z}}$	=	$m_T \sinh y$

Lorentz invariant cross-section:

 $E \frac{d^3\sigma}{dp^3}$ always written but practically unusable

- THE PROBES WE WANT TO MEASURE ...

★ Baseline (majority of produced particles) ★ K[±], π[±], π⁰, p, p, e[±] ★ Strangeness

- → K⁰_σ, K*, φ, Λ, Ξ, Σ, Ω
- ★ Real and Virtual Photons
- $\stackrel{\blacktriangleright}{\rightarrow} \gamma \\ \stackrel{\blacktriangleright}{\rightarrow} \gamma * \rightarrow \mu^+ \mu^-, \gamma * \rightarrow e^+ e^-$

 \rightarrow J/ ψ , ψ' , χ_c , Υ , Υ' , Υ''

- ★ Heavy Flavor
 - ➡ D⁰, Ď*, D[±], B

$\stackrel{\bullet}{\star} \Lambda_c$

- And all that over all pτ ?
 Acceptance (ideal 4π) ?
- All centralities, multiplicities ?
- Recording every collision ?

- \star Jets \rightarrow high-p_T hadrons in cone
- **\star** Decay channels matters too: $\rho \rightarrow e^+e^-$ versus $\rho \rightarrow \pi^+\pi^-$

THE PERFECT DETECTOR ?

★Momentum p

- ➡ magnetic field × length: B×dl
- → high-pt \Rightarrow large B×dl \Rightarrow small p⊤ tracks curl up
- \rightarrow low-pt \Rightarrow small B×dl \Rightarrow high pT tracks care straight (pT res. lost)

★Particle ID

ightarrow γ , $e \Rightarrow$ Preshower, hadron blind, little material

ightarrow hadrons ightarrow PID through interaction with material

★Acceptance

 \rightarrow large acceptance \Rightarrow lots of data \Rightarrow slow

 \Rightarrow small acceptance \Rightarrow few data \Rightarrow fast

*****Energy

ightarrow γ , $e \Rightarrow$ E.M. Calorimeter

ightarrow hadrons ightarrow Hadronic Calorimeter

★Heavy flavor ID

ightarrow secondary vertices \Rightarrow high precision Si detectors = material

semileptonic decays (c, b \rightarrow e + X, B \rightarrow J/ ψ (\rightarrow e e) + X) \rightarrow hadron blind, little material

A TYPICAL HIGH ENERGY DETECTOR

Particle types:

- neutrinos (missing energy)
- muons µ ____
- hadrons π, K, p ☐ quarks, gluons → jets
- > electrons, photons, π^0
- charged particles.

Rough Classification

track detectors for charged particles

- "massless" detectors
 - gas detectors

solid state detectors

magnet coil (solenoid, field || beam axis)

Calorimeter for energy measurement

electromagnetic

high Z material (Pb-glas)

□ hadronic

□ heavy medium (Fe, Cu, U) + active material

Brookhaven Science Associates

□ absorber (mostly Fe) flux return yoke + active material

beam pipe

PARTICLE IDENTIFICATION - LONG LIFET

Why do I emphasize long lifetime? Because the detectors are fairly large, and the particle produced at the vertex has to survive until it reaches the detector!

Example:

hadron identification with momentum and time-of-flight measurement

y axis: inverse of the momentum x axis: time-of-flight

Examples: π^0 , ϕ , Λ , ...

Have to be reconstructed from their more stable decay products

Assume you want to measure the ϕ meson via its $\phi \rightarrow KK$ decay by measuring both kaons and reconstructing its invariant mass

But what if there are more than 2 kaons in the event? Or you take a pion for a kaon? Which two go together?

S = Total - Background Background could be like-sign pairs or pairs from different events

Different topologies

Note weak decaying particle (like Λ , Ω , K^{o}_{s}) decay cm away from the interaction vertex - cm are easy to deal with

What if ct ~ fm ?

