renormalization group, hadron-hadron collisions QCD initial state, partons, DIS, factorization, inward bound: "femto-spectroscopy"

Part III

the World's most powerful microscopes

partons in the initial state: the DIS process

start with the simplest process: deep-inelastic scattering

relevant kinematics:

$$x = \frac{Q^2}{2p \cdot q} \quad y = \frac{p \cdot q}{p \cdot k} \quad Q^2 = xys$$

- Q²: photon virtuality ↔ resolution r~1/Q at which the proton is probed
- x: long. momentum fraction of struck parton in the proton
- y: momentum fraction lost by electron in the proton rest frame

start with the simplest process: deep-inelastic scattering

relevant kinematics:

$$x = \frac{Q^2}{2p \cdot q} \quad y = \frac{p \cdot q}{p \cdot k} \quad Q^2 = xys$$

- Q²: photon virtuality ↔ resolution r~1/Q at which the proton is probed
- ×: long. momentum fraction of struck parton in the proton
- y: momentum fraction lost by

"scaling limit": $Q^2 \rightarrow \infty$, x fixed

"deep-inelastic": Q² >> 1 GeV²

electron in the proton rest frame

resolution: $\frac{\hbar}{2} \approx \frac{2}{2}$ $r \sim 1/Q$ 2×10^{-16} m Q[GeV]

analysis of DIS: 1st steps

electroweak theory tells us how the virtual vector boson (here γ^*) couples:

analysis of DIS: 1st steps

electroweak theory tells us how the virtual vector boson (here γ^*) couples:

parity & Lorentz inv., hermiticity Www=Www^{*}, current conservation q_wWww=O dictate:

$$\begin{split} \mathcal{W}^{\mu\nu}(P,q,S) &= \frac{1}{4\pi} \int d^{4}z \; \mathrm{e}^{iq\cdot z} \; \langle P,S | \; J_{\mu}(z) \; J_{\nu}(0) \, | P,S \rangle \\ &= \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^{2}} \right) F_{1}(x,Q^{2}) + \left(P^{\mu} - \frac{P \cdot q}{q^{2}} q^{\mu} \right) \left(P^{\nu} - \frac{P \cdot q}{q^{2}} q^{\nu} \right) F_{2}(x,Q^{2}) \\ &+ i \, M \, \varepsilon^{\mu\nu\rho\sigma} q_{\rho} \left[\frac{S_{\sigma}}{P \cdot q} \; g_{1}(x,Q^{2}) + \frac{S_{\sigma}(P \cdot q) - P_{\sigma}(S \cdot q)}{(P \cdot q)^{2}} \; g_{2}(x,Q^{2}) \right] \end{split}$$

analysis of DIS: 1st steps

electroweak theory tells us how the virtual vector boson (here γ^*) couples:

parity & Lorentz inv., hermiticity Www=Www^{*}, current conservation q_wWww=O dictate:

parity & Lorentz inv., hermiticity Www=Www^{*}, current conservation q_wWww=O dictate: $\mathcal{W}^{\mu\nu}(P,q,S) = \frac{1}{4\pi} \int d^4z \, e^{iq\cdot z} \langle P,S | J_{\mu}(z) J_{\nu}(0) | P,S \rangle$ II $+ i M \varepsilon^{\mu\nu\rho\sigma} q_{\rho} \left| \frac{S_{\sigma}}{P \cdot q} g_1(x, Q^2) + \frac{S_{\sigma}(P \cdot q) - P_{\sigma}(S \cdot q)}{(P \cdot q)^2} g_2(x, Q^2) \right|$ $-g^{\mu\nu} +$ $+\frac{q^{\mu}q^{\nu}}{q^2}$ pol. structure fcts. g_{1,2} - measure W(P,q,S) - W(P,q,-S) ! $\left|F_1(x,Q^2) + \left(P^{\mu} - \frac{P \cdot q}{q^2}q^{\mu}\right) \left(P^{\nu} - \frac{P \cdot q}{q^2}\right)\right| = \frac{P}{q^2} \left(P^{\mu} - \frac{P \cdot q}{q^2}\right) \left(P^{\mu} - \frac{P \cdot q}{q^2}\right) \left(P^{\mu} - \frac{P \cdot q}{q^2}\right) = \frac{P}{q^2} \left(P^{\mu} - \frac{P \cdot q}{q^2}\right) \left(P^{\mu} - \frac{P \cdot q}{q^2}\right) \left(P^{\mu} - \frac{P \cdot q}{q^2}\right) = \frac{P}{q^2} \left(P^{\mu} - \frac{P \cdot q}{q^2}\right) \left(P^{\mu} - \frac{P \cdot q}{q^2}\right) \left(P^{\mu} - \frac{P \cdot q}{q^2}\right) = \frac{P}{q^2} \left(P^{\mu} - \frac{P \cdot q}{q^2}\right) \left(P^{\mu} - \frac{P \cdot q}{q^2}\right$ from QED leptonic tensor about hadronic structure contains information $-\frac{P\cdot q}{r^2}q^{\nu}\left|F_2(x,Q^2)\right|$ hadronic tensor unpol.structure fcts.F_{1,2}

spin S spin s $4\alpha^2 d^3 k'$ $\frac{1}{s} \frac{1}{2|\vec{k}'|} \frac{1}{Q^4} L^{\mu\nu}(k,q,s) W_{\mu\nu}(p,q,S)$

analysis of DIS: 1st steps

electroweak theory tells us how the virtual vector boson (here γ^{*}) couples:

let's do a quick calculation: consider electron-quark scattering

let's do a quick calculation: consider electron-quark scattering

find
$$\overline{\sum}|\mathcal{M}|^2 = 2e_q^2 e^4 \, \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$$

 $\hat{u} = (p_q - k')^2$

let's do a quick calculation: consider electron-quark scattering $\hat{\mathbf{s}} = (\mathbf{k} + \mathbf{p}_{\mathbf{q}})^2$

find $\overline{\sum}|\mathcal{M}|^2 = 2e_q^2 e^4 \, \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$

Mandelstam's with the usual

 $\bar{t}=(\mathbf{k}-\mathbf{k}')^2$

 $\hat{u}=(p_{\mathbf{q}}-k')^2$

8 || $\frac{Q^2}{2p \cdot q} \quad y = \frac{p \cdot q}{p \cdot k} \quad Q^2 = xys$ next: express by usual DIS variables

 $\hat{\mathbf{u}} = \hat{\mathbf{s}} \left(\mathbf{y} - \mathbf{1} \right)$

and use the massless 2->2 cross section

 $\hat{\mathbf{u}} = \hat{\mathbf{s}} \left(\mathbf{y} - \mathbf{1} \right)$

$$\frac{d\sigma}{dt} = \frac{1}{16\pi\hat{s}^2} \,\overline{\sum} |\mathcal{M}|^2$$

and use the massless 2->2 cross section

 $\hat{\mathbf{u}} = \hat{\mathbf{s}} \left(\mathbf{y} - \mathbf{1} \right)$

$$\frac{d\sigma}{dt} = \frac{1}{16\pi\hat{s}^2} \sum |\mathcal{M}|^2 \qquad \text{to obtain}$$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathbf{Q}^2} = \frac{2\pi\alpha^2 \mathbf{e}_\mathbf{q}^2}{\mathbf{Q}^4} [1 + (1-y)^2]$$

and use the massless 2->2 cross section

$$\frac{d\sigma}{dt} = \frac{1}{16\pi\hat{s}^2} \sum |\mathcal{M}|^2 \quad \text{ to obtain } \quad \frac{d\sigma}{dQ^2} = \frac{2\pi\alpha^2 e_q^2}{Q^4} [1 + (1 + 1)]^2 + (1 + 1)]^2 = \frac{1}{Q^4} [1 + (1 + 1)]^2 + (1 + 1)]^2 = \frac{1}{Q^4} [1 + (1 + 1)]^2 = \frac{1}$$

- y)²]

next: use on-mass shell constraint

$$p_q^{\prime 2} = (p_q + q)^2 = q^2 + 2p_q \cdot q$$

this implies that $\boldsymbol{\xi}$ is equal to Bjorken \boldsymbol{x}

$$= -2\mathbf{p} \cdot \mathbf{q} \left(\mathbf{x} - \boldsymbol{\xi} \right) = \mathbf{0}$$

DIS in the naïve parton modelIsing the naïve parton modelIsing the naïve parton modelfind
$$\sum |\mathcal{M}|^2 = 2e_q^2e^4 \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^2}$$
 with the usual $\hat{s} = (k + p_q)^2$ mext: express by usual DIS variables $x = \frac{Q^2}{2p \cdot q}$ $y = \frac{p \cdot q}{p \cdot k}$ $Q^2 = xys$ ind $\frac{\hat{s} = (k + p_q)^2}{(k - k)^2}$ and use the massless 2->2 cross section $\frac{d\sigma}{dt} = \frac{1}{16\pi\hat{s}^2} \sum |\mathcal{M}|^2$ to obtain $\frac{d\sigma}{dt} = \frac{1}{16\pi\hat{s}^2} = |\mathcal{M}|^2$ to obtain $\frac{d\sigma}{dt} = \frac{1}{16\pi\hat{s}^2} = 2|\mathcal{M}|^2$ to obtain $\frac{d\sigma}{dt} = \frac{1}{16\pi\hat{s}^2} = q^2 + 2p_q \cdot q$ to obtain $\frac{d\sigma}{Q^4} = (1 - y)^2 + 2p_q \cdot q$ to obtain $\frac{d\sigma}{Q^4} = (1 + (1 - y)^2) + 2p_q^2 \delta(x - \xi) = 0$ this implies that \tilde{s} is equal to Bjorken xto obtain $\frac{d\sigma}{dt^4} = (1 + (1 - y)^2) + 2p_q^2 \delta(x - \xi)$

 $dxdQ^2$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{x}\mathrm{d}\mathrm{Q}^2} = \frac{4\pi\alpha^2}{\mathrm{Q}^4} [1 + (1-\mathrm{y})^2] \frac{1}{2} \mathrm{e}_\mathrm{q}^2 \delta(\mathrm{x}-\xi)$$

