

Lectures on Effective Field Theory

- I. Removing heavy particles
- II. Removing large scales
- III. Describing Goldstone bosons
- IV. Interacting with Goldstone bosons

Brian Tiburzi The City College

Effective Reviews

Second Edition

JOHN F. DONOGHUE, EUGENE GOLOWICH. AND BARRY R. HOLSTEIN.

CAMBRIDGE MONOGRAPHY ON PARTICLE PRYSICS, NUCLEAR PHYSICS. AND COSMOLOGY

CEL

Heavy Quark Physics

ANEESH V. MANOHAR AND MARK B. WISE

CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS, NUCLEAR PHYSICS AND COSMOLOGY

10.

[Five lectures on effective field theory](http://inspirehep.net/record/694526)

[David B. Kaplan.](http://inspirehep.net/author/profile/Kaplan%2C%20David%20B.?recid=694526&ln=en) Oct 2005. 79 pp. e-Print: **[nucl-th/0510023](http://arXiv.org/abs/nucl-th/0510023) | [PDF](http://arXiv.org/pdf/nucl-th/0510023.pdf)**

[TASI lectures on effective field theories](http://inspirehep.net/record/626735)

[Ira Z. Rothstein](http://inspirehep.net/author/profile/Rothstein%2C%20Ira%20Z.?recid=626735&ln=en) [\(Carnegie Mellon U.\)](http://inspirehep.net/search?cc=Institutions&p=institution:%22Carnegie%20Mellon%20U.%22&ln=en). Aug 2003. 90 pp. e-Print: **[hep-ph/0308266](http://arXiv.org/abs/hep-ph/0308266) | [PDF](http://arXiv.org/pdf/hep-ph/0308266.pdf)**

[Effective field theory for few nucleon systems](http://inspirehep.net/record/584418)

[Paulo F. Bedaque](http://inspirehep.net/author/profile/Bedaque%2C%20Paulo%20F.?recid=584418&ln=en) [\(LBL, Berkeley\)](http://inspirehep.net/search?cc=Institutions&p=institution:%22LBL%2C%20Berkeley%22&ln=en), [Ubirajara van Kolck](http://inspirehep.net/author/profile/van%20Kolck%2C%20Ubirajara?recid=584418&ln=en) [\(Arizona U.](http://inspirehep.net/search?cc=Institutions&p=institution:%22Arizona%20U.%22&ln=en) & [RIKEN BNL\)](http://inspirehep.net/search?cc=Institutions&p=institution:%22RIKEN%20BNL%22&ln=en). Published in **Ann.Rev.Nucl.Part.Sci. 52 (2002) 339-396** DOI: [10.1146/annurev.nucl.52.050102.090637](http://dx.doi.org/10.1146/annurev.nucl.52.050102.090637) e-Print: **[nucl-th/0203055](http://arXiv.org/abs/nucl-th/0203055) | [PDF](http://arXiv.org/pdf/nucl-th/0203055.pdf)**

[On the foundations of chiral perturbation theory](http://inspirehep.net/record/357908)

[H. Leutwyler](http://inspirehep.net/author/profile/Leutwyler%2C%20H.?recid=357908&ln=en) [\(Bern U.\)](http://inspirehep.net/search?cc=Institutions&p=institution:%22Bern%20U.%22&ln=en). Aug 1993. 52 pp. Published in **Annals Phys. 235 (1994) 165-203** BUTP-93-24 DOI: [10.1006/aphy.1994.1094](http://dx.doi.org/10.1006/aphy.1994.1094) e-Print: **[hep-ph/9311274](http://arXiv.org/abs/hep-ph/9311274) | [PDF](http://arXiv.org/pdf/hep-ph/9311274.pdf)**

$$
(\hbar = c = 1)
$$

Effective (quantum) field theories exploit a separation of scales $|\Omega \gg \omega|$

$$
(\hbar = c = 1)
$$

Effective (quantum) field theories exploit a separation of scales $|\Omega \gg \omega|$

µ

 $(\hbar = c = 1)$

Effective (quantum) field theories exploit a separation of scales $\Omega \gg \omega$

> **Goal:** investigate power counting for various effective QFTs $r \ll R$ Low-scale physics is largely insensitive to high-scale physics (long-distance) (short-distance) $ω$ ∼ 1/ R $\Omega \sim 1/r$ QFTs require a regulator and renormalization

UV regulator alters high-scale physics to compute quantum effects Renormalization: absorb effects of regulator into theory parameters

$$
(\hbar = c = 1)
$$

Effective (quantum) field theories exploit a separation of scales $\Omega \gg \omega$

