

Hadron Structure

 Jianwei Qiu Brookhaven National Laboratory Stony Brook University

2016 National Nuclear Physics Summer School

Massachusetts Institute of Technology July 18-29, 2016

Organizing Committee W. Detmold, J. Formaggio, E. Luc, R. Milner, G. Roland, M. Williams

Spin Physics

The plan for my three lectures

Q The Goal:

To understand the hadron structure in terms of QCD and its hadronic matrix elements of quark-gluon field operators, to connect these matrix elements to physical observables, and to calculate them from QCD (lattice QCD, inspired models, …)

□ The outline:

Hadrons, partons (quarks and gluons), and probes of hadron structure

 One lecture

Parton Distribution Functions (PDFs) and

Transverse Momentum Dependent PDFs (TMDs)

One lecture

See also lectures by Shepard on "Hadron Spectroscopy", and lectures by Deshpande on "Electron-Ion Collider" and lectures by Gandolfi on "Nuclear Structure" and lectures by Aschenauer on "Accelerators & detectors"

Generalized PDFs (GPDs) and multi-parton correlation functions One lecture

New particles, new ideas, and new theories

q **Early proliferation of new hadrons – "particle explosion":**

Hadrons have internal structure!

□ Nucleons cannot be point-like spin-1/2 Dirac particles:

Electric charge distribution

New particles, new ideas, and new theories

q **Early proliferation of new particles – "particle explosion":**

q **Flavor SU(3) – assumption:**

 $v^1 \equiv$

Physical states for u, d, s , neglecting any mass difference, are **represented by 3-eigenstates of the fund'l rep'n of flavor SU(3)**

□ Generators for the fund'l rep'n of SU(3) – 3x3 matrices:

$$
J_i = \frac{\lambda_i}{2} \qquad \text{with} \ \ \lambda_i, i = 1, 2, ..., 8 \text{ Gell-Mann matrices}
$$

□ Good quantum numbers to label the states:

$$
J_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad J_8 = \frac{1}{2\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad \text{simultaneously diagonalized}
$$
\nIsospin:

\n
$$
\hat{I}_3 \equiv J_3, \quad \text{Hypercharge: } \quad \hat{Y} \equiv \frac{2}{\sqrt{3}} J_8
$$
\n
$$
\Box \text{ Basis vectors} - \text{Eigenstates: } |I_3, Y\rangle
$$
\n
$$
v^1 \equiv \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow u = \left| \frac{1}{2}, \frac{1}{3} \right\rangle \quad v^2 \equiv \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \Longrightarrow d = \left| -\frac{1}{2}, \frac{1}{3} \right\rangle \quad v^3 \equiv \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \Longrightarrow s = \left| 0, -\frac{2}{3} \right\rangle
$$

Q Mesons = quark-antiquark $q\bar{q}$ flavor states: $B=0$

Proton Neutron

 Σ^+ (uus)

 Ξ^0 (uss)

∃⁻(dss) l

q **A complete example: Proton**

 $|p \uparrow\rangle = \frac{1}{\sqrt{18}} \left[uud(\uparrow \downarrow \uparrow + \downarrow \uparrow \uparrow -2 \uparrow \uparrow \downarrow) + udu(\uparrow \uparrow \downarrow + \downarrow \uparrow \uparrow -2 \uparrow \downarrow \uparrow) \right]$ $+duu(\uparrow \downarrow \uparrow + \uparrow \uparrow \downarrow -2 \downarrow \uparrow \uparrow)]$ q **Normalization:**

 $\langle p \uparrow | p \uparrow \rangle = \frac{1}{18} [(1 + 1 + (-2)^2) + (1 + 1 + (-2)^2) + (1 + 1 + (-2)^2)] = 1$ q **Charge:** $\hat{Q} = \sum \hat{Q}_i$ $\langle p \uparrow |\hat{Q}| p \uparrow \rangle = \frac{1}{18} \left[\left(\frac{2}{3} + \frac{2}{3} - \frac{1}{3} \right) (1 + 1 + (-2)^2) + \left(\frac{2}{3} - \frac{1}{3} + \frac{2}{3} \right) (1 + 1 + (-2)^2) \right]$ $+(-\frac{1}{3} + \frac{2}{3} + \frac{2}{3})(1+1+(-2)^2) = 1$ q **Spin:** $\hat{S} = \sum_{i=1}^{3} \hat{s}_i$ $\langle p \uparrow | \hat{S} | p \uparrow \rangle = \frac{1}{18} \{ [(\frac{1}{2} - \frac{i}{2} + \frac{1}{2}) + (-\frac{1}{2} + \frac{1}{2} + \frac{1}{2}) + 4(\frac{1}{2} + \frac{1}{2} - \frac{1}{2})]$ $+\left[\frac{1}{2} + \frac{1}{2} + 4\frac{1}{2}\right] + \left[\frac{1}{2} + \frac{1}{2} + 4\frac{1}{2}\right] = \frac{1}{2}$ q **Magnetic moment:** \angle ... Ω

$$
\mu_p = \langle p \uparrow | \sum_{i=1}^3 \hat{\mu}_i (\hat{\sigma}_3)_i | p \uparrow \rangle = \frac{1}{3} [4\mu_u - \mu_d]
$$
\n
$$
\mu_n = \frac{1}{3} [4\mu_d - \mu_u]
$$
\n
$$
\frac{\mu_u}{\mu_d} \approx \frac{2/3}{-1/3} = -2
$$
\n
$$
\left(\frac{\mu_n}{\mu_p} \right)_{\text{QM}} = -\frac{2}{3}
$$
\n
$$
\left(\frac{\mu_n}{\mu_p} \right)_{\text{Exp}} = -0.68497945(58)
$$

Deep inelastic scattering (DIS)

□ Modern Rutherford experiment – DIS (SLAC 1968)

² **Localized probe:**

$$
Q^{2} = -(p - p')^{2} \gg 1 \text{ fm}^{-2}
$$

$$
\frac{1}{Q} \ll 1 \text{ fm}
$$

² **Two variables:**

$$
Q^{2} = 4EE' \sin^{2}(\theta/2)
$$

$$
x_{B} = \frac{Q^{2}}{2m_{N}\nu}
$$

$$
\nu = E - E'
$$

Discovery of spin ½ quarks, and partonic structure!