2

т С

proton

to what one obtains with the hadronic tensor (on the quark level)

$$\frac{d^2\sigma}{dxdQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[[1+(1-y)^2]F_1(x) + \frac{(1-y)}{x}(F_2(x) - 2xF_1(x)) \right]$$

and read off with the parton distribution functions (probability to find a quark with momentum ξ) proton structure functions then obtained by weighting the quark str. fct. to what one obtains with the hadronic tensor (on the quark level) compare our result $F_2 = 2xF_1 = \sum_{\mathbf{q},\mathbf{n}'} \int_0^1 d\xi \frac{\lambda}{\mathbf{q}(\xi)} x e_q^2 \, \delta(\mathbf{x} - \xi)$ $\frac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{x}\mathrm{d}\mathrm{Q}^2} = \frac{4\pi\alpha^2}{\mathrm{Q}^4} \frac{[1+(1-\mathrm{y})^2]}{2} \frac{1}{2} \mathrm{e}_\mathrm{q}^2 \delta(\mathrm{x}-\xi)$ dxdQ² d²σ $\frac{4\pi\alpha^2}{Q^4} \left[1+(1-y)^2] F_1(x) + \frac{(1-y)}{x} (F_2(x)-2xF_1(x)) \right]$ $\mathbf{F}_2 = 2\mathbf{x}\mathbf{F}_1 = \mathbf{x}\mathbf{e}_q^2\,\delta(\mathbf{x}-\xi)$ $=\sum e_q^2 x q(x)$ "scaling" - no dependence on scale Q DIS measures the charged-weighted sum of quarks and antiquarks reflects spin 1/2 nature of quarks **Callan** Gross relation proton

DIS in the naïve parton model cont'd

space-time picture of DIS

where the proton moves very fast and Q>>m_h is big this can be best understood in a reference frame

space-time picture of DIS

where the proton moves very fast and Q>>m_h is big this can be best understood in a reference frame

space-time picture of DIS – cont'd

among the partons inside a fast-moving hadron: simple estimate for typical time-scale of interactions Breit frame: $\Delta x^+ \sim \frac{1}{Q}$ rest frame: $\Delta x^+ \sim \Delta x^- \sim \frac{1}{-}$ $\Delta x^- \sim -$ 1 mmQmm $\frac{\mathscr{A}}{n} = \frac{Q}{m^2}$ large ॥ © n small world-lines

of partons

space-time picture of DIS – cont'd

How does this compare with the time-scale of the hard scattering?

foundation of naïve Parton Model

Bjorken, Paschos

Feynman;

Breit frame:

proton moves very fast and Q>>mh is big

 $(p^+, p^-, \vec{p}_T) = \frac{1}{\sqrt{2}} (\frac{Q}{x}, \frac{xm_h^2}{Q}, \vec{0}) \quad (q^+, q^-, \vec{q}_T) = \frac{1}{\sqrt{2}} (-Q, Q, \vec{0})$

foundation of naïve Parton Model

Feynman;

Bjorken, Paschos

Breit frame:

proton moves very fast and Q>>m_h is big

$$(p^+, p^-, \vec{p}_T) = \frac{1}{\sqrt{2}} (\frac{Q}{x}, \frac{xm_h^2}{Q}, \vec{0}) \quad (q^+, q^-, \vec{q}_T) = \frac{1}{\sqrt{2}} (-Q, Q, \vec{0})$$

space-time picture:

Breit frame:

 $(p^+, p^-, \vec{p}_T) = \frac{1}{\sqrt{2}} (\frac{Q}{x}, \frac{xm_h^2}{Q}, \vec{0}) \quad (q^+, q^-, \vec{q}_T) = \frac{1}{\sqrt{2}} (-Q, Q, \vec{0})$ proton moves very fast and Q>>m_h is big

Breit frame:

 $(p^+, p^-, \vec{p}_T) = \frac{1}{\sqrt{2}} (\frac{Q}{x}, \frac{xm_h^2}{Q}, \vec{0}) \quad (q^+, q^-, \vec{q}_T) = \frac{1}{\sqrt{2}} (-Q, Q, \vec{0})$ proton moves very fast and Q>>m_h is big

sum rules and isospin

for the quark distributions in a proton there are several sum rules to obey

$$\int_0^1 dx \sum_i x f_i^{(p)}(x) = 1$$

$$\begin{split} \int_{0}^{1} dx \left(f_{u}^{(p)}(x) - f_{\bar{u}}^{(p)}(x) \right) &= 2 \\ \int_{0}^{1} dx \left(f_{d}^{(p)}(x) - f_{\bar{d}}^{(p)}(x) \right) &= 1 \\ \int_{0}^{1} dx \left(f_{d}^{(p)}(x) - f_{\bar{d}}^{(p)}(x) \right) &= 0 \end{split}$$

momentum sum rule

quarks share proton momentum

flavor sum rules

conservation of quantum numbers

sum rules and isospin

for the quark distributions in a proton there are several sum rules to obey

$$\int_{0}^{1} dx \sum_{i} x f_{i}^{(p)}(x) = 1$$
 quarks s
$$\int_{0}^{1} dx \left(f_{u}^{(p)}(x) - f_{u}^{(p)}(x) \right) = 2$$
$$\int_{0}^{1} dx \left(f_{d}^{(p)}(x) - f_{d}^{(p)}(x) \right) = 1$$
 conserv

ventum sum rule

share proton momentum

lavor sum rules

ation of quantum numbers

 $\int_{0} dx \left(f_{s}^{(p)}(x) - f_{\bar{s}}^{(p)}(x) \right) = 0$

isospin symmetry relates a neutron to a proton (just u and d interchanged)

 $F_2^n(x) = x\left(\frac{1}{9}d_n(x) + \frac{4}{9}u_n(x)\right) = x\left(\frac{4}{9}d_p(x) + \frac{1}{9}u_p(x)\right)$

ullet note: CC DIS couples to weak charges and separates quarks and antiquarks $\ ==$ measuring both allows to determine u^p and d^p separately

proton

momentum sum rule in the naïve parton model

momentum sum rule in the naïve parton model

×

momentum sum rule in the naive parton model

how can they couple?

×

$\int_{0}^{1} dx \sum_{i} x f_{i}^{(p)}(x) = 1$ $\frac{u_{v}}{d_{v}} = 0.267$ $\frac{u_{v}}{d_{v}} = 0.267$ $\frac{u_{v}}{d_{v}} = 0.267$ $\frac{u_{v}}{d_{v}} = 0.0263$ $\frac{u_{v}}{d_{v}} = 0.0053$ $\frac{u_{v}}{c_{v}} = 0.0053$	half of the momentum is missing	but they don't carry electric/weak charge 0.1 how can they couple? 0 0.2 0.4 0.6 0.8	we need to discuss QCD radiative corrections to the naive picture	pluons will enter the game and everything will become scale dependent	$\int_{0}^{1} dx \sum_{i} x f_{i}^{(p)}(x) = 1$ $\frac{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}} \frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}}{\frac{1}{d_{i}}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}{\frac{1}{d_{i}}}}$	uarks: xq(x) 0.6 0.4 0.3 0.1 0.2 0.2 0.4 0.3 0.1 0.2 0.4 0.2 0.4 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6 0.6 0.2 0.4 0.6 0.6 0.2 0.4 0.6 0.6 0.2 0.4 0.6 0.6 0.2 0.4 0.6 0.6 0.2 0.4 0.6 0.6 0.2 0.4 0.6 0.6 0.6 0.2 0.4 0.6 0
			but they don't carry electric/weak charge 0.1 by they don't carry electric/weak charge 0.1 by 0.2 0.4 0.6 0.8 by 0.2 0.2 0.8 by 0.2 0.4 0.8 by 0.2 0.4 0.6 0.8 by 0.2 0.8 by 0.2 0.4 0.8 by 0.2 0.8 by 0.2 0.8 by 0.2 0.8 by 0.2 0.4 0.8 by 0.2 0.8 by 0	but they don't carry electric/weak charge 0.1 by how can they couple? 0.2 0.4 0.6 0.8 by us to the naïve picture we need to discuss QCD radiative corrections to the naïve picture	gluons !	0.3 - dv uv

I

find strong scaling violations

 F_2^{em} -log₁₀(x)

 F_2^{em} -log₁₀(x)

 F_2^{em} -log₁₀(x)

DIS in the QCD improved parton model

we got a long way (parton model) without invoking QCD

now we have to study QCD dynamics in DIS

this leads to similar problems already encountered in e⁺e⁻

DIS in the QCD improved parton model

we got a long way (parton model) without invoking QCD

this leads to similar problems already encountered in e⁺e⁻

let's try to compute the O(α_s) QCD corrections to the naive picture

 α_{S} corrections to the LO process

photon-gluon fusion

DIS in the QCD improved parton model

we got a long way (parton model) without invoking QCD

now we have to study QCD dynamics in DIS

this leads to similar problems already encountered in e⁺e⁻

let's try to compute the O(α_s) QCD corrections to the naive picture

 α_{S} corrections to the LO process

caveat: have to expect divergencies (recall 2nd part)

related to soft/collinear emission or from loops

we cannot calculate with infinities ightarrow introduce a "regulator"

and remove it in the end

photon-gluon fusion

general structure of the $O(\alpha_s)$ corrections

using small (artificial) quark/gluon masses as regulator we obtain:

 $dx dQ^2|_{F_2}$ $d^2\hat{\sigma}$ ||| II F_2^q $e_q^2 x \left[\delta(1-x) + \frac{\alpha_s(\mu_r)}{4\pi} \left[P_{qq}(x) \ln \frac{Q^2}{m_q^2} + C_2^q(x) \right] \right]$

 $dxdQ^2|_{F_2}$ $d^2\hat{\sigma}$ $\equiv F_2^g$ $= \sum_{q} e_q^2 x \left[0 + \frac{\alpha_s(\mu_r)}{4\pi} \left[P_{qg}(x) \ln \frac{Q^2}{m_q^2} + C_2^g(x) \right] \right]$

general structure of the $O(\alpha_s)$ corrections

using small (artificial) quark/gluon masses as regulator we obtain:

 $dx dQ^2|_{F_2}$ $d^2\hat{\sigma}$ $\equiv F_2^q$ I $e_q^2 x \left[\frac{\delta(1-x) + \frac{\alpha_s(\mu_r)}{4\pi}}{4\pi} \left[P_{qq}(x) \ln \frac{Q^2}{m_g^2} + C_2^q(x) \right] \right]$ 5

 $dxdQ^2|_{F_2}$ $\equiv F_2^g$ $= \sum_{q} e_q^2 x \left[0 + \frac{\alpha_s(\mu_r)}{4\pi} \left[P_{qg}(x) \ln \frac{Q^2}{m_q^2} + C_2^g(x) \right] \right]$

 $d^2\hat{\sigma}$

using small (artificial) quark/gluon masses as regulator we obtain:

 $dxdQ^2|_{F_2}$ $dx dQ^2|_{F_2}$ $d^2\hat{\sigma}$ $d^2\hat{\sigma}$ $\equiv F_2^g$ Ш $= \sum_{q} e_{q}^{2} x \left[0 + \frac{\alpha_{s}(\mu_{r})}{4\pi} \left[P_{qg}(x) \left(\ln \frac{Q^{2}}{m_{a}^{2}} + C_{2}^{g}(x) \right) \right] \right]$ I F_2^q $e_q^2 x \left| \delta(1-x) + \frac{\alpha_s(\mu_r)}{4\pi} \right| P_{qq}(x) \left(\ln \frac{Q^2}{m_0^2} \right) \right|$ 6 (collinear emission) large logarithms m_a^2 $+ C_2^q(x)$

using small (artificial) quark/gluon masses as regulator we obtain:

general structure of the $O(\alpha_s)$ corrections

factorization of collinear singularities

for the quark part we obtain: $F_{2}(x,Q^{2}) = x \sum_{a=q,\bar{q}} e_{q}^{2} \left[f_{a,0}(x) + \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} \right]$ $f_{a,0}(x) \left[P_{qq} \left(\frac{x}{\xi} \right) \ln \frac{Q^2}{m_g^2} + C_2^q \left(\frac{x}{\xi} \right) \right]$ from fromJose -

similarly for the gluonic part

factorization of collinear singularities

factorization of collinear singularities

for the quark part we obtain: f_{a,0}(×): unmeasurable "bare" (= infinite) parton densities; $F_{2}(x,Q^{2}) = x \sum_{a=q,\bar{q}} e_{q}^{2} \Big[f_{a,0}(x) + \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} \Big]$ **at order** α_s : (can be generalized to all orders) need to be re-defined (= renormalized) to make them physical $f_a(x,\mu_f^2) \equiv f_{a,0}(x) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} f_{a,0}(\xi) P_{qq}\left(\frac{x}{\xi}\right) \ln\left(\frac{\mu_f^2}{m_q^2}\right) + z_{qq}$ factorization of collinear singularities $f_{a,0}(x) \left[P_{qq}\left(\frac{x}{\xi}\right) \ln \frac{Q^2}{m_a^2} + C_2^q\left(\frac{x}{\xi}\right) \right] \right]$ absorbs all long-distance singularities from the gluonic part similarly for

at a factorization scale μ_{f} into $f_{a,0}$

for the quark part we obtain: f_{a,o}(x): unmeasurable "bare" (= infinite) parton densities; $F_{2}(x,Q^{2}) = x \sum_{a=q,\bar{q}} e_{q}^{2} \Big[f_{a,0}(x) + \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} \Big]$ physical/renormalized densities: not calculable in pQCD but universal **at order** α_s : (can be generalized to all orders) need to be re-defined (= renormalized) to make them physical $f_a(x,\mu_f^2) \equiv f_{a,0}(x) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} f_{a,0}(\xi) P_{qq}\left(\frac{x}{\xi}\right) \ln\left(\frac{\mu_f^2}{m_q^2}\right) + z_{qq}$ factorization of collinear singularities $f_{a,0}(x) \left[P_{qq}\left(\frac{x}{\xi}\right) \ln \frac{Q^2}{m_a^2} + C_2^q\left(\frac{x}{\xi}\right) \right] \right]$ absorbs all long-distance singularities at a factorization scale μ_{f} into $f_{a,0}$ from similarly for the gluonic part

general structure of a factorized cross section

putting everything together, keeping only terms up to $lpha_{s}$:

 $F_{2}(x,Q^{2}) = x \sum_{a=q,\bar{q}} e_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} f_{a}(\xi,\mu_{f}^{2})$ $\left| \delta(1 - \frac{x}{\xi}) + \frac{\alpha_s(\mu_r)}{2\pi} \right| P_{qq}\left(\frac{x}{\xi}\right) \ln \frac{Q^2}{\mu_f^2} + (C_2^q - z_{qq})\left(\frac{x}{\xi}\right) \right|$

short-distance "Wilson coefficient"

(this will lead to the concept of renormalization group eqs.) the physical structure fct. is independent of μ_{f} putting everything together, keeping only terms up to $lpha_{s}$: general structure of a factorized cross section

short-distance "Wilson coefficient"

JOAN CARTIER

ALRIGHT RUTH, I ABOUT GOT THIS ONE RENORMALIZED.

lesson: theorists are not afraid of infinities

universal PDFs ightarrow key to predictive power of pQCD

use them to predict cross sections in, say, hadron-hadron collisions once PDFs are extracted from one set of experiments, e.g. DIS, we can

parton densities are universal

there must be a process-independent precise definition

less often used: DIS scheme = "maximal" subtraction where all $O(\alpha_s)$ corrections in DIS are absorbed into PDFs (nice for DIS but a bit awkward for other processes)
standard choice: modified minimal subtraction (MS) scheme (closely linked to dim. regularization; used in all PDF fits)
small print: we need to specify a common factorization scheme for short- and long-distance physics (= choice of z _{ij} in our result for F ₂)
parton densities are universal → there must be a process-independent precise definition
once PDFs are extracted from one set of experiments, e.g. DIS, we can use them to <mark>predict cross sections</mark> in, say, hadron-hadron collisions
universal PDFs $ ightarrow$ key to predictive power of pQCD

universal PDFs \rightarrow key to predictive power of pQCD
once PDFs are extracted from one set of experiments, e.g. DIS, we can use them to <mark>predict cross sections</mark> in, say, hadron-hadron collisions
parton densities are universal → there must be a process-independent precise definition
small print: we need to specify a common factorization scheme for short- and long-distance physics (= choice of z _{ij} in our result for F ₂)
standard choice: modified minimal subtraction (MS) scheme (closely linked to dim. regularization; used in all PDF fits)
less often used: DIS scheme = "maximal" subtraction where all $O(\alpha_s)$ corrections in DIS are absorbed into PDFs (nice for DIS but a bit awkward for other processes)
classic (but old-fashioned) definition of PDFs through their Duke, Muta
Mellin moments in Wilson-Zimmermann's operator product expansion (OPE)

matrix elements of bi-local operators on the light-cone more physical formulation in Bjorken-x space:

Curci, Furmanski, Petronzio; Collins, Soper see, e.g., D. Soper, hep-lat/9609018

for quarks: (similar for gluons; easy to include spin $\gamma^* \rightarrow \gamma^* \gamma_5$)

 $f_a(\xi,\mu_f) = \frac{1}{2} \int \frac{dy^-}{2\pi} e^{-i\xi p^+ y^-} \langle p | \overline{\Psi}_a(0,y^-,\vec{0})\gamma^+ \mathcal{F}\Psi_a(0) | p \rangle_{\overline{\mathsf{MS}}}$

matrix elements of bi-local operators on the light-cone more physical formulation in Bjorken-x space:

Curci, Furmanski, Petronzio; Collins, Soper see, e.g., D. Soper, hep-lat/9609018

for quarks: (similar for gluons; easy to include spin $\gamma^* \rightarrow \gamma^* \gamma_5$)

$$f_a(\xi,\mu_f) = \frac{1}{2} \int \frac{dy^-}{2\pi} e^{-i\xi p^+ y^-} \langle p | \overline{\Psi}_a(0,y^-,\vec{0})\gamma^+ \mathcal{F}\Psi_a(0) | p \rangle_{\overline{\mathsf{MS}}}$$

annihilates quark at x¤=0

matrix elements of bi-local operators on the light-cone more physical formulation in Bjorken-x space:

Curci, Furmanski, Petronzio; Collins, Soper see, e.g., D. Soper, hep-lat/9609018

for quarks: (similar for gluons; easy to include spin $\gamma^* \rightarrow \gamma^* \gamma_5$)

$$f_{a}(\xi,\mu_{f}) = \frac{1}{2} \int \frac{dy^{-}}{2\pi} e^{-i\xi p^{+}y^{-}} \langle p | \overline{\Psi}_{a}(0,y^{-},\vec{0})\gamma^{+}\mathcal{F}\Psi_{a}(0) | p \rangle_{\overline{\text{MS}}}$$

$$recreates \ quark \ annihilates$$

$$at \ x^{+}=0 \ and \ x^{-}=y^{-} \ quark \ at \ x^{\mu}=0$$

matrix elements of bi-local operators on the light-cone more physical formulation in Bjorken-x space:

see, e.g., D. Soper Petronzio; Collins, Soper Curci, Furmanski, hep-lat/9609018

matrix elements of bi-local operators on the light-cone more physical formulation in Bjorken-x space:

see, e.g., D. Soper Petronzio; Collins, Soper Curci, Furmanski, hep-lat/9609018

for quarks: (similar for gluons; easy to include spin
$$\gamma^{+} \rightarrow \gamma_{5}$$
)

$$f_{a}(\xi, \mu_{f}) = \frac{1}{2} \int \frac{dy}{2\pi} e^{-i\xi p^{+}y^{-}} \langle p | \overline{\Psi}_{a}(0, y^{-}, \vec{0}) \gamma^{+} \mathcal{F}\Psi_{a}(0) | p \rangle_{\overline{MS}}$$
Fourier transform recreates quark annihilates
 \rightarrow momentum ξp^{+} at $x^{+}=0$ and $x^{-}=y^{-}$ quark at $x^{\mu=0}$
• in general we need a "gauge link" for a gauge invariant definition:
 $\mathcal{F} = \mathcal{P} \exp \left(-ig \int_{0}^{y^{-}} dz^{-} A_{c}^{+}(0, z^{-}, \vec{0})T_{c}\right)$
crucial role for a special class of "transverse polarization ("Sivers function", ...)

matrix elements of bi-local operators on the light-cone more physical formulation in Bjorken-x space:

see, e.g., D. Soper Petronzio; Collins, Soper Curci, Furmanski, hep-lat/9609018

for quarks: (similar for gluons; easy to include spin $\gamma^* \rightarrow \gamma^* \gamma_5$) $f_a(\xi,\mu_f) = \frac{1}{2} \int \frac{dy}{2\pi} e^{-i\xi p^+ y^-} \langle p | \overline{\Psi}_a(0,y^-,\vec{0})\gamma^+ \mathcal{F}\Psi_a(0) | p \rangle_{\overline{\mathsf{MS}}}$ Fourier transform \rightarrow momentum $\mathfrak{E} p^{\star}$ recreates quark at x⁺=0 and x⁻=y⁻ quark at x^{µ=}0 annihilates

in general we need a "gauge link" for a gauge invariant definition:

 $\mathcal{F} = \mathcal{P} \exp\left(-ig \int_0^y dz^- A_c^+(0, z^-, \vec{0})T_c\right)$

interpretation as number operator only in "A⁺= 0 gauge"

describing phenomena with transverse polarization ("Sivers function", ...

crucial role for a special class of "transverse-momentum dep. PDFs"

- turn into local operators (ightarrow lattice QCD) if taking moments $\int_0^1 d\xi \xi^n$
- interpretation as number operator only in "A⁺= 0 gauge"