Construct low-scale EFT using non-perturbative degrees of freedom

Effective Field Theory

I. Removing heavy particles

$$
\mathcal{L} = \dim 4
$$

$$
F_{\mu\nu} = \dim 2
$$

$$
\psi = \dim \frac{3}{2}
$$

EFT for low-frequency photons $\omega \ll m_e$ obtained by "integrating out" electron

$$
\mathcal{L} = \dim 4
$$

$$
F_{\mu\nu} = \dim 2
$$

$$
\psi = \dim \frac{3}{2}
$$

EFT for low-frequency photons $\omega \ll m_e$ obtained by "integrating out" electron

Low-frequency photon-photon scattering requires 4-photon operators $\sim F^4 = \dim 8$ Lorentz invariance, Gauge invariance, C, P, T

$$
\mathcal{L} = \dim 4
$$

$$
F_{\mu\nu} = \dim 2
$$

$$
\psi = \dim \frac{3}{2}
$$

EFT for low-frequency photons $\omega \ll m_e$ obtained by "integrating out" electron

Low-frequency photon-photon scattering requires 4-photon operators $\sim F^4 = \dim 8$ Lorentz invariance, Gauge invariance, C, P, T $\tilde{F}_{\mu\nu}=% \begin{bmatrix} \omega_{0}-i\frac{\gamma_{\mu}}{2} & g_{\mu\nu} \ g_{\mu\nu} & \omega_{\mu}\ g_{\mu\nu} & \omega_{\mu}\phi_{\mu}\end{bmatrix} \ ,$ 1 2 $\epsilon_{\mu\nu\alpha\beta}F^{\alpha\beta}$

$$
\mathcal{L} = \dim 4
$$

$$
F_{\mu\nu} = \dim 2
$$

$$
\psi = \dim \frac{3}{2}
$$

EFT for low-frequency photons $\omega \ll m_e$ obtained by "integrating out" electron

Low-frequency photon-photon scattering requires 4-photon operators $\sim F^4 = \dim 8$ Lorentz invariance, Gauge invariance, C, P, T $\tilde{F}_{\mu\nu}=% \begin{bmatrix} \omega_{0}-i\frac{\gamma_{\mu}}{2} & g_{\mu\nu} \ g_{\mu\nu} & \omega_{\mu}\ g_{\mu\nu} & \omega_{\mu}\phi_{\mu}\end{bmatrix} \ ,$ 1 2 $\epsilon_{\mu\nu\alpha\beta}F^{\alpha\beta}$

Exercise

• Include low-energy *virtual* photons in the Euler-Heisenberg EFT. What new local operator of lowest dimension is required? Determine the coefficient of this operator from matching to QED at one-loop order.

$$
\mathcal{L}_{\text{EFT}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + ? ? ? \n+ \frac{\alpha^2}{90 m_e^4} \left[(F_{\mu\nu} F^{\mu\nu})^2 + \frac{7}{4} (F_{\mu\nu} \tilde{F}^{\mu\nu})^2 \right]
$$

Effective Lessons

• EFT as low-energy limit of a QFT • Short-distance physics encoded in coefficients of local operators

$$
c_1 (F_{\mu\nu}F^{\mu\nu})^2 + c_2 (F_{\mu\nu}\tilde{F}^{\mu\nu})^2
$$

Operators built from effective d.o.f.

Respect symmetries of underlying theory

• Infinite tower of such higher-dimensional operators requires power counting

 $F^2\sim \omega^4,\quad F^4$

• Can make predictions without employing full QFT, and can systematically improve Finitely many operators to a given order EFT is itself a QFT... compute radiative corrections (non-analytic)

• Coefficients of higher dimensional operators must be determined

"Top Down" "Bottom Up"

Perturbation Theory **Experiment** Non-perturbative (lattice QCD)

Effective Lessons

• EFT is low-energy limit of a QFT • Short-distance physics encoded in coefficients of local operators

$$
c_1 (F_{\mu\nu}F^{\mu\nu})^2 + c_2 (F_{\mu\nu}\tilde{F}^{\mu\nu})^2
$$

Operators built from effective d.o.f.

