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Effective Recap

• “Top Down” EFTs: systematically integrate out heavy particles, large energy scales

Designed to reproduce S-matrix elements, “matching” 

Captures non-analyticities of effective d.o.f. 

• Greatly facilitates computations in energy regimes for which the full theory is 
cumbersome and unnecessary

• Starting point: perturbative QFT (or EFT)

µ

ω

Ω

• End point: lower-scale EFT

Power corrections

Perturbative corrections

(ω/Ω)n

αs(Ω)

... large logs



Effective Field Theory

III. Describing Goldstone bosons



“Bottom Up” EFTs

• Effective d.o.f. arise non-perturbatively

µ

ω

Ω

CMT: quasi-particles

QCD: low-lying hadrons

• End point: breakdown of EFT at higher-scale

• Starting point: low-scale EFT

Power corrections (ω/Ω)n

Non-analytic corrections log
ω

Ω

Captures non-analyticities of IR d.o.f. 

Matching with experiment / non-perturbative calculation

• Focus:  spontaneous symmetry breaking for which EFT is constructed to 
account for Goldstone modes. QCD chiral symmetry & pions



Massless QCD LQCD = Lψ + LYM

• Take two flavors. These will correspond to up and down quarks.

• Massless QCD Lagrange density obviously has global U(2) flavor symmetry 
but...

Chiral symmetry

PL,R =
1

2
(1∓ γ5) ψL,R = PL,R ψprojectors

• Left- and right-handed fields do not mix: no chirality changing interaction

U(2)L ⊗ U(2)R

L R

ψL → LψL

ψR → RψR
ψ → (LPL +RPR)ψ

Lψ =

Nf�

i=1

ψiiD/ ψi

ψiD/ ψ = ψLiD/ ψL + ψRiD/ ψR



Massless QCD LQCD = Lψ + LYM

• Take two flavors. These will correspond to up and down quarks.

• Massless QCD Lagrange density obviously has global U(2) flavor symmetry 
but...

Chiral symmetry

PL,R =
1

2
(1∓ γ5) ψL,R = PL,R ψprojectors

• Left- and right-handed fields do not mix: no chirality changing interaction

U(2)L ⊗ U(2)R

Vector subgroup

L = R = V

U(2)V ψL → V ψL

ψR → V ψR
ψ → V (PL + PR)ψ = V ψ

Lψ =

Nf�

i=1

ψiiD/ ψi

ψiD/ ψ = ψLiD/ ψL + ψRiD/ ψR



Chiral Symmetry of Massless QCD

U(2)L ⊗ U(2)R = U(1)L ⊗ U(1)R ⊗ SU(2)L ⊗ SU(2)RAction invariant under

U(1)L : ψL → eiθLψL

U(1)R : ψR → eiθRψR

ψ →
�
1

2
(eiθR + eiθL) +

1

2
(eiθR − eiθL)γ5

�
ψ

Vector subgroup θL = θR = θ ψ → eiθψ U(1)V

Axial transformation −θL = θR = θ5 ψ → [cos θ5 + iγ5 sin θ5]ψ = eiθ5γ5ψ

U(1)A

Consider a non-singlet axial transformation 

Exercise:

Is there a corresponding symmetry group of the massless QCD action?

ψi → [exp(i�φ · �τ γ5)]ijψj



Chiral Symmetry of Massless QCD

Action invariant under U(2)L ⊗ U(2)R = U(1)A ⊗ U(1)V ⊗ SU(2)L ⊗ SU(2)R

J5µ = ψγµγ5ψ Jµ = ψγµψ Ja
Lµ = ψLγµτ

aψL Ja
Rµ = ψRγµτ

aψR

• Global symmetries lead to classically conserved currents

(Regulated) Theory not invariant under flavor-singlet axial transformation

Chiral Anomaly

The chiral anomaly obstructs chirally invariant lattice regularization of 
fermions (see Lattice QCD lectures)