Nobel Prize, 1990

The birth of QCD (1973)

– Quark Model + Yang-Mill gauge theory

Quantum Chromo-dynamics (QCD)

= A quantum field theory of quarks and gluons =

Quark fields: spin-1/2 Dirac fermion (like electron) $\psi_i^f(x)$ **Quark fields: spin-1/2 Dirac fermion (like electron) Color triplet:** $i = 1, 2, 3 = N_c$ $f=u,d,s,c,b,t$ **Flavor:**

> A_{$\mu,a(x)$} Gluon fields: spin-1 vector field (like photon) **Color octet:** $a = 1, 2, ..., 8 = N_c^2 - 1$

□ QCD Lagrangian density:

$$
\mathcal{L}_{QCD}(\psi, A) = \sum_{f} \overline{\psi}_{i}^{f} \left[(i \partial_{\mu} \delta_{ij} - g A_{\mu, a} (t_{a})_{ij}) \gamma^{\mu} - m_{f} \delta_{ij} \right] \psi_{j}^{f}
$$

$$
- \frac{1}{4} \left[\partial_{\mu} A_{\nu, a} - \partial_{\nu} A_{\mu, a} - g C_{abc} A_{\mu, b} A_{\nu, c} \right]^{2}
$$

$$
+ \text{ gauge fixing} + \text{ghost terms}
$$

□ QED – force to hold atoms together:

$$
\mathcal{L}_{QED}(\phi, A) = \sum_{f} \overline{\psi}^{f} \left[(i\partial_{\mu} - eA_{\mu})\gamma^{\mu} - m_{f} \right] \psi^{f} - \frac{1}{4} \left[\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} \right]^{2}
$$

q **QCD Color confinement:**

Gluons are dark, No free quarks or gluons ever been detected!

QCD Asymptotic Freedom

New particles, new ideas, and new theories

q **Proliferation of new particles – "November Revolution":**

New particles, new ideas, and new theories

q **Proliferation of new particles – "November Revolution":**

QCD and hadron internal structure

□ Our understanding of the proton evolves

1970s 1980s/2000s Now

Hadron is a strongly interacting, relativistic bound state of quarks and gluons

q **QCD bound states:**

- **↑ Neither quarks nor gluons appear in isolation!**
- **◇ Understanding such systems completely is still beyond the capability of the best minds in the world**

□ The great intellectual challenge:

Probe nucleon structure without "seeing" quarks and gluons?

What holds hadron together – the glue?

□ Understanding the glue that binds us all – the Next QCD Frontier!

q **Gluons are weird particles!**

² **Massless, yet, responsible for nearly all visible mass**

"Mass without mass!"

□ Understanding the glue that binds us all – the Next QCD Frontier!

q **Gluons are weird particles!**

- ² **Massless, yet, responsible for nearly all visible mass**
- ² **Carry color charge, responsible for color confinement and strong force**

~16 tons at ~1 Fermi (10-15 m) distance

□ Understanding the glue that binds us all – the Next QCD Frontier!

q **Gluons are weird particles!**

- ² **Massless, yet, responsible for nearly all visible mass**
- ² **Carry color charge, responsible for color confinement and strong force but, also for asymptotic freedom** Sept. 2013 $\alpha_s(Q)$ **t decavs (N³LO)**

$$
\alpha_s(\mu_2) = \frac{\alpha_s(\mu_1)}{1 - \frac{\beta_1}{4\pi}\alpha_s(\mu_1)\ln\left(\frac{\mu_2^2}{\mu_1^2}\right)} = \frac{4\pi}{-\beta_1\ln\left(\frac{\mu_2^2}{\Lambda_{\text{QCD}}^2}\right)} \underbrace{\hspace{1cm}}_{\textbf{0.2}} \underbrace{\hspace{1cm}}_{\textbf{0.3}} \underbrace{\hspace{1cm}}_{\textbf{1.45}\text{ days (NLO)}} \underbrace{\hspace{1cm}}_{\textbf{2 pole fit (N^2LO)}} \underbrace{\hspace{1cm}}_{\textbf{2 pole fit (N^2LO)}} \underbrace{\hspace{1cm}}_{\textbf{3. PIS jets (NLO)}} \underbrace{\hspace{1cm}}_{\textbf{4.50}} \underbrace{\hspace{1cm}}_{\textbf{5.10}} \underbrace{\hspace{1cm}}_{\textbf{5.20}} \underbrace{\hspace{1cm}}_{\textbf{6.10}} \underbrace{\hspace{1cm}}_{\textbf{7.10}} \underbrace{\hspace{1cm}}_{\textbf{8.30}} \underbrace{\hspace{1cm}}_{\textbf{9.10}} \underbrace{\hspace{1cm}}_{\textbf{1.10}} \underbrace{\hspace{1cm}}_{\textbf{1.11}} \underbrace{\hspace{1cm}}_{\textbf{1.11}} \underbrace{\hspace{1cm}}_{\textbf{1.11}} \underbrace{\hspace{1cm}}_{\textbf{1.12}} \underbrace{\hspace{1cm}}_{\textbf{1.13}} \underbrace{\hspace{1cm}}_{\textbf{1.14}} \underbrace{\hspace{1cm}}_{\textbf{1.15}} \underbrace{\hspace{1cm}}_{\textbf{2.15}} \underbrace{\hspace{1cm}}_{\textbf{2.15}} \underbrace{\hspace{1cm}}_{\textbf{3.15}} \underbrace{\hspace{1cm}}_{\textbf{3.15}} \underbrace{\hspace{1cm}}_{\textbf{5.15}} \underbrace{\hspace{1cm}}_{\textbf{5.15}} \underbrace{\hspace{1cm}}_{\textbf{6.15}} \underbrace{\hspace{1cm}}_{\textbf{7.15}} \underbrace{\hspace{1cm}}_{\textbf{8.15}} \underbrace{\hspace{1cm}}_{\textbf{1.15}} \underbrace{\hspace{1cm}}_{\textbf{1.15}} \underbrace
$$