Respect symmetries of underlying theory

• Infinite tower of such higher-dimensional operators requires power counting

 $F^2\sim \omega^4,\quad F^4$

• Can make predictions without employing full QFT, and can systematically improve • Coefficients of higher dimensional operators must be determined Finitely many operators to a given order EFT is itself a QFT... compute radiative corrections (non-analytic)

"Top Down"

Perturbation Theory Euler-Heisenberg EFT from finite one-loop diagram in QED perturbation theory

Standard Model as an EFT

- $\mathcal{L} = \dim 4$ $\psi = \dim \frac{3}{2}$ 2 $F_{\mu\nu} = \dim 2$
- Renormalizable interactions of SM are the low-energy limit of some high-energy theory
	- Physics beyond SM encoded in a tower of higher-dimension ops.

Standard Model as an EFT

- $\mathcal{L} = \dim 4$ $\psi = \dim \frac{3}{2}$ 2 $F_{\mu\nu} = \dim 2$
- Renormalizable interactions of SM are the low-energy limit of some high-energy theory
	- Physics beyond SM encoded in a tower of higher-dimension ops.

Standard Model as an EFT

- $\mathcal{L} = \dim 4$ $\psi = \dim \frac{3}{2}$ 2 $F_{\mu\nu} = \dim 2$
- Renormalizable interactions of SM are the low-energy limit of some high-energy theory
	- Physics beyond SM encoded in a tower of higher-dimension ops.

• QFT prejudice: associate energy scale with mass of new heavy particle

Exercise

• Enumerate *all* dimension-6 CP violating operators that respect Standard Model symmetries. How do these operators appear after electroweak symmetry breaking?

$$
\mathcal{O}^{(6)} = \overline{\psi}_L \sigma_{\mu\nu} \tilde{G}^{\mu\nu} \Phi \,\psi_R
$$

 $\mathcal{O}^{(6)}=f^{abc}\tilde{G}_{\mu}^{a\,\nu}G_{\nu}^{b\,\alpha}G_{\alpha}^{c\,\mu}$

 $M_{\Phi} \gg m_{\phi}$

 Φ, ϕ

- Perform path integral over heavy field
- Expand result in local operators built from light field e^{iS}

$$
S_{\text{eff}}[\phi] = \frac{\int \mathcal{D}\Phi \, e^{i \int d^4x \mathcal{L}(\Phi,\phi)}}{\int \mathcal{D}\Phi \, e^{i \int d^4x \mathcal{L}(\Phi,0)}}
$$

Illustrative toy model (Gaussian path integral)

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi - \frac{1}{2} M_{\Phi}^2 \Phi^2 + \Phi J \quad \text{ <-- coupling to } \phi
$$

Complete the square to deduce

$$
S_{\text{eff}}[\phi] = -\frac{1}{2} \int d^4x \, d^4y \, J(x)G(x - y)J(y)
$$

$$
J(y) = J(x) + (y - x)_{\mu} \partial^{\mu} J(x) + \dots
$$

 $M_{\Phi} \gg m_{\phi}$

 Φ, ϕ

- Perform path integral over heavy field
- Expand result in local operators built from light field

 $\int \mathcal{D}\Phi e^{i\int d^4x \mathcal{L}(\Phi,\phi)}$ $\int \mathcal{D}\Phi e^{i \int d^4x \mathcal{L}(\Phi,\theta)}$

Illustrative toy model (Gaussian path integral)

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi - \frac{1}{2} M_{\Phi}^2 \Phi^2 + \Phi J \quad \text{ <-- coupling to } \phi
$$

Complete the square to deduce

$$
S_{\text{eff}}[\phi] = -\frac{1}{2} \int d^4x \, d^4y \, J(x)G(x-y)J(x) + \dots
$$

$$
J(y) = J(x) + (y - x)_{\mu} \partial^{\mu} J(x) + \dots
$$

 $M_{\Phi} \gg m_{\phi}$

 Φ, ϕ

- Perform path integral over heavy field
- Expand result in local operators built from light field e^i

$$
S_{\text{eff}}[\phi] = \frac{\int \mathcal{D}\Phi \, e^{i \int d^4x \mathcal{L}(\Phi,\phi)}}{\int \mathcal{D}\Phi \, e^{i \int d^4x \mathcal{L}(\Phi,0)}}
$$

Illustrative toy model (Gaussian path integral)

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi - \frac{1}{2} M_{\Phi}^2 \Phi^2 + \Phi J \quad \text{ <-- coupling to } \phi
$$

Complete the square to deduce

$$
S_{\text{eff}}[\phi] = -\frac{1}{2} \int d^4x \, J(x)J(x) \int d^4y \, G(y) + \dots
$$

$$
J(y) = J(x) + (y - x)_{\mu} \partial^{\mu} J(x) + \dots
$$

 $M_{\Phi} \gg m_{\phi}$

 Φ, ϕ

- Perform path integral over heavy field
- Expand result in local operators built from light field e^{iS}

$$
iS_{\rm eff}[\phi] = \frac{\int \mathcal{D}\Phi \, e^{i\int d^4x \mathcal{L}(\Phi,\phi)}}{\int \mathcal{D}\Phi \, e^{i\int d^4x \mathcal{L}(\Phi,0)}}
$$