 $\mathcal{F} = \mathcal{P} \exp\left(-ig \int_0^y dz^- A_c^+(0, z^-, \vec{0})T_c\right)$

in general we need a "gauge link" for a gauge invariant definition:

$ ightarrow$ momentum ${ m \math {E}}$ p ⁺	Fourier transform
at x ⁺ =0 and x ⁻ =y ⁻	recreates quark
quark at x=0	annihilates

for quarks: (similar for gluons; easy to include spin $\gamma^* \rightarrow \gamma^* \gamma_5$) $f_a(\xi,\mu_f) = \frac{1}{2} \int \frac{dy}{2\pi} e^{-i\xi p^+ y^-} \langle p | \overline{\Psi}_a(0,y^-,\vec{0})\gamma^+ \mathcal{F}\Psi_a(0) | p \rangle_{\overline{\mathsf{MS}}}$

PDFs as bi-local operators

matrix elements of bi-local operators on the light-cone more physical formulation in Bjorken-x space:

Curci, Furmanski, Petronzio; Collins, Soper see, e.g., D. Soper, hep-lat/9609018
pictorial representation of PDFs

suppose we could take a snapshot of a nucleon with positive helicity

have the same/opposite helicity? (quark, anti-quarks, gluons) have momenta question: how many constituents between xP and (x+dx)P and how many

pictorial representation of PDFs

suppose we could take a snapshot of a nucleon with positive helicity

have the same/opposite helicity? question: how many constituents (quark, anti-quarks, gluons) have momenta between xP and (x+dx)P and how many

ightarrow LHC phenomenology, etc.

pictorial representation of PDFs

suppose we could take a snapshot of a nucleon with positive helicity

question: how many constituents have the same/opposite helicity? (quark, anti-quarks, gluons) have momenta between xP and (x+dx)P and how many

ightarrow LHC phenomenology, etc.

ightarrow spin of the nucleon

so far: infinities related to long-time/distance physics (soft/collinear emissions)

in some non-perturbative parton or fragmentation functions or can be systematically removed (factorization) by "hiding" them these singularities cancel for infrared safe observables

so far: infinities related to long-time/distance physics (soft/collinear emissions)

or can be systematically removed (factorization) by "hiding" them these singularities cancel for infrared safe observables in some non-perturbative parton or fragmentation functions

but: class of ultraviolet infinities related to the smallest time scales/distances:

so far: infinities related to long-time/distance physics (soft/collinear emissions)

or can be systematically removed (factorization) by "hiding" them in some non-perturbative parton or fragmentation functions these singularities cancel for infrared safe observables

but: class of ultraviolet infinities related to the smallest time scales/distances:

we can insert perturbative corrections to vertices and propagators ("loops")

loop momenta can be very large (=infinite) leading to virtual fluctuations on very short time scales/distances

so far: infinities related to long-time/distance physics (soft/collinear emissions)

or can be systematically removed (factorization) by "hiding" them in some non-perturbative parton or fragmentation functions these singularities cancel for infrared safe observables

but: class of ultraviolet infinities related to the smallest time scales/distances:

we can insert perturbative corrections to vertices and propagators ("loops")

loop momenta can be very large (=infinite) leading to virtual fluctuations on very short time scales/distances

again, we need a suitable regulator for divergent loop integrations:

UV cut-off vs. dim. regularization intuitive; involved;

intuitive; involved; not beyond NLO works to all orders

factorization and renormalization play similar roles at opposite ends of the energy range of pQCD

renormalization group equations (RGE) relate physics at diff. scales

RGE: the swiss army knife of pQCD

we use α_s (and $f_{a'}$, D_c^H) to absorb UV (IR) divergencies

ightarrow we cannot predict their values within pQCD

RGE: the swiss army knife of pQCD

we use α_{s} (and $f_{a'}, D_{c}^{H})$ to absorb UV (IR) divergencies

ightarrow we cannot predict their values within pQCD

however, a key prediction of pQCD is their scale variation

RGE: the swiss army knife of pQCD

we use α_s (and f_a , D_c^H) to absorb UV (IR) divergencies ightarrow we cannot predict their values within pQCD

however, a key prediction of pQCD is their scale variation

the physical idea behind this is beautiful & simple:

both scale parameters μ_{f} and μ_{p} are not intrinsic to QCD

ightarrow a measurable cross section do must be independent of $\mu_{
m p}$ and $\mu_{
m f}$

renormalization group equations

we use α_s (and f_a , D_c^H) to absorb UV (IR) divergencies ightarrow we cannot predict their values within pQCD

however, a key prediction of pQCD is their scale variation

the physical idea behind this is beautiful & simple:

both scale parameters μ_{f} and μ_{p} are not intrinsic to QCD ightarrow a measurable cross section do must be independent of $\mu_{
m p}$ and $\mu_{
m f}$

all we need is a reference measurement at some scale μ_0

scale evolution of α_s and parton densities

simplest example of RGE: running coupling α_s derived from $\frac{d\sigma}{d \ln \mu_r}$ \downarrow part II recall $\frac{aa_s}{d\ln\mu^2} = -\beta_0 a_s^2 - \beta_1 a_s^3 - \beta_2 a_s^4 - \beta_3 a_s^5 + \dots \quad a_s \equiv \frac{\alpha_s}{4\pi}$ da_8 0

scale evolution of α_s and parton densities

simplest example of RGE: running coupling α_s derived from $\frac{1}{d \ln \mu_r}$ part II recall $\frac{uus}{d\ln\mu^2} = -\beta_0 a_s^2 - \beta_1 a_s^3 - \beta_2 a_s^4 - \beta_3 a_s^5 + \dots \quad a_s \equiv \frac{c}{2}$ 1 $\frac{\alpha_s}{4\pi}$

scale dependence of PDFs: more complicated

simplified example: F₂ for one quark flavor

 $F_2(x,Q^2) = q(x,\mu_f) \otimes \hat{F}_2(x,\frac{Q}{\mu_f})$

physical quark pdf hard cross section

scale evolution of α_s and parton densities

simplest example of RGE: running coupling α_s derived from $\frac{1}{d \ln \mu_r}$ part II recall $\frac{uus}{d\ln\mu^2} = -\beta_0 a_s^2 - \beta_1 a_s^3 - \beta_2 a_s^4 - \beta_3 a_s^5 + \dots \quad a_s \equiv \frac{c}{2}$ || 0 $\frac{\alpha_s}{4\pi}$

scale dependence of PDFs: more complicated

versatile tool: Mellin mo	simplified example: F ₂ for one quark flavor		
ments $f(n) \equiv$	physical	$F_2(x, Q^2) =$	
$\int^1 dx x^{n-1}$	quark pdf	$=q(x,\mu_f)$	
$\frac{1}{f(x)}$	hard cross section	$\otimes \widehat{F}_2(x, \frac{Q}{\mu_f})$	

turns nasty convolution \otimes into ordinary product

5

scale dependence of PDFs: more complicated
simplified example:

$$F_2$$
 for one quark flavor
 $r_2(x, Q^2) = q(x, \mu_f) \otimes F_2(x, \frac{Q}{\mu_f})$
physical quark pdf hard cross section
versatile tool: Mellin moments $f(n) \equiv \int_0^1 dx x^{n-1} f(x)$
turns nasty convolution \otimes into ordinary product
 $\int_0^1 dx x^{n-1} \left[\int_x^1 \frac{dy}{y} f(y) g\left(\frac{x}{y}\right) \right] =$
 $\int_0^1 dx x^{n-1} \int_0^1 dy \int_0^1 dz \, \delta(x - zy) f(y) g(z) = f(n) g(n)$

simplest example of RGE: running coupling α_s derived from $\frac{d\sigma}{d \ln \mu_r}$ \downarrow part II recall da_8

scale evolution of α_s and parton densities

 $\frac{aa_s}{d\ln\mu^2} = -\beta_0 a_s^2 - \beta_1 a_s^3 - \beta_2 a_s^4 - \beta_3 a_s^5 + \dots \quad a_s \equiv \frac{\alpha_s}{4\pi}$ || 0

simplest example of DGLAP evolution

Dokshitzer; Gribov, Lipatov; Altarelli, Parisi

now we can compute
$$\frac{dF_2(x,Q^2)}{d\ln \mu_f} = 0$$

$$\frac{dq(n,\mu_f)}{d\ln \mu_f} \hat{F}_2(n,\frac{Q}{\mu_f}) + q(n,\mu_f) \frac{d\hat{F}_2(n,\frac{Q}{\mu_f})}{d\ln \mu_f} = 0$$

disclaimer: kept α s constant for simplicity

simplest example of DGLAP evolution

physical interpretation of the evolution eqs.:

RGE resums collinear emissions to all orders

physical interpretation of the evolution eqs.:

RGE resums collinear emissions to all orders

to see this expand the solution in α_s :

$$\exp[\ldots] = 1 + \frac{\alpha_s}{2\pi} P_{qq}(n) \ln \frac{\mu_f}{\mu_0} + \frac{1}{2} \left[\frac{\alpha_s}{2\pi} P_{qq}(n) \ln \frac{\mu_f}{\mu_0} \right]^2 + \dots$$

physical interpretation of the evolution eqs.:

RGE resums collinear emissions to all orders

• to see this expand the solution in α_s :

July July

Jan Barrow

$$\exp[\ldots] = 1 + \frac{\alpha_s}{2\pi} P_{qq}(n) \ln \frac{\mu_f}{\mu_0} + \frac{1}{2} \left[\frac{\alpha_s}{2\pi} P_{qq}(n) \ln \frac{\mu_f}{\mu_0} \right]^2 + \dots$$

the splitting functions $P_{ij}(n)$ or $P_{ij}(x)$ multiplying the log's are universal and calculable in pQCD order by order in α_{s}

physical interpretation of the evolution eqs.:

RGE resums collinear emissions to all orders

to see this expand the solution in α_s :

Jan Jan

$$\exp[\dots] = 1 + \frac{\alpha_s}{2\pi} P_{qq}(n) \ln \frac{\mu_f}{\mu_0} + \frac{1}{2} \left[\frac{\alpha_s}{2\pi} P_{qq}(n) \ln \frac{\mu_f}{\mu_0} \right]^2 + \dots$$

- the splitting functions $P_{ij}(n)$ or $P_{ij}(x)$ multiplying the log's are universal and calculable in pQCD order by order in α_s
- the physical meaning of the splitting functions is easy:

Pp

factorization recap: final-state vs initial-state

recall what we learned for final-state radiation

 $\sigma_{h+g} \simeq \sigma_h \frac{\alpha_{\rm s} C_F}{\pi} \frac{dE}{E} \frac{d\theta^2}{\theta^2}$

factorization recap: final-state vs initial-state

recall what we learned for final-state radiation

$$\sigma_{h+g} \simeq \sigma_h \frac{\alpha_{\rm s} C_{\rm F}}{\pi} \frac{dE}{E} \frac{d\theta^2}{\theta^2}$$

and rewrite in terms of new variable $k_{\rm T}$

$$\sigma_{h+g} \simeq \sigma_h \frac{\alpha_{\rm s} C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

where we have used

$$\begin{split} \mathbf{E} &= (\mathbf{1} - \mathbf{z})\mathbf{p} \\ \mathbf{k_T} &= \mathbf{E}\sin\theta \simeq \mathbf{E}\theta \end{split}$$

factorization recap: final-state vs initial-state

recall what we learned for final-state radiation

$$h+g \simeq \sigma_h \frac{\alpha_{\rm s} C_{\rm F}}{\pi} \frac{dE}{E} \frac{d\theta^2}{\theta^2}$$

Ρ

and rewrite in terms of new variable $k_{\rm T}$

$$\sigma_{h+g} \simeq \sigma_h \frac{\alpha_{\rm s} C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

$$E = (1-z)p$$

$$\mathbf{E} = (\mathbf{1} - \mathbf{z})\mathbf{p}$$
$$\mathbf{k_T} = \mathbf{E}\sin\theta \simeq \mathbf{E}\theta$$

$$K_T = E_T$$

KLN: if we avoid distinguishing quark and collinear quark-gluon final-states

ave used
$$\mathbf{E} = (\mathbf{1} - \mathbf{z})\mathbf{p}$$

 $\mathbf{k_T} = \mathbf{E}\sin\theta \simeq \mathbf{E}(\mathbf{z})$

$$\sigma_{h} = \sigma_{h+V} \simeq -\sigma_{h} \frac{\alpha_{s}C_{F}}{\pi} \frac{dz}{1-z} \frac{dk_{t}^{2}}{k_{t}^{2}}$$

factorization recap: initial-state peculiarities

initial-state radiation: crucial difference - hard scattering happens after splitting

factorization recap: initial-state peculiarities

initial-state radiation: crucial difference - hard scattering happens after splitting

but for the virtual piece the momentum is unchanged

but for the virtual piece the momentum is unchanged initial-state radiation: crucial difference - hard scattering happens after splitting $\sigma_{g+h}(p) \simeq \sigma_{h}(zp) \frac{\alpha_{s}C_{F}}{\pi} \frac{dz}{1-z} \frac{dk_{t}^{2}}{k_{t}^{2}}$ factorization recap: initial-state peculiarities σ gets modified momentun (1-z)p

$$\frac{\mathbf{p}}{\mathbf{p}} = \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} + \mathbf{p} = -\sigma_h(\mathbf{p}) \frac{\alpha_s C_F}{\pi} \frac{dz}{1-z} \frac{dk_t^2}{k_t^2}$$

hence, the sum receives two contributions with different momenta

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{s}C_{F}}{\pi} \int \frac{dk_{t}^{2}}{k_{t}^{2}} \frac{dz}{1-z} [\sigma_{h}(zp) - \sigma_{h}(p)]$$

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{1}{\pi} / \frac{1}{k^2} \frac{1}{1-\tau} [\sigma_h(zp) - \sigma_h(zp)] = \sigma_h(zp) - \sigma_h(zp) = \sigma_h(zp) = \sigma_h(zp) - \sigma_h(zp) = \sigma_$$

disclaimer: we assume that
$$k_{ au} \nleftrightarrow Q$$
 (large) to ignore other transverse moment
initial-state radiation: crucial difference - hard scattering happens after splitting but for the virtual piece the momentum is unchanged $\sigma_{g+h}(p) \simeq \sigma_{h}(zp) \frac{\alpha_{s}C_{F}}{z}$ dK_t² $\sigma_{V+h}(\mathbf{p}) \simeq -\sigma_h(\mathbf{p}) \frac{\alpha_{s} C_F}{c_{F}}$ σ gets modified momentur 1-z)p leads to uncanceled dk_t^2

hence, the sum receives two contributions with different momenta

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{s}C_{F}}{\pi} \int \frac{dk_{t}^{2}}{k_{t}^{2}} \frac{dz}{1-z} [\sigma_{h}(zp) - \sigma_{h}(p)]$$
colling

disclaimer: we assume that $k_{T} \leftrightarrow Q$ (large) to ignore other transverse momenta

near singularity

factorization revisited: collinear singularity

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{\rm s} C_F}{\pi} \int_0^{Q^2} \frac{dk_t^2}{k_t^2} \int \frac{dz}{1-z} [\sigma_h(zp) - \sigma_h(p)]$$

infinite finite finite

- z=1: soft divergence cancels (KLN) as $\sigma_{
 m h}(
 m zp) \sigma_{
 m h}(
 m p)
 ightarrow 0$
- arbitrary z: $\sigma_{h}(zp) \sigma_{h}(p) \neq 0$ but z integration is finite
- but k_T integration always diverges (at lower limit)

factorization revisited: collinear singularity

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{\rm s} C_F}{\pi} \int_0^{Q^2} \frac{dk_t^2}{k_t^2} \int \frac{dz}{1-z} [\sigma_h(zp) - \sigma_h(p)]$$

infinite finite finite

- z=1: soft divergence cancels (KLN) as $\sigma_{\rm h}({
 m zp})-\sigma_{\rm h}({
 m p})
 ightarrow 0$
- arbitrary z: $\sigma_{h}(zp) \sigma_{h}(p) \neq 0$ but z integration is finite
- but k_T integration always diverges (at lower limit)

reflects collinear singularity

cross sections with incoming partons not collinear safe

factorization revisited: collinear singularity

$$\sigma_{g+h} + \sigma_{V+h} \simeq \frac{\alpha_{s} C_{F}}{\pi} \int_{0}^{Q^{2}} \frac{dk_{t}^{2}}{k_{t}^{2}} \int \frac{dz}{1-z} [\sigma_{h}(zp) - \sigma_{h}(p)]$$
infinite finite finite

- z=1: soft divergence cancels (KLN) as $\sigma_{\rm h}({
 m zp}) \sigma_{\rm h}({
 m p})
 ightarrow 0$
- arbitrary z: $\sigma_{h}(zp) \sigma_{h}(p) \neq 0$ but z integration is finite
- but k_T integration always diverges (at lower limit)

reflects collinear singularity

cross sections with incoming partons not collinear safe

factorization = collinear "cut-off"

• absorb divergent small k_T region in non-perturbative PDFs

$$\sigma_{1} \simeq \frac{\alpha_{\rm s} C_{\rm F}}{\pi} \underbrace{\int_{\mu^{2}}^{Q^{*}} \frac{dk_{\rm t}^{2}}{k_{\rm t}^{2}}}_{\text{finite (large)}} \underbrace{\int \frac{dx \, dz}{1-z} \left[\sigma_{h}(z \times p) - \sigma_{h}(x p)\right] q(x, \mu^{2})}_{\text{finite}}$$

anatomy of splitting functions

splitting functions may receive two kinds of contributions:

anatomy of splitting functions

splitting functions may receive two kinds of contributions:

anatomy of splitting functions

splitting functions may receive two kinds of contributions:

properties of LO splitting functions

in general, quarks and gluons can split into quarks and gluons -> 4 functions

in higher orders more complicated, as $\mathbf{P}_{\mathbf{q}_{i}\mathbf{q}_{j}}
eq \mathbf{0}$ arise

in general, quarks and gluons can split into quarks and gluons -> 4 functions $P_{gq}^{(0)} = i$ $P_{qq}^{(0)} = 2C_A$ $P_{qq}^{(0)} = P_{\bar{q}g}^{(0)} = T_R \left(z^2 + (1-z) \right)$ in higher orders more complicated, as $\mathbf{P}_{\mathbf{q}_{i}\mathbf{q}_{j}} eq \mathbf{0}$ arise $P_{a\bar{a}}^{(0)} = C$ $\frac{Q_{q\bar{q}}^{(0)}}{\bar{q}\bar{q}} = C_F \left\| \frac{\mathbf{1} + \mathbf{z}}{(\mathbf{1} - \mathbf{z})} + \frac{\mathbf{z}}{2} \delta(1) \right\|$ 83 $1 + (1 - z)^2$ $1 + z^2$ 23 regulated by plus distribution regulated by plus distribution soft gluon divergence (z=1) soft gluon divergence (z=1) $\frac{1-z}{z} + z(1-z) + b_0\delta(1)$ 00000000 0000 0000

properties of LO splitting functions

properties of LO splitting functions

4

reaching for precision

 $p_{g_{th}}^{(0)}(x) = C_F(2p_{qq}(x) + 3\delta(1-x))$ $p_{q_{th}}^{(0)}(x) = 0$ $p_{q_{th}}^{(0)}(x) = 2n_f p_{q_{th}}(x)$ $p_{g_{th}}^{(0)}(x) = 2C_F p_{g_{th}}(x)$ $p_{g_{th}}^{(0)}(x) = C_A \left(4p_{g_{th}}(x) + \frac{11}{3}\delta(1-x)\right) - \frac{2}{3}n_f \delta(1-x)$ LO: 1973

reaching for precision

$$\begin{split} P_{g_0}^{(0)}(x) &= C_F (2p_{eq}(x) + 3\delta(1-x)) \\ P_{q_0}^{(0)}(x) &= 0 \\ P_{q_0}^{(0)}(x) &= 2n_f p_{q_0}(x) \\ P_{p_0}^{(0)}(x) &= 2C_F p_{g_0}(x) \\ P_{g_0}^{(0)}(x) &= 2C_F p_{g_0}(x) \\ P_{g_0}^{(0)}(x) &= C_d \left(4p_{g_0}(x) + \frac{11}{3}\delta(1-x) \right) - \frac{2}{3}n_f \delta(1-x) \end{split}$$