 $200D$ and α

□ Understanding the glue that binds us all – the Next QCD Frontier!

q **Gluons are weird particles!**

- ² **Massless, yet, responsible for nearly all visible mass**
- ² **Carry color charge, responsible for color confinement and strong force but, also for asymptotic freedom,**

as well as the abundance of glue

□ Understanding the glue that binds us all – the Next QCD Frontier!

q **Gluons are wired particles!**

- ² **Massless, yet, responsible for nearly all visible mass**
- ² **Carry color charge, responsible for color confinement and strong force**

but, also for asymptotic freedom, as well as the abundance of glue

Without gluons, there would be NO nucleons, NO atomic nuclei… NO visible world!

See A. Deshpande's talk on EIC

□ Mass – intrinsic to a particle:

= Energy of the particle when it is at the rest

² **QCD energy-momentum tensor in terms of quarks and gluons**

 $T^{\mu\nu} = \frac{1}{2} \overline{\psi} i \overleftrightarrow{D}^{(\mu} \gamma^{\nu)} \psi + \frac{1}{4} g^{\mu\nu} F^2 - F^{\mu\alpha} F^{\nu}_{\alpha}$

² **Proton mass:**

X. Ji, PRL (1995) $\overline{}$ Rest frame $\sim \text{GeV}$

q **Spin – intrinsic to a particle:**

= Angular momentum of the particle when it is at the rest

² **QCD angular momentum density in terms of energy-momentum tensor**

$$
M^{\alpha\mu\nu} = T^{\alpha\nu} x^{\mu} - T^{\alpha\mu} x^{\nu} \qquad J^{i} = \frac{1}{2} \epsilon^{ijk} \int d^{3}x M^{0jk}
$$

² **Proton spin:**

$$
S(\mu) = \sum_i \langle P, S | \hat{J}_f^z(\mu) | P, S \rangle = \frac{1}{2}
$$

We do NOT know the state, $|P, S\rangle$ *, in terms of quarks and gluons!*

□ Hadron mass from Lattice QCD calculation:

A major success of QCD – is the right theory for the Strong Force! How does QCD generate this? The role of quarks vs that of gluons?

□ Role of quarks and gluons – sum rules:

² **Invariant hadron mass (in any frame):**

$$
\langle p|T^{\mu\nu}|p\rangle \propto p^{\mu}p^{\nu}
$$
\n
$$
T^{\alpha}_{\alpha} = \frac{\beta(g)}{2g}F^{\mu\nu,a}F^{a}_{\mu\nu} + \sum_{q=u,d,s} m_q(1+\gamma_m)\overline{\psi}_q\psi_q
$$
\nQCD trace anomaly\n
$$
\beta(g) = -(11 - 2n_f/3)g^3/(4\pi)^2 + ...
$$
\n
$$
\frac{\beta(g)}{2g}\langle p|F^2|p\rangle
$$
\nKharzeev @ Temple workshop

At the chiral limit, the entire proton mass is from gluons!

² **Hadron mass in the rest frame – decomposition (sum rule):**

$$
M = \frac{\langle P|H_{\text{QCD}}|P\rangle}{\langle P|P\rangle}|_{\text{rest frame}} = H_q + H_m + H_g + H_a
$$
\nwhere
$$
H_q = \sum_{q} \psi_q^{\dagger}(-i\mathbf{D} \cdot \alpha)\psi_q
$$
 - quark energy
\n
$$
H_m = \sum_{q} \overline{\psi}_q m_q \psi_q
$$
 - quark mass
\n
$$
H_a = \frac{9\alpha_s}{16\pi} (\mathbf{E}^2 - \mathbf{B}^2)
$$

\n
$$
H_g = \frac{1}{2} (\mathbf{E}^2 + \mathbf{B}^2)
$$
 - gluon energy - trace anomaly

□ Role of quarks and gluons – sum rules:

² **Partonic angular momenta, the contributions to hadron spin:**

$$
S(\mu) = \sum_{f} \langle P, S | \hat{J}_{f}^{z}(\mu) | P, S \rangle = \frac{1}{2} \equiv J_{q}(\mu) + J_{g}(\mu)
$$

where $\vec{J}_{q} = \int d^{3}x \left[\psi_{q}^{\dagger} \vec{\gamma} \gamma_{5} \psi_{q} + \psi_{q}^{\dagger} (\vec{x} \times (-i\vec{D})) \psi_{q} \right]$ – quark angular mom.
 $\vec{J}_{g} = \int d^{3}x \left[\vec{x} \times (\vec{E} \times \vec{B}) \right]$ – gluon angular mom.

² **Spin decomposition (sum rule) – an incomplete story:**

$\frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + (L_q + L_g)$	Jaffe-Manohar, 90
Proton Spin	Different from QM!
Quark helicity: $\frac{1}{2} \int dx (\Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}) \sim 30\%$	- Best known
Quark helicity: $\Delta G = \int dx \Delta g(x) \sim 20\%$ (with RHIC data) - Start to know	
Orbital Angular Momentum (OAM): Not uniquely defined - Little known	

Gauge field is tied together with the motion of fermion – D^{μ} **!**

□ Role of quarks and gluons – sum rules:

² **Jaffe-Manohar's quark OAM density:**

$$
\mathcal{L}_q^3 = \psi_q^{\dagger} \left[\vec{x} \times (-i\vec{\partial}) \right]^3 \psi_q
$$

² **Ji's quark OAM density:**

$$
L_q^3 = \psi_q^{\dagger} \left[\vec{x} \times (-i\vec{D}) \right]^3 \psi_q
$$

Hatta, Yoshida, Burkardt, Meissner, Metz, Schlegel, …

² **Difference – generated by a "torque" of color Lorentz force**

$$
\mathcal{L}_q^3 - L_q^3 \propto \int \frac{dy^- d^2y_T}{(2\pi)^3} \langle P' | \overline{\psi}_q(0) \frac{\gamma^+}{2} \int_{y^-}^{\infty} dz^- \Phi(0, z^-) \times \sum_{i,j=1,2} \left[\epsilon^{3ij} y_T^i F^{+j}(z^-) \right] \Phi(z^-, y) \psi(y) |P\rangle_{y^+=0}
$$

"Chromodynamic torque"

Sum rules are NOT unique – None of these matrix elements are physical!!!