Brookhaven Science Associates

PARTICLE IDENTIFICATION - VERY SHORT LIFETIME

This background problem can only be overcome by cutting on a key-feature: Secondary decay vertex

MAGNETIC FIELDS AT BHIC

One way is:
$$\frac{dp^{\mu}}{d\tau} = \frac{e}{c} u_{\nu} F^{\mu\nu} \rightarrow \frac{d\vec{p}}{dt} = \frac{e}{c} \vec{v} \times \vec{B} \rightarrow \frac{d}{ds} \left(\frac{d\vec{r}}{ds} \right) = \frac{e}{c} \frac{d\vec{r}}{ds} \times \frac{\vec{B}}{|\vec{p}|}$$

More useful: $p_T = 0.3 \cdot B \cdot R \; \frac{GeV/c}{T \cdot m}$

➡ 1 meter of 1 Tesla field deflects 1 GeV/c by ~17°

RHIC EXPERIMENTS IN A NUTSHELL

small experiment - 2 spectrometer arms tiny acceptance $\Delta \phi$, $\Delta \eta$, measures pt, has PID movable arms \Rightarrow large $\Delta \eta$ coverage

small experiment - "tabletop" (i) huge acceptance $\Delta \phi$, $\Delta \eta$, no pt info, no PID (ii) small acceptance \Rightarrow very low - low pt, moderate PID

large experiment - 2 central arms + 2 muon arms moderate acceptance central arms: $\Delta \phi = \pi$, $\Delta \eta = \pm 0.35$ leptons (muons in forward arms), photons, hadrons

large experiment acceptance central arms: $\Delta \phi = 2\pi$, $\Delta \eta = \pm 1 + forward$ hadrons, jets, leptons, photons

- THE TWO "SMALL" EXPERIMENTS AT BHIC

BRAHMS

2 "Conventional" Spectrometers Magnets, Tracking Chambers, TOF, RICH, ~40 Participants

 Inclusive Particle Production Over Large Rapidity Range

Brookhaven Science Associates

15

PHOBOS

"Table-top" 2 Arm Spectrometer Magnet, Si µ-Strips, Si Multiplicity Rings, TOF, ~80 Participants

• Multiplicity in 4π

NPP SS@MIT, July 2016

Particle Correlations

THE TWO "LARGE" DETECTORS AT RHIC

<u>STAR</u>

Solenoidal field Large-Ω Tracking: TPC's, Si-Vertex Tracking RICH, EM Cal, TOF ~420 Participants

✓ Measurements of Hadronic Observables

- using a Large Acceptance
- Event-by-Event Analyses of Hadrons and
- ✓ Jets, Forward physics, Leptons, Photons

PHENIX

Axial Field High Resolution & Rates 2 Central Arms, 2 Forward Arms TEC, RICH, EM Cal, Si, TOF, μ-ID ~450 Participants

- Leptons, Photons, and Hadrons in Selected Solid Angles
- Simultaneous Detection of Various Phase Transition Phenomena

Brookhaven Science Associates

ILICON DETECTORS IN A NUTSHELL

Basic motivation: charged particle position measurement

Use ionization signal left behind by charged particle passage

17

- Ionization produces electron-ion pairs, use an electric field to drift the electrons and ions to the oppositely charged electrodes.
- In a solid semiconductor, ionization produces electron-hole pairs. For Si need 3.6 eV to produce one e-h pair. In pure Si, e-h pairs quickly recombine \Rightarrow n-doped (e carriers/donors) and p-doped (holes are carriers) silicon \Rightarrow p/n junction creates potential that prevents migration of charge carriers

TYPES OF SILICON DETECTORS

➡ Strip devices

- High precision (< 5μ m) 1D coordinate measurement
- Large active area (up to 10cm x 10cm from 6" wafers)
- Single-sided devices
- 2nd coordinate possible (double-sided devices)
- Most widely used silicon detector in HEP

➡ Pixel devices

- True 2D measurement (20-400 μ m pixel size)
- Small areas but best for high track density environment

⇒ Pad devices ("big pixels or wide strips")