U(1)V ⊗ SU(2)L ⊗ SU(2)R

∂µJ5µ(x) = ∂µJRµ(x)− ∂µJLµ(x) =

�
e
2πNf �µνFµν(x) d = 2
αs
4πNf �µνρσGA

µν(x)G
A
ρσ(x) d = 4



Fate of Symmetries in Low-Energy QCD

U(1)V ⊗ SU(2)L ⊗ SU(2)R

• Chiral pairing preferred by vacuum (non-perturbative ground state)

�ψψ� = �ψRψL�+ �ψLψR� �= 0Chiral condensate

• Massless quarks can change their chirality by scattering off vacuum condensate

Nambu-Goldstone Mechanism

• Spontaneously broken symmetries lead to massless bosonic excitations 

SU(2)L ⊗ SU(2)R/SU(2)VBroken generators in coset

Number of massless particles?

U(1)V ⊗ SU(2)L ⊗ SU(2)R −→ U(1)V ⊗ SU(2)V



Chiral Condensate

• Choice for vacuum orientation               from Vafa-Witten (P) λ ∈ R

• After a chiral transformation

SU(2)L ⊗ SU(2)R −→ SU(2)V

• Describe Goldstone fluctuations of vacuum state with fields

Σ ∈ SU(2)L ⊗ SU(2)R/SU(2)Vδji → Σji(x) = δji + . . .

Transformation properties
Σ → LΣR† Σ → V ΣV † φ → V φV †

Exercise:
Determine the discrete symmetry properties of the Goldstone modes from the 
coset’s transformation.

Σ = e2iφ/f = 1 +
2iφ

f
+ . . .

[L(x)R†(x)]ji =[ei
�θL(x)·�τe−i�θR(x)·�τ ]ji �θL = −�θR

�ψiRψjL� = −λ δji

�ψiRψjL� → Ljj�R
†
i�i�ψi�Rψj�L� = −λ(LR†)ji



Dynamics of Goldstone Bosons: Chiral Lagrangian

Σ → LΣR†
Σ†Σ = 1

Σ† → RΣ†L

φ =

�
1√
2
π0 π+

π− − 1√
2
π0

�

The Pions
Trφ = 0

φ† = φ

• Build chirally invariant theory of coset field

Σ = e2iφ/f = 1 +
2iφ

f
+ . . .

• Expand about v.e.v. to uncover Gaussian fluctuations

3 massless modes

• Non-linear theory: interactions between multiple pions 
at “higher orders”

Can treat systematically...

L =
f2

8
Tr

�
∂µΣ∂µΣ

†�

L =
1

2
Tr (∂µφ∂µφ) +O(1/f2) =

1

2
∂µπ0∂µπ

0 + ∂µπ−∂µπ
+ +O(1/f2)



Including Quark Masses

• We began with massless QCD. Quarks have mass, Higgs makes two very light

• Chiral symmetry of action is only approximate: explicit symmetry breaking

SU(2)L ⊗ SU(2)R −→ SU(2)V mq/ΛQCD � 1

• Need to map           onto ChPT operators breaking symmetry in same way∆Lψ

Comments: not chirally invariant

new dimensionful parameter

included only linear quark mass term 

Σ → LΣR†

λ

m2
q

Perturbing about chiral limit

Σ† → RΣ†L†

∆Lψ = −mq

�

i

ψiψi = −mq

�

i

�
ψiRψiL + ψiLψiR

�

∆Leff = mqλTr
�
Σ+ Σ†�



Chiral Lagrangian

• Expand up to quadratic order

m2
π = 8mqλ/f

2Pion mass

• Vacuum energy must be due to chiral condensate (ingredient in our construction)

ZQCD[mq, . . .] ≡ ZχPT[mq, . . .]

QCD degrees of freedom

Low-energy degrees of freedom Effective field theory

Matching 
From before:

λ = λ

�ψiRψjL� = −λ δji

Lχ = 4mqλ+
1

2
Tr (∂µφ∂µφ)−

8mqλ

f2

1

2
Tr (φφ)

Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�+mqλTr
�
Σ+ Σ†�

ZQCD[mq, . . .] =

�
D · · · ei

�
x(···−mqψψ) i

∂ logZQCD

∂mq
= �ψψ�

ZχPT[mq, . . .] =

�
DΣ ei

�
x Lχ(Σ;mq)

�ψψ� = i
∂ logZχPT

∂mq
= −λ�Tr

�
Σ+ Σ†�� = −2Nfλ



Chiral Lagrangian

• Expand up to quadratic order

m2
π = 8mqλ/f

2Pion mass

• Vacuum energy must be due to chiral condensate (ingredient in our construction)

ZQCD[mq, . . .] ≡ ZχPT[mq, . . .]