□ Value of the decomposition – a good sum rule:

Every term of the sum rule is "independently measurable" – can be related to a physical observable with controllable approximation!

Hadron structure in QCD

□ What do we need to know for the structure? \Leftrightarrow In theory: $\langle P, S | \mathcal{O}(\overline{\psi}, \psi, A^{\mu}) | P, S \rangle$ – Hadronic matrix elements with all possible operators: $\mathcal{O}(\overline{\psi}, \psi, A^{\mu})$ ² **In fact: None of these matrix elements is a direct physical observable in QCD – color confinement!** ² **In practice: Accessible hadron structure = hadron matrix elements of quarks and gluons, which 1) can be related to physical cross sections of hadrons and leptons with controllable approximation; and/or 2) can be calculated in lattice QCD** Single-parton structure "seen" by a short-distance probe: b_T *kT xp* **[√] 5D structure: 1)** 1) $\int d^2b_T$ **i**g $f(x, k_T, \mu)$ – TMDs: 2D confined motion! **2)** d^2k_T **F** (x, b_T, μ) Z d^2k_T **–** $F(x, b_T, \mu)$ **– GPDs: 2D spatial imaging! 3)** $\int d^2k_T d^2b_T$ **Fig.** $f(x,\mu)$ **– PDFs:** *Number density!*

Hadron structure in QCD

□ What do we need to know for the structure? \Diamond In theory: $\langle P, S | \mathcal{O}(\overline{\psi}, \psi, A^{\mu}) | P, S \rangle$ – Hadronic matrix elements with all possible operators: $\mathcal{O}(\overline{\psi}, \psi, A^{\mu})$ ² **In fact: None of these matrix elements is a direct physical observable in QCD – color confinement!** ² **In practice: Accessible hadron structure = hadron matrix elements of quarks and gluons, which 1) can be related to physical cross sections of hadrons and leptons with controllable approximation; and/or 2) can be calculated in lattice QCD**

Multi-parton correlations:

Quantum interference **3-parton matrix element** – not a probability!

Hadron structure in QCD

We need the probe!

How to connect QCD quarks and gluons to observed hadrons and leptons?

> **Fundamentals of QCD factorization and evolution (probing scale)**

QCD factorization – approximation

q **Creation of an identified hadron – a factorizable example:**

Factorization: factorized into a product of "probabilities" !

Effective quark mass

□ Running quark mass:

$$
m(\mu_2) = m(\mu_1) \exp \left[- \int_{\mu_1}^{\mu_2} \frac{d\lambda}{\lambda} [1 + \gamma_m(g(\lambda))] \right]
$$

Quark mass depend on the renormalization scale!

□ QCD running quark mass: $m(\mu_2) \Rightarrow 0$ as $\mu_2 \rightarrow \infty$ since $\gamma_m(g(\lambda)) > 0$

□ Choice of renormalization scale:

 $\mu \sim Q$ **for small logarithms in the perturbative coefficients Q Light quark mass:** $m_f(\mu) \ll \Lambda_{\text{QCD}}$ for $f = u, d$, even s **QCD perturbation theory (Q>>Λ_{oCD}) is effectively a massless theory**

Infrared and collinear divergences

q **Consider a general diagram with a "unobserved gluon":**

$$
p^2=0, \quad k^2=0 \; \text{ for a massless theory}
$$

$$
\Leftrightarrow k^{\mu} \to 0 \Rightarrow (p-k)^2 \to p^2 = 0
$$

Infrared (IR) divergence

$$
\begin{aligned}\n\diamond k^{\mu} \parallel p^{\mu} &\Rightarrow k^{\mu} = \lambda p^{\mu} \quad \text{with} \quad 0 < \lambda < 1 \\
&\Rightarrow (p - k)^2 \to (1 - \lambda)^2 p^2 = 0\n\end{aligned}
$$

Collinear (CO) divergence

IR and CO divergences are generic problems of a massless perturbation theory

Pinch singularity and pinch surface

q **"Square" of the diagram with a "unobserved gluon": "Cut-line" – final-state – in a "cut-diagram" notation** $\int \mathcal{T}(p-k,Q) \frac{1}{(p-k)}$ 1 $d^4k\,\delta(k^2)_+$ α $(p-k)^2 + i\epsilon$ $(p-k)^2 - i\epsilon$ \int $\mathcal{T}(l, Q) \frac{1}{l^2 + 1}$ 1 dl^2 \propto $l^2 + i\epsilon$ $l^2 - i\epsilon$ $\Rightarrow \infty$ E **Amplitude Complex conjugate** Re $-l\varepsilon$ **of the Amplitude Pinch singularities "perturbatively" Pinch surfaces** $p-k-k'$ $\sum_{k=1}^{k} p-k^k$ **= "surfaces" in k, k', … determined by (p-k)2=0, (p-k-k')2=0, … "perturbatively"**

Hard collisions with identified hadron(s)

Hard collisions with identified hadron(s)

Hard collisions with identified hadron(s)

Example: Inclusive lepton-hadron DIS

□ Scattering amplitude:

$$
\mathbf{M}(\lambda, \lambda'; \sigma, q) = \overline{u}_{\lambda'}(k') \left[-ie\gamma_{\mu} \right] u_{\lambda}(k)
$$