- Pre-shower and calorimeters
- Multiplicity detectors

- An experiment with something for everybody
- Muons
- Electrons
- Photons
- Hadrons
- Features
- High resolution
- High granularity
- High data taking rate
- Moderate acceptance

PHENIX (1999)

PHENIX COMPONENTS

Charged Particle Tracking:

Drift Chamber Pad Chamber Time Expansion Chamber/TRD Cathode Strip Chambers(Mu Tracking) Forward Muon Trigger Detector Si Vertex Tracking Detector- Barrel Si Vertex Endcap (mini-strips)

Particle ID:

Time of Flight Ring Imaging Cerenkov Counter TEC/TRD Muon ID (PDT's) Aerogel Cerenkov Counter Multi-Gap Resistive Plate Chamber ToF Hadron Blind Detector

Calorimetry:

Pb Scintillator Pb Glass Muon Piston Calorimeter

Event Characterization:

Beam-Beam Counter Zero Degree Calorimeter/Shower Max Detector Forward Calorimeter Reaction Plane Detector

CALORIMETER IN A NUTSHELL

Calorimetry = Energy measurement by total absorption, usually combined with spatial reconstruction.

Tracking in B field: $\delta p/p \propto p_T/L^2$ \Rightarrow resolution degrades with increasing energy (unless L \propto **√E)** also: works only for charged narticles hadronic calorimeter tracker_ Calorimetry: $\delta E/E \propto 1/J$ \Rightarrow for high energy Lead glass 0.1 detectors calorimeters are essential components electromagnetic calorimeter Naī **RHIC:** only EMcals 0 0'0.1 **Brookhaven Science Associates** NPP SS@MIT, July 2016 22

CALORIMETERS IN A NUTSHELL

★ EM Shower

- above 10 MeV (y, e)
- pair production: $\gamma \rightarrow e^+e^-$
- bremsstrahlung: e \rightarrow e γ
- characterized by radiation length Xo
- longitudinal:

```
\rightarrowdE/dt ~ t<sup>\alpha</sup> e<sup>-t</sup> where t = x/X<sub>0</sub>
```

⇒shower maximum

- transverse:

→Rм ~ Xo typical Rм = 1-2 cm

★ Resolution $\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus b \oplus \frac{c}{E}$

stochastic term constant term

TWO PHENIX CALORIMETERS

PbSc Calorimeter

Lead-scintillator sandwich (sampling) Wavelength-shifting fiber light transport Photomultiplier readout

PbGl Calorimeter

Lead-glas scintillator array re-used WA80/WA98 calorimeter Photomultiplier readout

PbSc: σ(E)/E ≈ 8%/√E **PbGI**: σ(E)/E ≈ 6%/√E

ELECTRON IDENTIFICATION

WHICH PARTICLE IS WHICH

An other example how to find the hidding electrons → HERMES@DESY Physics requirement: Need lepton hadron separation over wide momentum range

THE HERMES TRD

$l_{\text{light}} = (c n)\Delta t$ θ $l_{\text{part}} = Bc\Delta t$

CHERENKOV DETECTORS

Cherenkov radiation is emitted when a charged particle passes through a dielectric medium with velocity

 $\beta \ge \beta_{thr} = 1/n$ n: refractive index may emit light along a conical wave front.

$$\cos\theta_C = \frac{1}{n\beta}$$

Energy loss by Cherenkov radiation small compared to ionization ($\approx 0.1\%$). Cherenkov effect is a very weak light source \rightarrow need highly sensitive photodetectors.