QCD degrees of freedom

Low-energy degrees of freedom Effective field theory

Matching 
From before:

λ = λ

�ψiRψjL� = −λ δji

Lχ = 4mqλ+
1

2
Tr (∂µφ∂µφ)−

8mqλ

f2

1

2
Tr (φφ)

Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�+mqλTr
�
Σ+ Σ†�

ZQCD[mq, . . .] =

�
D · · · ei

�
x(···−mqψψ) i

∂ logZQCD

∂mq
= �ψψ�

ZχPT[mq, . . .] =

�
DΣ ei

�
x Lχ(Σ;mq)

�ψψ� = i
∂ logZχPT

∂mq
= −λ�Tr

�
Σ+ Σ†�� = −2Nfλ

f2m2
π = 2mq|�ψψ�| (Gell-Mann Oakes Renner)



ChPT

• Quartic terms describe interactions

• Quadratic fluctuations are the approximate Goldstone bosons of SChSB

• Higher-order interactions renormalize lower-order terms

∼ 1

f2
(φ∂µφ)

2

power-law divergence
Absorb in renormalized mass,                       
or just use dimensional regularization

logarithmic divergence
Renormalization requires new           
operator in chiral Lagrangian

∼ mqλ

f4
φ4

• ChPT is non-renormalizable (needing infinite local terms to renormalize)

1). low-energy theory, so who cares?

2). must be able to order terms in terms of relevance “power counting”

Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�+mqλTr
�
Σ+ Σ†�

∆m2
π ∼ mqλ

f4

�

k

i

k2 −m2
π

∼ mqλ

f2

�
Λ2 +

mqλ

f2

�
logΛ2 + finite

��



Power Counting

• Leading-order Lagrangian in expansion in derivatives and quark mass

O(p2) ∂µ ∼ p mq ∼ p2 Low-energy dynamics of pions

Propagator Vertices Loop integral

�

k
∼ p4

General Feynman diagram: L loops, I internal lines, V vertices ∼ p4L−2I+2V

Euler formula L = I − V + 1 ∼ p2L+2

• Loop expansion: one loop graphs require only             countertermsO(p4)

Two loop graphs?

Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�+mqλTr
�
Σ+ Σ†�

∂µ∂µ, mq ∼ p2
i

k2 −m2
π

∼ p−2



             Chiral Lagrangian

• Construct chirally invariant terms out of coset

O(p4)

Σ → LΣR†

Σ† → RΣ†L†

• Construct terms that break chiral symmetry in the same way as mass term 

Simplification: add external scalar field to QCD action

Make the scalar transform to preserve chiral symmetry

s = mq + · · ·Giving the scalar a v.e.v. breaks chiral symmetry just as a mass

E.g.              LagrangianO(p2)

s → LsR†

Σs† + sΣ†

E.g.              LagrangianO(p2)

∆L = −ψLsψR − ψRs
†ψL

∂µΣ ∂µΣ
†



             Chiral LagrangianO(p4)
Σ → LΣR†

Σ† → RΣ†L† s† → Rs†L†
s → LsR†

Also impose Euclidean invariance, C, P, T

Easy to generate terms. Care needed to find minimal set. 

E.g. [Tr
�
Σs† − sΣ†�]2 → m2

q[Tr
�
Σ− Σ†�]2 = 0

{Lj} low-energy constants = Gasser-Leutwyler coefficients, dimensionless
N.B. these are not Gasser-Leutwyler’s coefficients

Complete set of counterterms needed to renormalize one-loop ChPT

Additional terms necessary when coupling external fields...