\n
$$
\star \left(\frac{i}{q^2} \right) \left(-g^{\mu\mu'} \right)
$$

\n
$$
\star \left(X \left| eJ_{\mu'}^{em}(0) \right| p, \sigma \right)
$$

q **Cross section:**

$$
d\sigma^{\text{DIS}} = \frac{1}{2s} \left(\frac{1}{2}\right)^2 \sum_{X} \sum_{\lambda, \lambda', \sigma} \left|M\left(\lambda, \lambda'; \sigma, q\right)\right|^2 \left[\prod_{i=1}^X \frac{d^3 l_i}{(2\pi)^3 2E_i}\right] \frac{d^3 k'}{(2\pi)^3 2E} (2\pi)^4 \delta^4 \left(\sum_{i=1}^X l_i + k' - p - k\right)
$$

$$
E' \frac{d\sigma^{\text{DIS}}}{d^3 k'} = \frac{1}{2s} \left(\frac{1}{Q^2}\right)^2 L^{\mu\nu}\left(k, k'\right) W_{\mu\nu}\left(q, p\right)
$$

q **Leptonic tensor:**

– **known from QED**

$$
L^{\mu\nu}(k,k') = \frac{e^2}{2\pi^2} \Big(k^{\mu}k^{\nu} + k^{\nu}k^{\nu} + k^{\nu}k^{\nu} + k^{\nu}k^{\nu} \Big)
$$

DIS structure functions

q **Hadronic tensor:**

$$
W_{\mu\nu}(q,p,S) = \frac{1}{4\pi} \int d^4 z \; e^{iq \cdot z} \; \langle p, S | J_{\mu}^{\dagger}(z) J_{\nu}(0) | p, S \rangle
$$

q **Symmetries:**

² **Parity invariance (EM current)** ² **Time-reversal invariance ← Current conservation** $W_{\mu\nu} = W_{\mu\nu}^*$ real $W_{\mu\nu} = W_{\nu\mu}$ sysmetric for spin avg. $q^{\mu}W_{\mu\nu} = q^{\nu}W_{\mu\nu} = 0$ $U_{\mu\nu} = q^{\nu} W_{\mu\nu} =$

$$
W_{\mu\nu} = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right)F_1(x_B, Q^2) + \frac{1}{p \cdot q} \left(p_{\mu} - q_{\mu} \frac{p \cdot q}{q^2}\right) \left(p_{\nu} - q_{\nu} \frac{p \cdot q}{q^2}\right) F_2(x_B, Q^2)
$$

+*iM_pε^{μνρσ} q_ρ $\left[\frac{S_{\sigma}}{p \cdot q} g_1(x_B, Q^2) + \frac{(p \cdot q)S_{\sigma} - (S \cdot q) p_{\sigma}}{(p \cdot q)^2} g_2(x_B, Q^2)\right]$ $Q^2 = -q^2$
Struoture functions*

q **Structure functions – infrared sensitive:**

$$
F_1(x_B, Q^2), F_2(x_B, Q^2), g_1(x_B, Q^2), g_2(x_B, Q^2)
$$

No QCD parton dynamics used in above derivation!

Long-lived parton states

q **Feynman diagram representation of the hadronic tensor:**

q **Perturbative factorization:**

Collinear factorization – further approximation

 \Box **Collinear approximation, if** $\left|Q \sim xp \cdot n \right| \gg k_T$, $\sqrt{k^2}$

Parton's transverse momentum is integrated into parton distributions, and provides a scale of power corrections

 \Box **DIS limit:** $v, Q^2 \rightarrow \infty$, while x_R fixed

Feynman's parton model and Bjorken scaling

$$
F_2(x_B, Q^2) = x_B \sum_f e_f^2 \phi_f(x_B) = 2x_B F_1(x_B, Q^2)
$$
Spin-¹/₂ parton!
Q
Corrections: $O(\alpha_s) + O(\langle k^2 \rangle/Q^2)$

Parton distribution functions (PDFs)

□ PDFs as matrix elements of two parton fields: **– combine the amplitude & its complex-conjugate**

$$
\phi_{q/h}(x,\mu^2) = \int \frac{p^+ dy^-}{2\pi} e^{ixp^+ y^-} \langle h(p) | \bar{\psi}_q(0) \frac{\gamma^+}{2p^+} \psi_q(y^-) | h(p) \rangle \mathcal{Z}_{\mathcal{O}}(\mu^2)
$$

 $|h(p)\rangle$ can be a hadron, or a nucleus, or a parton state!

But, it is NOT gauge invariant! $\psi(x) \to e^{i\alpha_a(x)t_a} \psi(x)$ $\bar{\psi}(x) \to \bar{\psi}(x) e^{-i\alpha_a(x)t_a}$

– need a gauge link:

$$
\phi_{q/h}(x,\mu^2) = \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \langle h(p)|\bar{\psi}_q(0) \left[\mathcal{P}e^{-ig\int_0^{y^-} d\eta^- A^+(\eta^-)} \right] \frac{\gamma^+}{2p^+} \psi_q(y^-) |h(p)\rangle \mathcal{Z}_{\mathcal{O}}(\mu^2)
$$

– corresponding diagram in momentum space:

Universality – process independence – predictive power

Gauge link – 1st order in coupling "g"

q **Longitudinal gluon:**

q **Left diagram:**

$$
\int dx_1 \left[\int \frac{p^+ dy_1^-}{2\pi} e^{ix_1 p^+ (y_1^- - y^-)} n \cdot A^a(y_1^-) \right] \mathcal{M}(-ig t^a) \frac{\gamma \cdot p}{p^+} \frac{i((x - x_1 - x_B)\gamma \cdot p + (Q^2/2x_B p^+) \gamma \cdot n)}{(x - x_1 - x_B)Q^2/x_B + i\epsilon}
$$