Number of detected photo electrons: $N_{pe} = N_0 L \sin^2 \theta$ No: number of merit for a Cherenkov detector

medium	n	$\theta_{max} \; (deg.)$	$N_{ph} (eV^{-1} cm^{-1})$	
air*	1.000283	1.36	0.208	
isobutane*	1.00127	2.89	0.941	
water	1.33	41.2	160.8	
quartz	1.46	46.7	196.4	201

WHICH HADRON (Π , K, P) IS WHI

400

350

Hadrons

hadron/positron separation combining signals from: TRD, calorimeter, preshower

hadron separation

Dual radiator RICH for π , K, p

STAR

15 fully functioning detector systems

ily 2016

Brookhaven Science Associa **32**

STAR COMPONENTS

NPP SS@MIT, July 2016

NATIONAL LABORATORY E.C. Aschenauer

Peripheral Event

color code \Rightarrow energy loss

Mid-Central Event

Central Event

DRIFT CHAMBER IN A NUTSHELL

Multi Wire Proportional Chamber G.Charpak 1968 , nobel prize 1992

Typical parameters: L=5~8 mm, d=2mm, \varnothing_{wire} =20 μ m.

- Address of fired wire(s) give one dimensional information $\Rightarrow \sigma_x \sim d/J12$
- Improve using drift length time information: typical 100-200 μm
- Resolution limits: drift and diffusion effects driven by E × B effects

TIME PROJECTION CHAMBER (TPC)

Error of momentum measurement: $\frac{\sigma(p_T)}{m_T} \propto \frac{\sigma(x) \cdot p_T}{B \cdot L^2}$

⇒ L has to be large detector ⇒ has to be wide (small Rin, large Rout) Want large η coverage \rightarrow z dimension has to be large ⇒ detector has to be long

Cannot achieve this with drift chambers:

- thousands of wires
- long wires
- complex construction (dead zones)

Solution:

let the electrons drift over long distances
→ TPC: essentially a huge gas filled box
Think of a TPC as a 3D CCD camera

The time to reach the end of the TPC determines the distance drifted in the gas. A 3-D camera to measure particle positions.

TPC DETAILS

STAR TPC

- 140,000 electronics channels (pads)
- 512 time bins
- 140,000 × 512 = 72 million pixel
- With new electronics can run at 1000 Hz

Gating Grid:

 Designed to reduce charge injection into amplifiers

Slow ions left in volume:

- accumulate, create space charge
- space charge creates distortions

THE STAB TPC

Simulation and animation by Gene Van Buren, movie by Jeff Mitchell.

SIGRIES LENW MESI IN EAST

- Elementary calculation of energy loss:
- Charged particles traversing material give impulse to atomic electrons

PARTICLE IDENTIFICATION BY dE/dx IN STAR'S TPC

 $p = mv = m_0 \beta \gamma c$ $\frac{dE}{dx} \propto \frac{1}{\beta^2} ln(\beta^2 \gamma^2)$

Simultaneous measurement of p and dE/dx defines mass $m_0 \Rightarrow$ particle ID

Real detector (limited granularity) can not measure <dE/dx> !

It measures the energy ΔE deposited in a layer of finite thickness δx .

For thin layers or low density materials: → Few collisions, some with high energy transfer.

Energy loss distributions show large fluctuations towards high losses: "Landau tails"

ELECTRONS VIA dE/dx

- Select tracks
- pre-select electron candidates with EMC ($p/E \sim 1$)
- Plot electron candidates in pt slices
- Fit dE/dx(pT) for K,π,e
- integral of electron fit \Rightarrow yield
- correct yield for efficiency & acceptance \Rightarrow dN/dpT

In real world: more statistics, finer slices. Still at pt > 10 GeV/c dE/dx method fails

Every experiment has 1-N triggers - can't do without

• Hierachy:

- Level-0, Level-1, Level-2, ...
- LO, L1: fast and simple using fast detectors
- L2 and higher: online processor farms all RHIC experiments use:
 - ZDC (Zero Degree Calorimeter)
 - BBC (Beam-Beam Counter)
- What does a LO trigger do at RHIC:
- tell that there was an interaction (not trivial)
- select interaction according to centrality
- select a range of allowed event vertices
- select rare processes (jets, high-pt particles)
- What do higher level trigger do:
- the rest ...
- examples: trigger on quarkonia, complicated event topology, correlations

Aschenauer

Thanks for your attention

Brookhaven Science Associates