Exercise:
Determine the effects of strong isospin breaking                    on the chiral 
Lagrangian. At what order does the pion isospin multiplet split?

mu �= md

L4 = L1[Tr
�
∂µΣ∂µΣ

†�]2 + L2Tr
�
∂µΣ∂νΣ†�Tr

�
∂µΣ∂νΣ

†�

+ L3
mqλ

f2
Tr

�
∂µΣ∂µΣ

†�Tr
�
Σ+ Σ†�+ L4

(mqλ)2

f4
[Tr

�
Σ+ Σ†�]2



Simplest one-loop computation: Chiral Condensate

“Tree-Level”

One LoopΣ+ Σ† = 2− 4

f2
φ2 + · · ·

O(p4)

“Tree-Level”

Final result:

Dimensionally regulated integral − m2
π

(4π)2

�
1

�
− γE + log 4π + log

µ2

m2
π

+ 1

�

Chiral Logarithm

�ψψ� = i
∂ logZχPT

∂mq
= −λ�Tr

�
Σ+ Σ†�� = −2Nfλ

∆�ψψ� = +
4λ

f2
× 3Gπ(0) =

12λ

f2

�

k

i

k2 −m2
π

−L3
λ

f2
Tr

�
∂µΣ∂µΣ

†�Tr
�
Σ+ Σ†�− 2L4

mqλ2

f4
[Tr

�
Σ+ Σ†�]2

= −32L4
mqλ2

f4
= −4λ

m2
π

f2
L4

�ψψ� = −4λ

�
1 +

3m2
π

(4πf)2

�
log

µ2

m2
π

+ 1

�
+

m2
π

f2
L4(µ)

�
µ2 d

dµ2
L4 = − 3

16π2



Two-Flavor ChPT

• Leading and next-to-leading order Lagrangian in isospin limit mu = md

• Compute quark mass dependence of chiral condensate, pion mass, pion-pion 
scattering, ..., in terms of a few low-energy constants

aI=2
ππ = A2

√
mq [1 +B2 mq (logmq + C2)]

�ψψ� = A0 [1 +B0 mq (logmq + C0)]

m2
π = A1 mq [1 +B1 mq (logmq + C1)]

• Further applications: electroweak properties of pions require external fields

L4 = L1[Tr
�
∂µΣ∂µΣ

†�]2 + L2Tr
�
∂µΣ∂νΣ†�Tr

�
∂µΣ∂νΣ

†�

+ L3
mqλ

f2
Tr

�
∂µΣ∂µΣ

†�Tr
�
Σ+ Σ†�+ L4

(mqλ)2

f4
[Tr

�
Σ+ Σ†�]2

L2 =
f2

8

�
Tr

�
∂µΣ∂µΣ

†�+mqλTr
�
Σ+ Σ†��



Incorporating External Fields in ChPT

• Start by incorporating external gauge fields in QCD

[SU(2)L]⊗ [SU(2)R]Local invariance

(DL)µ = ∂µ + ig Gµ + iLµ

(DR)µ = ∂µ + ig Gµ + iRµ

Lµ = Rµ = QeAµE.g. external vector field

and
Lµ −→ L(x)LµL

†(x) + i[∂µL(x)]L
†(x)

Rµ −→ R(x)RµR
†(x) + i[∂µR(x)]R†(x)

ψL −→ L(x)ψL

ψR −→ R(x)ψR

• Then incorporate external gauge fields in ChPT

Σ → L(x)ΣR†(x) DµΣ → L(x)[DµΣ]R
†(x)Need covariant derivative

DµΣ = ∂µΣ+ iLµΣ− iΣR†
µ

Leading-order chiral Lagrangian [with external fields counted as           ]O(p)

*Additional operators 
at higher orders

Lψ = ψLiD/L ψL + ψRiD/R ψR

L2 =
f2

8

�
Tr

�
DµΣDµΣ

†�+mqλTr
�
Σ+ Σ†��



What is f?