73

$$P_{M}^{(1)+}(x) = 4C_{s}C_{T}\left(p_{eq}(x)\left[\frac{67}{3}-c_{s}+\frac{11}{3}H_{s}+H_{0}\right]+p_{eq}(-x)\left[c_{s}+2H_{-1,0}-H_{0,0}\right] + \frac{14}{3}(1-x)+\delta(1-x)\left[\frac{17}{2}+\frac{13}{3}c_{s}-3c_{s}\right]\right)-4C_{T}n_{f}(p_{eq}(x)\left[\frac{5}{3}+\frac{1}{3}H_{0}\right]+\frac{2}{3}(1-x) + \delta(1-x)\left[\frac{17}{2}+\frac{3}{2}c_{s}\right]\right)+4C_{T}^{2}\left(2p_{eq}(x)\left[H_{1,0}-\frac{3}{4}H_{0}+H_{1}\right]-2p_{eq}(-x)\left[c_{s}+2H_{-1,0}-H_{0,0}\right] - H_{0,0}\right]-(1-x)\left[1-\frac{3}{2}H_{0}\right]-H_{0}-(1+x)H_{0,0}+\delta(1-x)\left[\frac{5}{2}+2H_{-1,0}-H_{0,0}\right]-2(1-x) - (1+x)H_{0}\right)$$

$$P_{0}^{(1)}(x) = P_{0}^{(1)+}(x)+16C_{T}\left(C_{T}-\frac{C_{T}}{2}\right)\left(p_{eq}(-x)\left[C_{s}+2H_{-1,0}-H_{0,0}\right]-2(1-x) - (1+x)H_{0}\right)$$

$$P_{0}^{(1)}(x) = 4C_{T}n_{f}\left(\frac{90}{9}\frac{1}{x}-2+6x-4H_{0}+x^{2}\left[\frac{8}{3}H_{0}-\frac{56}{9}\right]+(1+x)\left[3H_{0}-2H_{0,0}\right]\right)$$

$$P_{0}^{(1)}(x) = 4C_{T}n_{f}\left(\frac{90}{9}\frac{1}{x}-2+25x-2p_{eq}(-x)H_{-1,0}-2p_{eq}(x)H_{1,1}+x^{2}\left[\frac{44}{7}H_{0}-\frac{218}{9}\right]$$

$$+4(1-x)\left[H_{0,0}-2H_{0}+xH_{1}\right]-4C_{2}n_{T}\left(2p_{eq}(x)\left[H_{1,0}+H_{1,1}+H_{1}-c_{2}H_{0,0}\right]-\frac{1}{2}-H_{0,0}-\frac{1}{2}H_{0}\right)$$

$$P_{0}^{(1)}(x) = 4C_{T}n_{f}\left(\frac{1}{2}+2P_{Eq}(x)\left[H_{1,0}+H_{1,1}+H_{1}-\frac{10}{6}H_{1}\right]-x^{2}\left[\frac{8}{3}H_{0}-\frac{44}{9}\right]+4C_{s}-2$$

$$-7H_{0}+2H_{0,0}-2H_{1,s}+xH_{1}\right]-4C_{T}n_{f}\left(H_{0,0}-5H_{0}+\frac{3}{9}\right]-2p_{Eq}(-x)H_{1,1}-x)\left[\frac{4}{3}H_{0}-\frac{21}{9}H_{0,0}-\frac{1}{2}H_{0,0}\right]$$

$$P_{0}^{(1)}(x) = 4C_{T}n_{f}\left(\frac{1}{2}+2P_{Eq}(x)\left[H_{1,0}+H_{1,1}+H_{1}-\frac{11}{6}H_{1}\right]-x^{2}\left[\frac{8}{3}H_{0}-\frac{44}{9}\right]+4C_{s}-2$$

$$-7H_{0}+2H_{0,0}-2H_{1,s}+H_{1,0}+H_{1,0}+H_{1,1}+H_{2}-\frac{10}{3}\right]-2p_{Eq}(-x)H_{1,0}h_{0}-\frac{2}{2}+\frac{1}{2}H_{0,0}-\frac{2}{2}+\frac{1}{2}H_{0,0}\right]$$

$$P_{0}^{(1)}(x) = 4C_{T}n_{f}\left(\frac{1}{2}+2P_{Eq}(x)\left[H_{1,0}-H_{1,1}+H_{1,0}-\frac{1}{6}\frac{1}{3}H_{0}-\frac{2}{3}\right]$$

$$P_{0}^{(1)}(x) = 4C_{T}n_{f}\left(\frac{1}{2}+2P_{Eq}(x)\left[H_{1,0}+H_{1,1}+H_{2}-\frac{1}{6}H_{1,1}\right]-x^{2}\left[\frac{3}{8}H_{0}-\frac{4}{9}\right]+4C_{s}-2$$

$$-7H_{0}+2H_{0,0}-2H_{1,0}+1H_{0,0}-2H_{1,1,0}-2H_{1,1}\right]$$

$$P_{0}^{(1)}(x) = 4C_{T}n_{f}\left(\frac{1}{2}+2P_{Eq}(x)\left[\frac{1}{3}H_{1}-2H_{1,1}\right]+H_{1,1}-H_{1,1}\left[H_{1,0}-\frac{2}{3}(1-x)\right]$$

$$+1-\frac{2}{3}H_{0}+2H_{0,0}-2H_{1,0}-2H_{0,0}-\frac{2}{3}\left(\frac{1}{2}-x^{2}\right)-\frac{2}{3}\left(1-x\right)\right]$$

$$+1-\frac{2}{3}H_{0}+2P_{2}n_{f}\left$$

Floratos et al., ... Curci, Furmanski, Petronzio;

P_{ij} @ NNLO: a landmark calculation

10000 diagrams, 10⁵ integrals, 10 man years, and several CPU years later:

P_{ii} @ NNLO: a landmark calculation

10000 diagrams, 10⁵ integrals, 10 man years, and several CPU years later;

$$\begin{split} & \left(\sum_{i=1}^{n} (1 - 1) \sum_{i=1}^{n} (1 -$$

$$\begin{split} & \Pi_{\rm Her} = (1)_{\rm Her}$$

$$\begin{split} \left[(x_{12}, x_{12}^{2} - (x_{12}^{2} - ($$

$$\begin{split} C_{12}(u_{12}-u_{22})&=C_{12}(u_{12}-u_{2$$

$$\begin{split} & \frac{1}{2} \max \left\{ \left| \frac{1}{2} \max \left\{ \frac{1}{2} \max$$

$$\begin{split} & (T_{12}, T_{12}, T_{22}, T_{22},$$

$$\begin{split} &-m_{0,0,0}+\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}\right]-\frac{1}{2}m_{0,0,0}+m_{0,0,0}+m_{0,0,0}+m_{0,0,0}+m_{0,0,0}+\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}\\ &-m_{0,0,0}-\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}\\ &-\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}+\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}\\ &+\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}+\frac{1}{2}m_{0,0}+\frac{1}{2}m_{0,0}+\frac{1}{2}m_{0,0}-\frac{1}{2}m_{0,0}-m_{0,0}+m_{0,0}+m_{0,0}\\ &+m_{0,0}+m_{0,0}+\frac{1}{2}m_{0,0}+\frac{1}{2}m_{0,0}+m_{0,0}+m_{0,0}+m_{0,0}+m_{0,0}+m_{0,0}+m_{0,0}+m_{0,0}\\ &+m_{0,0}+m_{0,0}+\frac{1}{2}m_{0,0}+m_{0,$$

$$\begin{split} & (\alpha_{11} \alpha_{11}^{-1} + \alpha_{11}^{-1} \alpha_{12}^{-1} + \alpha_{12}^{-1} \alpha_{12}^{-1} + \alpha_{12}^{-1} \alpha_{12}^{-1} + \alpha_{12}^{$$

$$\begin{split} & (\frac{1}{2}) \mathbf{a}_{1} = \left\{ \frac{1}{2} \mathbf{a}_{1} \mathbf{a}_{2} = \left\{ \frac{1}{2} \mathbf{a}_{2} \mathbf{a}_{2} = \left\{$$

Moch, Vermaseren, Vogt
2004

P_{ii} @ NNLO: a landmark calculation

10000 diagrams, 10⁵ integrals, 10 man years, and several CPU years later;

$$\begin{split} & \sum_{i=1}^{N} (1-1)^{i} \sum_{i=1}^{N} (1-1$$
-Mul-mul-mul-mul-Mu-Mu-Mu-Mu-Mu-Mu-Mu-M

$$\begin{split} & \Pi_{00} = (\Pi_{00} - (\Pi_{00} - \Pi_{10} + \Pi_{1$$

$$\begin{split} \left[(x_{11}, x_{11}^{2} + u_{11}^{2} + u_{12}^{2} + u_$$

> $\begin{array}{c} \frac{1}{100} (1-100) (1-1$ [1.12.14월, 11.14, 11.14, 11.14, 12.14, 12.14, 13.1 านสู่ เพณี เกณะใหญ่ (กลุ่งคน เหลือเราะ ((ก.).) เพณี เกณะ ระวามเราะ เกณี เราะ ((ก.).
> $$\begin{split} &-20_{11}+20_{12}\left[+20_{12}+20_{12}\left[+20_{12}\left(+20_{12}\right) +20_{12}\left(+20_{12}\left(+20_{12}\right) +20_{12}\left(+20_{12}\left(+20_{12}\right) +20_{12}\left(+20_{12}\left(+20_{12}\right) +20_{12}\left(+20_{12}\right) +20_{12}\left(+20_{12}\left(+20_{12}\right) +20_{12}\left(+20_{12}\right) +20_{12}\left(+20_{12}\left(+20_{12}\right) +20_{12}\left(+20_{12}\right) +20_{12}\left(+20_{12}\right) +20_{12}\left(+20_{12}\left(+20_{12}\right) +20_{12}\left(+20_{12}\right)$$

$$\begin{split} (\phi_1, \mu_1, \dots, \mu_{n-1}) &= (\phi_1, \phi_1, \dots, \phi_{n-1})^2 - (\phi_1, \dots, \phi_{n-1})^2 - (\phi_1, \dots, \phi_{n-1})^2 + (\phi_1, \dots,$$
 $\sum_{i=1}^{m} (1-m_{i}^{2}-m_{i}^{2}) + \sum_{i=1}^{m} (1-m_{i}^{2}-m_{i}$ $\frac{1}{2} = \frac{1}{2} + \frac{1}$ $\label{eq:2.1} \left\{ u_{1}^{2} + (1)u_{1}^{2} + (2)u_{1}^{2} \right\} \\ = \left\{ u_{1}^{2} + (1)u_{1}^{2} + (2)u_{1}^{2} + (1)u_{1}^{2} +$

