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Effective Recap

• Heavy particles can be systematically integrated out resulting in EFTs

Full Theory Effective Theory
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• OPE: product of two currents represented as a tower of local operators
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• Identifying effective d.o.f = retaining their non-analyticities, all else     analytic≈



Effective Field Theory

II. Removing large scales 



Large Scales

• Large mass but now retain the heavy particle in the EFT

Heavy Quark Effective Theory (HQET)

• Interactions of multiple heavy particles

Non-Relativistic QED (NRQED)
Non-Relativistic QCD (NRQCD) *Nucleon-Nucleon EFT  (/π)

*  “bottom up” EFTs

• Particles with large energies, jets, ...

Soft-Collinear Effective Theory (SCET)

*Heavy Baryon Chiral EFT



• Static limit                            , with

Heavy Quark Effective Theory

• Treat interactions of large mass particles with small momentum exchanged

LQCD = −1

4
GµνG

µν +Q(iD/−mQ)Q+ q(iD/−mq)q

pµ = mQ vµ + kµ k � mQ

mQ

mq

• Integrate out large momentum modes from heavy quark field --> HQET

Georgi’s velocity        
super-selection rule

vµv
µ = 1

mQ vµ

pµ

kµ

mQ v�µ
p�µ

k�µ

ΛQCD

mQ



Heavy Quark Effective Theory

• Momentum space: heavy quark propagator                           , withpµ = mQ vµ + kµ k � mQ

Full non-analytic structure
(single particle pole)
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• Rest frame Static heavy quark pole 
θ(x0) δ

(3)(�x )
vµ = (1, 0, 0, 0)

[Quick Exercise]
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• Spinor projectors P± =
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[Quick Exercise]



Heavy Quark Effective Theory

• Coordinate space: heavy quark field decomposition                      

Q(x) = e−imQ v·x [P+Qv(x) + P−Qv(x)]

Annihilates quark, Creates antiquark

Annihilates quark with v Creates antiquark with v

L = Q (i/∂ −mQ)Q• Free heavy quark action

= Qviv · ∂Qv +Qv (−iv · ∂ − 2mQ)Qv

+Qv i/∂⊥Qv +Qv i/∂⊥Qv

eiSHQET[Qv,Qv ] =

�
DQvDQv ei

�
d4xL(Qv,Qv,Qv,Qv)

�
DQvDQv ei

�
d4xL(Qv,Qv,0,0)

Aµ
⊥ = Aµ − v ·Avµ

• “Top down”

Antiquark components energetically separated from quark components



Exercise

• Perform the Gaussian path integral over the antiquark field to arrive at the 
HQET effective action. Repeat for gauge covariant derivative...

L = Q (i/∂ −mQ)Q Lv = Qv

�
iv · ∂ − ∂2

⊥
2mQ

+ · · ·
�
Qv

Aµ
⊥ = Aµ − v ·Avµ



HQET Symmetries

• New symmetries emerge in the static limit

L = Q (iD/−mQ)Q Lv = Qviv ·DQv = Q
↑
viv ·DQ↑

v +Q
↓
iv ·DQ↓

v

Heavy quark spin symmetry

�S

mQ

mq

Heavy quark flavor symmetry

L = b (iD/−mb) b+ c (iD/−mc) c Lv = bviv ·D bv + cviv ·D cv = Q T
v iv ·DQv

Qv =

�
bv
cv

�

• HQET has manifest U(4) spin-flavor symmetry for mb,mc = ∞

Splitting of vector and scalar       mesonsQq

Consequence

Consequence

∝ 1

mQ

Splittings of      -        and       -        mesonsbq bs cq cs ∝ 1

mb
− 1

mc

Dµ = ∂µ + igAµaT a



Power Corrections	

• HQET organized as an expansion in the heavy quark Compton wavelength
�

mQc

Chromomagnetic moment explicitly breaks

LHQET = Qv

�
iD0 + c2

�D2

2mQ
+ cF g

�σ · �B
2mQ

+ cDg
�∇ · �E
8m2

Q

+ icSg
�σ · ( �D × �E − �E × �D)

8m2

Q

�
Qv +O(λ3

C)

• Contains all operators allowed by symmetries:                                          
parity, time-reversal, gauge invariance, and Galilean invariance

• Underlying Lorentz invariance of QCD implies non-perturbative relations 
between coefficients at different orders in HQET expansion, e.g. c2 = 1

cS = 2cF − 1

U(4) → U(1)b ⊗ U(1)c

�S

mQ

mq



Exercise

• Demand invariance of the HQET action under an infinitesimal boost to deduce 
the non-perturbative constraints:             ,                              .c2 = 1 cS = 2cF − 1

LHQET = Qv

�
iD0 + c2

�D2

2mQ
+ cF g

�σ · �B
2mQ

+ cDg
�∇ · �E
8m2

Q

+ icSg
�σ · ( �D × �E − �E × �D)

8m2

Q

�
Qv

δD0 =
1

M
�q · �D δ �D =

1

M
�q D0

δ �E =
1

M
�q × �B δ �B = − 1

M
�q × �E

Use the variations under the infinitesimal boost δ�v = − 1

M
�q

Hint: you will need to deduce the transformation of the heavy quark field...