J+
µL = uLγµdL

π → µ+ νµ

Pion weak decay 

π
µ

νµ

W

Strong part factorizes into QCD matrix element
(the rest you learned how to compute in QFT)

pion decay constant
Γπ→µ+νµ =

G2
F

8π
f2
πm

2
µmπ|Vud|2

�
1−

m2
µ

m2
π

�2

ChPT current matches the QCD current

� 0 |J+
µL|π(�p) � = ipµ fπ

� 0 |J+
µL|π(�p) � = ipµ (f + · · · )

τ+ =
1

2
(τ1 + iτ2)

fπ = f [1 +Bmq (logmq + C)]

fπ = 132 MeV

Dimensionless power counting p2/Λ2
χ

Λχ = 2
√
2πf ∼ 1.2 GeV m2

π/Λ
2
χ

∆L = W−µJ+
µL

Ja
µL =

∂Lχ

∂Laµ

�����
Lµ=0

=
f2

4
Tr

�
iτaΣ∂µΣ

†�+ · · · = f

2
Tr (τa∂µφ) + · · ·



Exercise:
The masses of hadrons are modified by 
electromagnetism. 

 

Construct all leading-order electromagnetic 
mass operators by promoting the electric 
charge matrix to fields transforming under 
the chiral group. (Notice that no photon fields 
will appear in the electromagnetic mass 
operators because there are no external 
photon lines.) Which pion masses are 
affected by the leading-order operators? 
Finally give an example of a next-to-leading 
order operator, or find them all. 

µ

p,mπ

Λχ = 2
√
2πf

ChPT as an EFT



Reminder: Asymptotic Expansions

• Non-analytic quark mass dependence implies asymptotic expansion                                                  
(but obviously so: zero radius of convergence)

Toy Model F (x) =

� ∞

0
ds

e−s

1 + sx
0 < x � 1

F (x) =

� ∞

0
ds e−s




∞�

j=0

(−s x)j



 !
=

∞�

j=0

(−x)j
�� ∞

0
ds sj e−s

�

No series expansion 
about x=0

Suggests approximation FN (x) =
N�

j=0

(−)jj! xj

|F (x)− FN (x)| = xN+1

�
sN+1e−s ds

1 + s x
≤ xN+1(N + 1)!

≈
√
2πN(xN)Ne−NLarge N ∼

�
2π

x
e−

1
x

Minimize

x ∼ 1/N



Reminder: Asymptotic Expansions

• Non-analytic quark mass dependence implies asymptotic expansion                                                  
(but obviously so: zero radius of convergence)

Toy Model F (x) =

� ∞

0
ds

e−s

1 + sx
0 < x � 1

No series expansion 
about x=0

Minimize
x ∼ 1/N

|F (x)− FN (x)| �
�

2π

x
e−

1
x

N=1



Reminder: Asymptotic Expansions

• Non-analytic quark mass dependence implies asymptotic expansion                                                  
(but obviously so: zero radius of convergence)

Toy Model F (x) =

� ∞

0
ds

e−s

1 + sx
0 < x � 1

No series expansion 
about x=0

Minimize
x ∼ 1/N

|F (x)− FN (x)| �
�

2π

x
e−

1
x

N=2
N=1



Reminder: Asymptotic Expansions

• Non-analytic quark mass dependence implies asymptotic expansion                                                  
(but obviously so: zero radius of convergence)

Toy Model F (x) =

� ∞

0
ds

e−s

1 + sx
0 < x � 1

No series expansion 
about x=0

Minimize
x ∼ 1/N

|F (x)− FN (x)| �
�

2π

x
e−

1
x

N=2
N=1

N=3



Reminder: Asymptotic Expansions

• Non-analytic quark mass dependence implies asymptotic expansion                                                  
(but obviously so: zero radius of convergence)

Toy Model F (x) =

� ∞

0
ds

e−s

1 + sx
0 < x � 1

No series expansion 
about x=0

Minimize
x ∼ 1/N

|F (x)− FN (x)| �
�

2π

x
e−

1
x

N=2
N=1

N=3N=12

Include more terms: 
limits to smaller x

Make better at larger x 
by dropping terms



Reminder: Asymptotic Expansions

• Non-analytic quark mass dependence implies asymptotic expansion                                                  
(but obviously so: zero radius of convergence)