Illustrative toy model (Gaussian path integral)

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi - \frac{1}{2} M_{\Phi}^2 \Phi^2 + \Phi J \quad \text{ <-- coupling to } \phi
$$

Complete the square to deduce

$$
S_{\text{eff}}[\phi] = -\frac{1}{2} \int d^4x \, J(x)J(x) \int d^4y \, G(y) + \dots
$$

$$
J(y) = J(x) + (y - x)_{\mu} \partial^{\mu} J(x) + \dots
$$

 $M_{\Phi} \gg m_{\phi}$

 Φ, ϕ

- Perform path integral over heavy field
- Expand result in local operators built from light field e^{iS}

$$
iS_{\rm eff}[\phi] = \frac{\int \mathcal{D}\Phi \, e^{i\int d^4x \mathcal{L}(\Phi,\phi)}}{\int \mathcal{D}\Phi \, e^{i\int d^4x \mathcal{L}(\Phi,0)}}
$$

Illustrative toy model (Gaussian path integral)

$$
\mathcal{L} = \frac{1}{2} \partial_{\mu} \Phi \partial^{\mu} \Phi - \frac{1}{2} M_{\Phi}^2 \Phi^2 + \Phi J \quad \text{ <-- coupling to } \phi
$$

Complete the square to deduce

$$
S_{\text{eff}}[\phi] = \frac{1}{2M_{\Phi}^2} \int d^4x J(x)J(x) + \dots
$$

Fermi Theory as an EFT

- $\mathcal{L} = \dim 4$ $\psi = \dim \frac{3}{2}$ 2 $F_{\mu\nu} = \dim 2$
- Weak interactions are so because of large masses of W and Z bosons

• Efficacy of Fermi theory controlled by power counting, **e.g.** ß-decay $n \rightarrow p + e + \overline{\nu}_e$ $(\delta M_N)^2$ M_W^2 $(\overline{u}_L \gamma_\mu d_L)(\overline{e}_L \gamma^\mu \nu_L)$ \longrightarrow $n \to p + e + \overline{\nu}_e$ power corrections $\frac{(0.000 \gamma_\mu)^2}{M_{\text{max}}^2} \sim 10^{-10}$

Beyond Tree Level

• "Top-down" uses perturbation theory to integrate out heavy particles

• Introduces renormalization scale and scheme dependence in EFT $c O(x) \rightarrow c(\mu)O(x,\mu)$

Exercise

• Are there pQCD corrections to the B-decay operator in Fermi EFT? If so, characterize them. If not, explain why.

 $(\overline{u}_L \gamma_\mu d_L)(\overline{e}_L \gamma^\mu \nu_L)$ \longrightarrow $n \to p + e + \overline{\nu}_e$

The Dirtiest Corner of Standard Model

• Hadronic weak interaction observable through processes that violate QCD symmetries

The Dirtiest Corner of Standard Model

• Hadronic weak interaction observable through processes that violate QCD symmetries

The Dirtiest Corner of Standard Model

• Hadronic weak interaction observable through processes that violate QCD symmetries

Hadronic Parity Violation Beyond Trees

Hadronic Parity Violation Beyond Trees

Effective Summary I. Removing heavy particles

 $N_f = 4$

 $N_f = 3$

• Heavy particles can be systematically integrated out resulting in EFTs

MZ, M^W $\Lambda_{\rm QCD}$ m_c $N_f = 5$ | m_b • EFT coefficients determined from matching "top-down" *power corrections* $\left(\frac{m_{\phi}}{n_{\phi}}\right)^n$ *perturbative corrections* M_{Φ} \int_0^n porturbative corrections $\int_0^n \alpha_s(m_\phi)$ $\alpha_{\bm{s}}(M_{\Phi})$ "−γ*O/*2β⁰ • Theories have different UV behavior $\log \frac{M_W^2}{2}$ *W* $\frac{M_W^2}{-p^2} = \log \frac{\mu^2}{-p^2} - \log \frac{\mu^2}{M_W^2}$ • Only IR behavior is shared and thus cancels in matching Computations in EFT are simpler (one scale at a time) EFT involves only d.o.f. relevant to energy regime Standard Model is an EFT ... arises from integrating out heavy new particles?