$$\begin{split} & (\mu_{10})^{(1)}(-1)^{$$

Moch, Vermaseren, Vogt

2004

$$\begin{split} & (\mathbf{x}_{1}+\mathbf{r}_{1})_{1}^{2}(\mathbf{r}_{1}\mathbf{r}_{2})_{1}^{2}(\mathbf{r}_{1}\mathbf{r}_{2})_{1}^{2}(\mathbf{r}_{2}\mathbf{r}_{2})_{1}^{2}(\mathbf{r}_{2}\mathbf{r}_{2})_{1}^{2}(\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2})_{1}^{2}(\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2})_{1}^{2}(\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2})_{1}^{2}(\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2}\mathbf{r}_{2})_{1}^{2}(\mathbf{r}_{2}\mathbf{r}$$
$$\begin{split} & \int_{0}^{\infty} du^{-1} du^{-1} du^{-1} + \frac{1}{2} du^{-1} + \frac{1}{2$$
ร้างมาใหมารู้หมายัง เราสายเราใหมมที่ 2010 (คุณภาพมาพม
$$\begin{split} & \Gamma_{1} \mathbf{w}_{1} - \tau_{1} \mathbf{w}_{2}^{2} - \tau_{1} \mathbf{w}_{1}^{2} - \tau_{1} \mathbf{w}_{2}^{2} - \tau_{1} \mathbf{w}_{2}^{2} - \tau_{1} \mathbf{w}_{2}^{2} - \tau_{1} \mathbf{w}_{1}^{2} \\ & \mathbf{w}_{1}^{2} - \tau_{1} \mathbf{w}_{2}^{2} - \tau_{2} \mathbf{w}_{2}^{2} - \tau_{1} \mathbf{w}_{1}^{2} - \tau_{1} \mathbf{w}_{1}^{2} - \tau_{1} \mathbf{w}_{2}^{2} - \tau_{1} \mathbf{w}_{2}^{2} - \tau_{2} \mathbf{w}_{1}^{2} \\ & \mathbf{w}_{2}^{2} - \tau_{1} \mathbf{w}_{2}^{2} - \tau_{2} \mathbf{w}_{2}^{2} - \tau_{2} \mathbf{w}_{1}^{2} - \tau_{1} \mathbf{w}_{2}^{2} - \tau_{1} \mathbf{w}_{2}^{2} - \tau_{2} \mathbf{w}_{2}^{2} - \tau_{2} \mathbf{w}_{1}^{2} \\ & \mathbf{w}_{2}^{2} - \tau_{2} \mathbf{w}_{1} - \tau_{1} \mathbf{w}_{2}^{2} - \tau_{2} \mathbf{w}_{1}^{2} - \tau_{2} \mathbf{w}_{2}^{2} - \tau_{2} \mathbf{w}_{2} - \tau_{2} \mathbf{w$$
1. T 184 - T 184 - T 184 - 118

$$\begin{split} & \int_{0}^{1} (-1) \int_{0}^{1} (-1)$$
$$\begin{split} & \frac{1}{2} \left(2 + \frac{1}{2} \left(2 + \frac{1}{2} \right) \left(2 + \frac{1}{2} \left(2 + \frac{1}{2} \right) \left(2 + \frac{1}{2} \left(2 + \frac{1}{2} \right) \left(2 +$$

 $\begin{array}{c} (\alpha_{1},\alpha_{2}) = (\alpha_{1}$
$$\begin{split} & g_{1}^{*}(\omega) = - \max_{i} (\omega_{i} + \frac{1}{2} g_{i}^{*} g_{i}^{*}(\omega_{i} - \omega_{i} - \frac{1}{2} m_{i} - m_{i} - m_{i} - \frac{1}{2} m_{i} - \frac{1}{2} m_{i} - \frac{1}{2} m_{i} - m_{i} - \frac{1}{2} m_{i$$

 $\begin{array}{l} \sum_{i=1}^{N} (1+i) \sum_{i$ -2011-100-200 -100-100-100 $\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2}$ The month of the month of the month

NNLO the new emerging standard in QCD – essential for precision physics

DGLAP evolution in full glory

taking quarks and gluons together: coupled integro-differential equations

 $\frac{d}{d\ln\mu} \begin{pmatrix} q(x,\mu) \\ g(x,\mu) \end{pmatrix}$ $\frac{zp}{\tau}$ Assa $\Big)_{(z,lpha_s)}\cdot \left(egin{matrix} q(x/z,\mu) \ g(x/z),\mu) \end{pmatrix}$

best solved in Mellin moment space: set of ordinary differential eqs.; no closed solution in exp. form beyond LO (commutators of P matrices!)

DGLAP evolution in full glory

taking quarks and gluons together: coupled integro-differential equations

 $\frac{d}{d\ln\mu} \begin{pmatrix} q(x,\mu)\\ g(x,\mu) \end{pmatrix}$ dealer (z, α_s) $\left(egin{array}{c} q(x/z,\mu) \ g(x/z),\mu) \end{array}
ight)$

best solved in Mellin moment space: set of ordinary differential eqs.;

no closed solution in exp. form beyond LO (commutators of P matrices!)

main effect/prediction of evolution:

partons loose energy by evolution!

- large x depletion
- small x increase

DGLAP evolution in full glory

- quarks reduced at large x
- gluons rise quickly at small x
- (which, btw, also generates sea quarks)

- quarks reduced at large x
- gluons rise quickly at small x
- (which, btw, also generates sea quarks)

- quarks reduced at large x
- gluons rise quickly at small x
- (which, btw, also generates sea quarks)

taken from G. Salam

DGLAP evolution at work: toy example

- quarks reduced at large x
- gluons rise quickly at small x (which, btw, also generates sea quarks)

start off from just quarks, no gluons

- quarks reduced at large x
- gluons rise quickly at small x

- (which, btw, also generates sea quarks)

taken from G. Salam

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F₂ at small x (due to gluon evolution)

- ' use one of the global fits of PDFs to data by CTEQ
- steep rise of F₂ at small x (due to gluon evolution)

- ' use one of the global fits of PDFs to data by CTEQ
- steep rise of F₂ at small x (due to gluon evolution)

taken from G. Salam

×

0.01

0.1

- ' use one of the global fits of PDFs to data by CTEQ
- steep rise of F₂ at small x (due to gluon evolution)

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_2 at small x (due to gluon evolution)

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_2 at small x (due to gluon evolution)

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_2 at small x (due to gluon evolution)

- use one of the global fits of PDFs to data by CTEQ
- steep rise of F_2 at small x (due to gluon evolution)

- ' use one of the global fits of PDFs to data by CTEQ
- steep rise of F₂ at small x (due to gluon evolution)

major success of pQCD and DGLAP evolution

taken from G. Salam

factorization in hadron-hadron collisions

What happens when two hadrons collide ?

factorization in hadron-hadron collisions

What happens when two hadrons collide ?

straightforward generalization of the concepts discussed so far:

factorization at work

key assumption that a cross section factorizes into

- hard (perturbatively calculable) process-dep. partonic subprocesses
- non-perturbative but universal parton distribution functions

has great predictive power and can be challenged experimentally:

factorization at work

key assumption that a cross section factorizes into

- hard (perturbatively calculable) process-dep. partonic subprocesses
- non-perturbative but universal parton distribution functions

has great **predictive power** and can be challenged experimentally:

to prove the validity of factorization to all orders of pQCD is a highly theoretical and technical matter

- to prove the validity of factorization to all orders of pQCD is a highly theoretical and technical matter
- serious proofs exist only for a limited number of processes such as DIS and Drell-Yan Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.;..

issues: factorization does not hold graph-by-graph; unitarity, causality, and gauge invariance saved by the interplay between graphs,

- to prove the validity of factorization to all orders of pQCD is a highly theoretical and technical matter
- serious proofs exist only for a limited number of processes such as DIS and Drell-Yan Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.;..

issues: factorization does not hold graph-by-graph; unitarity, causality, and gauge invariance saved by the interplay between graphs,

factorization good up to powers of hard scale Q: $O(\Lambda_{QCD}/Q)^n$

- to prove the validity of factorization to all orders of pQCD is a highly theoretical and technical matter
- serious proofs exist only for a limited number of processes such as DIS and Drell-Yan Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.;..

issues: factorization does not hold graph-by-graph; unitarity, causality, and gauge invariance saved by the interplay between graphs,

factorization good up to powers of hard scale Q: $O(\Lambda_{QCD}/Q)^n$

faith in factorization rests on existing calculations and the

tremendous success of pQCD in explaining data

recall: the renormalizibility of a non-abelian gauge theory like QCD was demonstrated by 't Hooft and Veltman

faith in factorization rests on existing calculations and the tremendous success of pQCD in explaining data

factorization good up to powers of hard scale Q: $O(\Lambda_{QCD}/Q)^n$

unitarity, causality, and gauge invariance saved by the interplay between graphs,

issues: factorization does not hold graph-by-graph;

serious proofs exist only for a limited number of processes

is a highly theoretical and technical matter

to prove the validity of factorization to all orders of pQCD

proofs of factorization

such as DIS and Drell-Yan Libby, Sterman; Ellis et al.; Amati et al.; Collins et al.;..

1999

recap: salient features of pQCD

recap: salient features of pQCD

- strong interactions, yet perturbative methods are applicable
- confined quarks, yet calculations based on free partons can describe large classes of processes

recap: salient features of pQCD

- strong interactions, yet perturbative methods are applicable
- confined quarks, yet calculations based on free partons can describe large classes of processes

keys to resolve the apparent dilemma:

- asymptotic freedom
- infrared safety
- factorization theorems & renormalizibility

to take home from this part of the lectures

- factorization = isolating and absorbing long-distance singularities (initial state) and fragmentation fcts. (final state) accompanying identified hadrons into parton densities
- factorization and renormalization introduce arbitrary scales ightarrow powerful concept of renormalization group equations

 $\rightarrow \alpha_s$, PDFs, frag. fcts. depend on energy/resolution

- hard hadron-hadron interactions factorize as well: $f \otimes f \otimes d\sigma$

strict proofs of factorization only for limited class of processes

PDFs (and frag. fcts) have definitions as bilocal operators

pQCD: a tool for the most violent collisions

pQCD: a tool for the most violent collisions

scales and theoretical uncertainties; Drell-Yan process small-x physics; global QCD analysis; resummations

some applications & advanced topics

unofficial Part IV

the Whys and Hows of NLO Calculations & Beyond

why go beyond LO (and even NLO)?

recall factorization theorem for hadronic processes:

$$\begin{aligned} d\sigma &= \sum_{ij} \int dx_i dx_j f_i(x_i, \mu^2) f_j(x_j, \mu^2) d\hat{\sigma}_{ij}(\alpha_s(\mu_r), Q^2, \mu^2, x_i, x_j) \\ & \text{non-perturbative } \lim_{k \to 0} hard scattering of \\ & \text{but universal PDFs} \quad \text{by } \mu \quad \text{two partons} \to pQCD \end{aligned}$$

• independence of physical do on μ (and μ_{r}) has led us to powerful RGEs

why go beyond LO (and even NLO)?