= $g \int \frac{dy_1^-}{2\pi} n \cdot A^a(y_1^-) t^a \left[\int dx_1 \frac{1}{-x_1 + i\epsilon} e^{ix_1 p^+ (y_1^- - y^-)} \right] \mathcal{M} = -ig \int_{y^-}^{\infty} dy_1^- n \cdot A(y_1^-) \mathcal{M}$

q **Right diagram:**

$$
\int dx_1 \left[\int \frac{p^+ dy_1^-}{2\pi} e^{ix_1 p^+ y_1^-} n \cdot A^a(y_1^-) \right] \frac{-i((x+x_1-x_B)\gamma \cdot p + (Q^2/2x_B p^+) \gamma \cdot n)}{(x+x_1-x_B)Q^2/x_B - i\epsilon} (+igt^a) \frac{\gamma \cdot p}{p^+} \mathcal{M}
$$

= $g \int \frac{dy_1^-}{2\pi} n \cdot A^a(y_1^-) t^a \left[\int dx_1 \frac{1}{x_1 - i\epsilon} e^{ix_1 p^+ y_1^-} \right] \mathcal{M} = ig \int_0^\infty dy_1^- n \cdot A(y_1^-) \mathcal{M}$

q **Total contribution:**

$$
-ig\left[\int_0^\infty -\int_{y^-}^\infty\right]dy_1^- n \cdot A(y_1^-) \mathcal{M}_{\rm LO}
$$

O(g)-term of the gauge link!

 $x+x_1$

 \boldsymbol{p}

0

QCD high order corrections

□ NLO partonic diagram to structure functions:

Diagram has both long- and short-distance physics

q **Factorization, separation of short- from long-distance:**

QCD high order corrections

q **Logarithmic contributions into parton distributions:**

To separate the collinear from non-collinear contribution

Recall: renormalization scale to separate local from non-local contribution

Dependence on factorization scale

q **Physical cross sections should not depend on the factorization scale** 2 2 $\frac{2}{F} \frac{u}{d\mu^2} F_2(x_B, Q^2) = 0$ $\mu^2_F\,\frac{d}{d\,\mu^2_F} F_2(x_{_B},Q)$ = $\boldsymbol{\mu}_{_F}$ ² *d* $d\mu^2_{\scriptscriptstyle F}$ $\frac{1}{2}C_f$ x _B *x* , Q^2 $\boldsymbol{\mu}^-_F$ $\frac{1}{2}$, $\alpha_{\rm s}$! \backslash \mid \setminus \int $\overline{}$ **|** (\vert $\overline{}$ \mathcal{I} $\overline{}$ $\sum_{f} \left| \mu_F^2 \frac{a}{d \mu_F^2} C_f \left(\frac{x_B}{x}, \frac{Q}{\mu_F^2}, \alpha_s \right) \right| \otimes \varphi_f(x, \mu_F^2) + \sum_{f} C_f$ x _B *x* , Q^2 $\boldsymbol{\mu}^-_F$ $\frac{1}{2}$, $\alpha_{\rm s}$! \backslash \mid \setminus \int $\overline{}$ *f* $\sum C_f \Big|\frac{\lambda_B}{r}, \frac{Q}{\mu^2}, \alpha_s\Big|\otimes \mu_F^2$ ² *d* $d\mu^2_{\scriptscriptstyle F}$ $\frac{1}{2}\varphi_f\left(x,\mu_F^2\right)=0$ **Evolution (differential-integral) equation for PDFs** q **PDFs and coefficient functions share the same logarithms PDFs:** $F_2(x_B, Q^2) = \sum C_f(x_B/x, Q^2/\mu_F^2, \alpha_s) \phi_f(x, \mu_F^2)$ *f*

Coefficient functions:

$$
\frac{\log\left(\mu_F^2\middle/\mu_0^2\right)}{\log\left(Q^2\middle/\mu_F^2\right)} \text{ or } \frac{\log\left(\mu_F^2\middle/\Lambda_\text{QCD}^2\right)}{\log\left(Q^2\middle/\mu^2\right)}
$$

DGLAP evolution equation:

$$
\mu_F^2 \frac{\partial}{\partial \mu_F^2} \varphi_i(x, \mu_F^2) = \sum_j P_{i/j} \left(\frac{x}{x}, \alpha_s \right) \otimes \varphi_j(x', \mu_F^2)
$$

Calculation of evolution kernels

q **Evolution kernels are process independent**

- **Parton distribution functions are universal**
- ² **Could be derived in many different ways**

q **Extract from calculating parton PDFs' scale dependence**

↑ Same is true for gluon evolution, and mixing flavor terms

□ One can also extract the kernels from the CO divergence **of partonic cross sections**

Scaling and scaling violation

Q2-dependence is a prediction of pQCD calculation

PDFs of a spin-averaged proton

□ Modern sets of PDFs @NNLO with uncertainties:

Summary of lecture one

- □ QCD has been extremely successful **in interpreting and predicting high energy experimental data!**
- □ But, we still do not know much about **hadron structure – work just started!**

- □ Cross sections with large momentum transfer(s) and **identified hadron(s) are the source of structure information**
- □ TMDs and GPDs, accessible by high energy scattering, **encode important information on hadron's 3D structure – distributions as well as motions of quarks and gluons**
- □ QCD factorization is necessary for any controllable "probe" **for hadron's quark-gluon structure!**

Thank you!

Backup slides

How to calculate the perturbative parts?