Tree-Level Matching

LHQET = Qv

�
iD0 +

�D2

2mQ
+ cF g

�σ · �B
2mQ

+ cDg
�∇ · �E
8m2

Q

+ i(2cF − 1)g
�σ · ( �D × �E − �E × �D)

8m2

Q

�
Qv

• To second order in HQET expansion, only two parameters to determine: cF , cD

Full Theory (QCD) Effective Theory

cF

�p�|Jaµ|p� = g u(p�)

�
F1(q

2)γµ + F2(q
2)
iσµνqν
2mQ

�
T a u(p)

General quark-gluon vertex

Tree level g u(p�)γµT a u(p)

= g ξ†
�
vµ +

1

2mQ
(�p+ �p �)µ +

i

2mQ
(�σ × �q )µ

�
ξ +O(m−2

Q )

= g ξ†
icF
2mQ

(�σ × �q )µξ

u(p) =
�

mQ

E�p

/p+mQ�
mQ + E�p

P+ξ

cF = 1 Dirac chromomagnetic moment

. . . cD = 1 Darwin term / charge radius



One-Loop Matching

• pQCD corrections to the coefficients are needed in practice

Full Theory (QCD)

Quark-gluon vertex

• HQET has different short-distance behavior than QCD

αs(mQ)

+ wavefunction renormalization

A

�UV
+

B

�IR
+ (A+B) log

µ

mQ
+ C

UV and IR poles

�
ddk

k4
dim reg
= 0 No scale!
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One-Loop Matching

• HQET has same long-distance behavior as QCD
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One-Loop Matching

• HQET has same long-distance behavior as QCD

Full Theory (QCD)

• HQET has different short-distance behavior than QCD

+ wavefunction renormalization

Effective Theory

B

�IR
+ (A+B) log

µ

mQ
+ C

Quark-gluon vertex

Beff

�IR

B = Beff

QCD = HQET+∆C

= +∆C

∆C = (A+B) log
µ

mQ
+ CMatching condition



QCD = HQET+∆C

∆C = (A+B) log
µ

mQ
+ C

Exercise

• Verify the matching condition explicitly by isolating the UV and IR divergences 
of the chromomagnetic moment in QCD and HQET.



HQET for Proton

• Although I don’t know what the “Q” stands for, similar analysis can be applied to 

E&M interactions with a composite heavy particle, e.g. proton

• Matching cannot be performed in pQCD, need experimental data (or lattice QCD)

cF = Z + κ

cD = Z +
4

3
M2

p < r2E >

• Coefficients need not be            in Compton wavelength expansionO(1)

cD = 21

cF = 2.8 35%

5%

Point-like Dirac results

Lp = ψ†
p

�
iD0 +

�D2

2Mp
+ cF e

�σ · �B
2Mp

+ cDe
�∇ · �E
8M2

p

+ i(2cF − Z)e
�σ · ( �D × �E − �E × �D)

8M2
p

�
ψp



NRQCD/NRQED

• Non-relativistic bound states of two heavy particles, e.g. electron + positron, NRQED

Le = ψ†
e

�
iD0 +

�D2

2me
− e

�σ · �B
2me

− e
�∇ · �E
8m2

e

− ie
�σ · ( �D × �E − �E × �D)

8m2
e

�
ψe

• HQET counting breaks down for two particles interacting

Long-range interactions

• Must retain kinetic terms...

• Velocity power counting: two scales                                 space-time asymmetric

label momentum

residual momentum
Coulomb photons:  label changing



NNEFT
Short-range interactions

Propagator Spin x Isospin

• Power counting                          with                            ,  i.e. 

• Low-energy scattering described by effective range expansion... which is an EFT
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NNEFT
Short-range interactions

Propagator Spin x Isospin

• Power counting                          with                            ,  i.e. 

• Low-energy scattering described by effective range expansion... which is an EFT

Compare with

• Strong short-range interaction

bound



SCET

• Integrate out large momentum scales of high-energy particle (propagate along light-cone)

Energetic motion along the z-direction:

• SCET mode decomposition

label momentum

residual momentum

• IR singularities of intermediate propagator
Soft

Collinear

• Soft radiation • Collinear radiation



Summary
II. Removing large scales 

• Large scales can be systematically integrated out resulting in EFTs, e.g. HQET

• EFT coefficients determined from matching “top-down”

power corrections perturbative corrections

• Only IR behavior is shared and thus cancels in matching

Computations in EFT are simpler
EFT involves only d.o.f. relevant to energy regime 

µ • Theories have different UV behavior

large scales can be interrelated... NRQCD/SCET