Chiral expansion m2
π/Λ

2
χ ∼ 0.02 (may even be OK for larger-than-physical 

pion masses)m2
π/m

2
ρ ∼ 0.03

m2
π/m

2
σ ∼ 0.08

• Higher orders introduce more parameters (low-energy 
constants)

• Makes addressing convergence difficult without 
knowing the chiral limit values of these parameters 

EFT cannot capture non-analyticities from meson resonances



Three-Flavor Chiral Limit?

mq/ΛQCD ∼ 0.01

ms/ΛQCD ∼ 0.3

Ignore the warning signs

Lψ =
3�

i=1

ψi (iD/ −mi)ψi



Three-Flavor Chiral Limit

U(1)V ⊗ SU(3)L ⊗ SU(3)R −→ U(1)V ⊗ SU(3)V

�ψψ� = �ψRψL�+ �ψLψR� �= 0
Symmetries and 
their breaking

SU(3)L ⊗ SU(3)R/SU(3)VΣij ∼ �ψjRψiL� Σij(x) = δij + . . .

Σ = e2iφ/f Σ → LΣR† Σ → V ΣV † φ → V φV †

Goldstone modes (embedded similarly to before)

φ =





1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K0 − 2√
6
η





Lψ =
3�

i=1

ψiiD/ψi + . . .



Three-Flavor Chiral Perturbation Theory

U(1)V ⊗ SU(3)L ⊗ SU(3)R −→ U(1)V ⊗ SU(3)V

Σ = e2iφ/f Σ → LΣR† Σ → V ΣV † φ → V φV †

Chiral perturbation theory  (constructed similarly to before)

Explicit breaking m =




mq

mq

ms





O(p4)

O(p2)

Seven Gasser-Leutwyler coefficients,                  
a few more when external fields are included

Lχ =
f2

8
Tr

�
∂µΣ∂µΣ

†�+ λTr
�
mΣ+mΣ†�

−ψL mψR − ψR mψL



Exercises

Revisit electromagnetic mass corrections in three-flavor chiral perturbation theory.  
Find all leading and next-to-leading order electromagnetic mass operators. Ignoring 
the up and down quark masses, which octet masses are affected by leading and 
next-to-leading order operators?

In the strong isospin limit, there are two different quark masses but three meson 
masses of the pseudoscalar octet. Use the three-flavor chiral Lagrangian to derive 

the constraint                                                          ,  which was originally found by 
Gell-Mann and Okubo.  What happens away from the strong isospin limit?

∆GMO =
4

3
m2

K −m2

η −
1

3
m2

π = 0

Accounting for strong and electromagnetic isospin breaking to leading order, 
determine the mass spectrum of the meson octet, and devise a way to compute 
the quark mass ratios,                               , using the experimentally measured 
masses. 

mu/md md/ms



Three-Flavor Chiral Perturbation Theory

Gell-Mann Okubo mass relation ∆GMO =
4

3
m2

K −m2

η −
1

3
m2

π = 0

∆GMO/m
2

φ ≈ 15%

Next-to-leading order corrections:             one-loop + local terms from O(p2) O(p4)

0 = O(p4) ∼
m4

φ

m2
φΛ

2
χ

mπ0 = 135.0 MeV

mK0 = 497.6 MeV

mη = 547.9 MeV

most worrisomeη ∼ 35%

introduces free parameter
m2

π/Λ
2
χ ∼ 0.02

m2
K/Λ2

χ ∼ 0.23

m2
η/Λ

2
χ ∼ 0.27

Pending numerical factors,            contributions 
(which include two-loop diagrams) should be ~10%

O(p6)



Summary
III. Describing Goldstone bosons

• Spontaneous symmetry breaking can be systematically addressed in EFTs

• EFT construction is “bottom down”

In essence effective d.o.f. arise non-perturbatively 

µ

p,mπ

Λχ

(mK ,mη?)

• Goldstone boson dynamics consequence of pattern of 
spontaneous and explicit symmetry breaking

• E.g. Chiral perturbation theory provides the tool to 
account for light quark mass dependence of low-energy 
QCD observables.

Size of light quark mass controls efficacy