□ Use DIS structure function F₂ as an example:

$$
F_{2h}(x_B, Q^2) = \sum_{q,f} C_{q/f}\left(\frac{x_B}{x}, \frac{Q^2}{\mu^2}, \alpha_s\right) \otimes \varphi_{f/h}\left(x, \mu^2\right) + O\left(\frac{\Lambda_{\text{QCD}}^2}{Q^2}\right)
$$

 \Diamond Apply the factorized formula to parton states: $h \rightarrow q$

$$
\textbf{Feynman} \longrightarrow F_{2q}(x_B, Q^2) = \sum_{q, f} C_{q/f}\left(\frac{x_B}{x}, \frac{Q^2}{\mu^2}, \alpha_g\right) \otimes \varphi_{f/q}(x, \mu^2) \longleftarrow \text{Feynman} \text{ diagrams}
$$

² **Express both SFs and PDFs in terms of powers of** α**s:**

0th order:
$$
F_{2q}^{(0)}(x_B, Q^2) = C_q^{(0)}(x_B / x, Q^2 / \mu^2) \otimes \varphi_{q/q}^{(0)}(x, \mu^2)
$$

\n
$$
\downarrow \qquad \qquad \left| \bigvee_{Q_q^{(0)}(x) = P_{2q}^{(0)}(x)} \varphi_{q/q}^{(0)}(x) \right| = \delta_{qq} \delta (1 - x)
$$
\n**1th order:** $F_{2q}^{(1)}(x_B, Q^2) = C_q^{(1)}(x_B / x, Q^2 / \mu^2) \otimes \varphi_{q/q}^{(0)}(x, \mu^2)$
\n
$$
+ C_q^{(0)}(x_B / x, Q^2 / \mu^2) \otimes \varphi_{q/q}^{(1)}(x, \mu^2)
$$
\n
$$
\downarrow \qquad \qquad \left| \bigvee_{Q} \frac{C_q^{(1)}(x, Q^2 / \mu^2) = F_{2q}^{(1)}(x, Q^2) - F_{2q}^{(0)}(x, Q^2) \otimes \varphi_{q/q}^{(1)}(x, \mu^2)}{C_q^{(1)}(x, Q^2 / \mu^2) = F_{2q}^{(1)}(x, Q^2) - F_{2q}^{(0)}(x, Q^2) \otimes \varphi_{q/q}^{(1)}(x, \mu^2)}
$$

PDFs of a parton

□ Change the state without changing the operator:

$$
\phi_{q/h}(x,\mu^2) = \int \frac{dy^-}{2\pi} e^{ixp^+y^-} \langle h(p)|\overline{\psi}_q(0) \frac{\gamma^+}{2} U_{[0,y^-]}^n \psi_2(y^-) |h(p) \rangle
$$

$$
|h(p)\rangle \implies |\text{parton}(p)\rangle \qquad \phi_{f/q}(x,\mu^2) = \text{given by Feynman diagrams}
$$

q **Lowest order quark distribution:**

² **From the operator definition:**

$$
\begin{array}{lll}\n\phi_{q'/q}^{(0)}(x) & = & \delta_{qq'} \int \frac{d^4k}{(2\pi)^4} \mathrm{Tr} \left[\left(\frac{1}{2} \gamma \cdot p \right) \left(\frac{\gamma^+}{2p^+} \right) \right] \delta \left(x - \frac{k^+}{p^+} \right) (2\pi)^4 \delta^4(p - k) \\
& = & \delta_{qq'} \delta(1 - x)\n\end{array}
$$

q **Leading order in** α**s quark distribution:**

 \diamondsuit Expand to $(g_s)^2$ – logarithmic divergent:

$$
\phi_{q/q}^{(1)}(x) = C_F \frac{\alpha_s}{2\pi} \int \frac{dk_T^2}{k_T^2} \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2} \delta(1-x) \right] + \text{UVCT}
$$

UV and CO divergence

Partonic cross sections

□ Projection operators for SFs:

$$
W_{\mu\nu} = -\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2}\right)F_1(x, Q^2) + \frac{1}{p \cdot q} \left(p_{\mu} - q_{\mu} \frac{p \cdot q}{q^2}\right) \left(p_{\nu} - q_{\nu} \frac{p \cdot q}{q^2}\right) F_2(x, Q^2)
$$

$$
F_1(x, Q^2) = \frac{1}{2} \left(-g^{\mu\nu} + \frac{4x^2}{Q^2} p^{\mu} p^{\nu}\right) W_{\mu\nu}(x, Q^2)
$$

$$
F_2(x, Q^2) = x \left(-g^{\mu\nu} + \frac{12x^2}{Q^2} p^{\mu} p^{\nu}\right) W_{\mu\nu}(x, Q^2)
$$

10th order:

$$
F_{2q}^{(0)}(x) = x g^{\mu\nu} W_{\mu\nu,q}^{(0)} = x g^{\mu\nu} \left(\frac{1}{4\pi} \sum_{\mu\nu} \sum_{\nu\rho} \sum_{\nu\rho
$$

How does dimensional regularization work?

NLO coefficient function – complete example

$$
C_q^{(1)}(x,Q^2/\mu^2) = F_{2q}^{(1)}(x,Q^2) - F_{2q}^{(0)}(x,Q^2) \otimes \varphi_{q/q}^{(1)}(x,\mu^2)
$$

□ Projection operators in n-dimension:

$$
g_{\mu\nu}g^{\mu\nu} = n = 4 - 2\varepsilon
$$

$$
(1 - \varepsilon) F_2 = x \left(-g^{\mu \nu} + (3 - 2\varepsilon) \frac{4x^2}{Q^2} p^{\mu} p^{\nu} \right) W_{\mu \nu}
$$

q **Feynman diagrams:**

Q Calculation: $-g^{\mu\nu}W_{\mu\nu,q}^{(1)}$ and $p^{\mu}p^{\nu}W_{\mu\nu,q}^{(1)}$

Contribution from the trace of W_{μν}

q **Lowest order in n-dimension:**

$$
-g^{\mu\nu}W^{(0)}_{\mu\nu,q} = e_q^2(1-\varepsilon)\delta(1-x)
$$

□ NLO virtual contribution:

$$
-g^{\mu\nu}W_{\mu\nu,q}^{(1)V} = e_q^2(1-\varepsilon)\delta(1-x)
$$

$$
*\left(-\frac{\alpha_s}{\pi}\right)C_F\left[\frac{4\pi\mu^2}{Q^2}\right]^{\varepsilon}\frac{\Gamma(1+\varepsilon)\Gamma^2(1-\varepsilon)}{\Gamma(1-2\varepsilon)}\left[\frac{1}{\varepsilon^2}+\frac{3}{2}\frac{1}{\varepsilon}+4\right]
$$

□ NLO real contribution:

$$
-g^{\mu\nu}W_{\mu\nu,q}^{(1)R} = e_q^2(1-\varepsilon)C_F\left(-\frac{\alpha_s}{2\pi}\right)\left[\frac{4\pi\mu^2}{Q^2}\right]^{\varepsilon}\frac{\Gamma(1+\varepsilon)}{\Gamma(1-2\varepsilon)}
$$

$$
*\left\{-\frac{1-\varepsilon}{\varepsilon}\left[1-x+\left(\frac{2x}{1-x}\right)\left(\frac{1}{1-2\varepsilon}\right)\right]+\frac{1-\varepsilon}{2(1-2\varepsilon)(1-x)}+\frac{2\varepsilon}{1-2\varepsilon}\right\}
$$

q **The "+" distribution:**

$$
\left(\frac{1}{1-x}\right)^{1+\varepsilon} = -\frac{1}{\varepsilon}\delta(1-x) + \frac{1}{(1-x)_+} + \varepsilon\left(\frac{\ln(1-x)}{1-x}\right)_+ + O\left(\varepsilon^2\right)
$$

$$
\int_{z}^{1} dx \frac{f(x)}{(1-x)_+} = \int_{z}^{1} dx \frac{f(x)-f(1)}{1-x} + \ln(1-z)f(1)
$$

□ One loop contribution to the trace of W_{μν}:

$$
-g^{\mu\nu}W_{\mu\nu,q}^{(1)} = e_q^2(1-\varepsilon)\left(\frac{\alpha_s}{2\pi}\right) \left\{ -\frac{1}{\varepsilon} P_{qq}(x) + P_{qq}(x) \ln\left(\frac{Q^2}{\mu^2 (4\pi e^{-\gamma_E})}\right) + C_F \left[\left(1 + x^2\right) \left(\frac{\ln(1-x)}{1-x}\right)_+ - \frac{3}{2} \left(\frac{1}{1-x}\right)_+ - \frac{1+x^2}{1-x} \ln(x) + 3 - x - \left(\frac{9}{2} + \frac{\pi^2}{3}\right) \delta(1-x) \right] \right\}
$$

q **Splitting function:**

$$
P_{qq}(x) = C_F \left[\frac{1+x^2}{(1-x)_+} + \frac{3}{2} \delta(1-x) \right]
$$

q **One loop contribution to p**^μ**p**^ν **W**μν**:**

$$
p^{\mu} p^{\nu} W_{\mu\nu,q}^{(1)V} = 0 \qquad \qquad p^{\mu} p^{\nu} W_{\mu\nu,q}^{(1)R} = e_q^2 C_F \frac{\alpha_s}{2\pi} \frac{Q^2}{4x}
$$

□ One loop contribution to F₂ of a quark:

$$
F_{2q}^{(1)}(x, Q^2) = e_q^2 x \frac{\alpha_s}{2\pi} \left\{ \left(-\frac{1}{\epsilon} \right)_{\text{CO}} P_{qq}(x) \left(1 + \epsilon \ln(4\pi e^{-\gamma_E}) \right) + P_{qq}(x) \ln \left(\frac{Q^2}{\mu^2} \right) \right\}
$$

+ $C_F \left[(1 + x^2) \left(\frac{\ln(1 - x)}{1 - x} \right)_+ - \frac{3}{2} \left(\frac{1}{1 - x} \right)_+ - \frac{1 + x^2}{1 - x} \ln(x) + 3 + 2x - \left(\frac{9}{2} + \frac{\pi^2}{3} \right) \delta(1 - x) \right] \right\}$
 $\implies \infty \text{ as } \epsilon \to 0$

□ One loop contribution to quark PDF of a quark:

$$
\varphi_{q/q}^{(1)}(x,\mu^2) = \left(\frac{\alpha_s}{2\pi}\right) P_{qq}(x) \left\{ \left(\frac{1}{\varepsilon}\right)_{\text{UV}} + \left(-\frac{1}{\varepsilon}\right)_{\text{CO}} \right\} + \text{UV-CT}
$$

– in the dimensional regularization

Different UV-CT = different factorization scheme!

q **Common UV-CT terms:**

$$
\begin{aligned}\n\text{&\Leftrightarrow \text{MS scheme:} \quad \text{UV-CT} \big|_{\text{MS}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \bigg(\frac{1}{\varepsilon} \bigg)_{\text{UV}} \\
\text{&\Leftrightarrow \text{WS scheme:} \quad \text{UV-CT} \big|_{\overline{\text{MS}}} = -\frac{\alpha_s}{2\pi} P_{qq}(x) \bigg(\frac{1}{\varepsilon} \bigg)_{\text{UV}} \left(1 + \varepsilon \ln(4\pi e^{-\gamma_E}) \right)\n\end{aligned}
$$

 \hat{V} **DIS scheme: choose a UV-CT, such that** $\left| C_q^{(1)}(x,Q^2/\mu^2) \right|_{\rm DIS} = 0$

□ One loop coefficient function:

$$
C_q^{(1)}(x,Q^2/\mu^2) = F_{2q}^{(1)}(x,Q^2) - F_{2q}^{(0)}(x,Q^2) \otimes \varphi_{q/q}^{(1)}(x,\mu^2)
$$

$$
C_q^{(1)}(x, Q^2 / \mu^2) = e_q^2 x \frac{\alpha_s}{2\pi} \left\{ P_{qq}(x) \ln \left(\frac{Q^2}{\mu_{\text{MS}}^2} \right) \right\}
$$

+
$$
C_F \left[(1 + x^2) \left(\frac{\ln(1 - x)}{1 - x} \right)_+ - \frac{3}{2} \left(\frac{1}{1 - x} \right)_+ - \frac{1 + x^2}{1 - x} \ln(x) + 3 + 2x - \left(\frac{9}{2} + \frac{\pi^2}{3} \right) \delta(1 - x) \right] \right\}
$$