recall factorization theorem for hadronic processes:

$$\begin{split} d\sigma &= \sum_{ij} \int dx_i dx_j \, f_i(x_i, \mu^2) \, f_j(x_j, \mu^2) \, d\widehat{\sigma}_{ij}(\alpha_s(\mu_r), Q^2, \mu^2, x_i, x_j) \\ & \text{non-perturbative } \frac{\text{linked}}{1 \text{ hard scattering of}} \text{ but universal PDFs by } \mu \text{ two partons} \to \text{pQCD} \end{split}$$

independence of physical do on μ (and μ_{r}) has led us to powerful RGEs

caveat: we work with a perturbative series truncated at LO, NLO, NNLO, ... ightarrow at any fixed order N there will be a residual scale dependence in our theoretical prediction

ightarrow since μ is completely arbitrary this limits the precision of our results

suppose we want to choose a different scale Q - what do we need to do?

suppose we want to choose a different scale Q - what do we need to do?

recall:
$$\alpha_s(\mu_r^2) = \frac{\alpha_s(Q^2)}{1 + 2b_0\alpha_s(Q^2)\ln(\mu_r/Q)}$$

recall: $\alpha_s(\mu_r^2) =$

recall: at NLO we have
$$\sigma^{\text{NLO}}(\mu_R) = \sigma_{q\bar{q}} \left(1 + q \alpha_s(\mu_R)\right)$$

 $\downarrow_O \qquad \downarrow_O \qquad \downarrow_O$

plug back into σ^{NLO} $=\sigma_{q\bar{q}}\left(1+c_{1}\alpha_{s}(Q)-2c_{1}b_{0}\ln\frac{\mu_{R}}{Q}\alpha_{s}^{2}(Q)+\mathcal{O}\left(\alpha_{s}^{3}\right)\right)$

recall: at NLO we have $\sigma^{\text{NLO}}(\mu_R) = \sigma_{q\bar{q}} \left(1 + c_1 \alpha_s(\mu_R)\right)$ explicit example: scale dependence of e⁺e⁻ --> jets

recall: $\alpha_s(\mu_r^2) =$ suppose we want to choose a different scale Q - what do we need to do? $\frac{1+2b_0\alpha_s(Q^2)\ln(\mu_r/Q)}{1+2b_0\alpha_s(Q^2)\ln(\mu_r/Q)} \approx \frac{\alpha_s(Q^2)-2b_0\alpha_s^2(Q^2)\ln(\mu_r/Q)}{\alpha_s(Q^2)\ln(\mu_r/Q)}$ $\alpha_s(Q^2)$ result ГÓ coupling smal independent of scale NLO coefficient from strong coupling all scale uncertainty

plug back into σ^{NLO} $=\sigma_{q\bar{q}}\left(1+c_{1}\alpha_{s}(Q)-2c_{1}b_{0}\ln\frac{\mu_{R}}{Q_{\pi}}\alpha_{s}^{2}(Q)+\mathcal{O}\left(\alpha_{s}^{3}\right)\right)$

introduces NNLO piece variation of scale

explicit example - cont'd

next calculate full NNLO result:

 $\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_{\text{s}}(\mu_R) + c_2(\mu_R) \alpha_{\text{s}}^2(\mu_R) \right]$

NNLO term starts to depend on the scale

explicit example - cont'd

next calculate full NNLO result:

$$\sigma^{\text{NNLO}}(\mu_R) = \sigma_{q\bar{q}} \left[1 + c_1 \alpha_s(\mu_R) + c_2(\mu_R) \alpha_s^2(\mu_R) \right]$$

NNLO term starts to / depend on the scale

in fact c₂ must (and will !) cancel the scale ambiguity found at NLO:

$$c_2(\mu_R) = c_2(Q) + 2c_1 b_0 \ln \frac{\mu_R}{Q}$$

next calculate full NNLO result:

explicit example - cont'd

example from hadronic collisions

take the "classic" Drell Yan process

- dominated by quarks in the initial-state
- - at LO no colored particles in the final-state
- clean experimental signature

one of the best studied processes (known to NNLO)

as "clean" as it can get at a hadron collider

at LO an electromagnetic process (low rate)

at NLO:

$$\begin{split} \sigma_{pp \rightarrow Z}^{\text{NLO}} &= \sum_{i,j} \int dx_1 dx_2 \ f_i(x_1, \mu_F^2) \ f_j(x_2, \mu_F^2) \left[\hat{\sigma}_{0,ij \rightarrow Z}(x_1, x_2) + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \rightarrow Z}(x_1, x_2, \mu_F) \right] \end{split}$$

- no α_s at LO but μ_F appears in PDFs
- $\alpha_{_{S}}$ enters at NLO and hence μ_{R}
- NLO terms reduce dep. on $\,\mu_{\text{F}}$

at NLO:

$$\sigma_{pp\to Z}^{\text{NLO}} = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \left[\hat{\sigma}_{0,ij\to Z}(x_1, x_2) + \alpha_s(\mu_R)\hat{\sigma}_{1,ij\to Z}(x_1, x_2, \mu_F)\right]$$

- no α_s at LO but μ_F appears in PDFs
- $\bullet\,\alpha_{_{S}}$ enters at NLO and hence μ_{R}
- NLO terms reduce dep. on $\,\mu_{\text{F}}$
- one often varies μ_F and μ_R together (but that can underestimate uncertainties)

d²σ/dM/dY [pb/GeV]

at NLO:

$$\begin{split} & \sigma_{pp \to Z}^{\text{NLO}} = \sum_{i,j} \int dx_1 dx_2 \, f_i(x_1, \mu_F^2) \, f_j(x_2, \mu_F^2) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2) + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \right] \end{split} \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{0,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \right] \\ & + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \left[\hat{\sigma}_{1,ij \to Z}(x_1, x_2, \mu_F) \right]$$

- no α_s at LO but μ_F appears in PDFs
- $\bullet\,\alpha_{_{\rm S}}$ enters at NLO and hence μ_{R}
- NLO terms reduce dep. on μ_{F}
- one often varies μ_F and μ_R together (but that can underestimate uncertainties)
- NLO corrections large but scale dependence is reduced

d²σ/dM/dY [pb/GeV]

at NLO:

$$\sigma_{pp\to Z}^{\rm NLO} = \sum_{i,j} \int dx_1 dx_2 f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) [\hat{\sigma}_{0,ij\to Z}(x_1, x_2) + \alpha_s(\mu_R)\hat{\sigma}_{1,ij\to Z}(x_1, x_2, \mu_F) + \alpha_s(\mu_R)\hat{\sigma}_{1,ij\to Z}(x_1, x_2, \mu_F)]$$

- no α_s at LO but μ_F appears in PDFs
- $\bullet\,\alpha_{_{S}}$ enters at NLO and hence μ_{R}
- NLO terms reduce dep. on $\,\mu_{F}$
- one often varies μ_F and μ_R together (but that can underestimate uncertainties)
- NLO corrections large but scale dependence is reduced
- even better at NNLO

d²σ/dM/dY [pb/GeV]

at NLO:

$$\begin{split} & \text{LO piece} \\ \sigma_{pp \rightarrow Z}^{\text{NLO}} & = \sum_{i,j} \int dx_1 dx_2 \ f_i(x_1, \mu_F^2) \ f_j(x_2, \mu_F^2) \left[\hat{\sigma}_{0,ij \rightarrow Z}(x_1, x_2) + \alpha_{\text{s}}(\mu_R) \hat{\sigma}_{1,ij \rightarrow Z}(x_1, x_2, \mu_F) \right] \end{split}$$

- no α_s at LO but μ_F appears in PDFs
- α_s enters at NLO and hence μ_R
- NLO terms reduce dep. on $\,\mu_{F}$
- one often varies μ_F and μ_R together (but that can underestimate uncertainties)

d²σ/dM/dY [pb/GeV]

- NLO corrections large but scale dependence is reduced
- even better at NNLO

perturbative accuracy of O(percent) achieved

estimate by G. Salam: vary the scale of α_s in the DGLAP kernel

Uncert. on gluon ev. from 2 to 100 GeV

• about 30% in LO

estimate by G. Salam: vary the scale of α_s in the DGLAP kernel

- about 30% in LO
- down to about 5% in NLO

estimate by G. Salam: vary the scale of α_s in the DGLAP kernel

Uncert. on gluon ev. from 2 to 100 GeV

• about 30% in LO

- down to about 5% in NLO
- NNLO brings it down to 2%

estimate by G. Salam: vary the scale of α_s in the DGLAP kernel

- about 30% in LO
- down to about 5% in NLO
- NNLO brings it down to 2%

which is about the precision of the HERA DIS data

Anatomy of a Global QCD Analysis

N

how to determine PDFs from data?

hard scale pt

- need at least NLO accuracy for quantitative analyses
- information on PDFs "hidden" inside complicated (multi-)convolutions

anatomy of global PDF analyses

through global χ^2 optimization obtain PDFs

up to O(20-30) parameters

computational challenge:

set of optimum parameters for assumed functional form

many sources of uncertainties

very time-consuming NLO expressions

anatomy of global QCD analyses

obtain PDFs through global χ² optimization

set of **optimum parameters** for *assumed* functional form

global analysis: computational challenge

- one has to deal with O(2800) data points from many processes and experiments
- need to determine O(20-30) parameters describing PDFs at μ_0
- ullet NLO expressions often very complicated ightarrow computing time becomes excessive → develop sophisticated algorithms & techniques, e.g., based on Mellin moments
- Kosower; Vogt; Vogelsang, MS

global analysis: computational challenge

- one has to deal with O(2800) data points from many processes and experiments
- need to determine O(20-30) parameters describing PDFs at μ_0
- ullet NLO expressions often very complicated ightarrow computing time becomes excessive
- → develop sophisticated algorithms & techniques, e.g., based on Mellin moments Kosower; Vogt; Vogelsang, MS

data sets & (x, Q^2) coverage used in MSTW fit

CDF II Z rap.	DØ II Z rap.	DØ II W → Iv asym.	CDF II $W \rightarrow h^{\mu}$ asym.	CDF II pp incl. jets	DØ II pā ind. jets	ZEUS 98-00 e±p incl. jets	ZEUS 96-97 et p incl. jets	H1 99–00 $e^+\rho$ incl. jets	H1/ZEUS of p Felarm	ZEUS 99-00 e ⁺ p CC	H1 99-00 e+p CC	ZEUS 99-00 e ⁺ p NC	ZEUS 98-99 e p NC	ZEUS 96-97 e ⁺ p NC	ZEUS SVX 95 e ⁺ p NC	H1 high Q ² 99–00 e ⁺ p NC	H1 high Q ² 98–99 e ⁻ p NC	H1 low Q2 96-97 e+p NC	H1 MB 97 e+p NC	H1 MB 99 e ⁺ p NC	Data set	
29	28	10	22	76	110	30	30	24	83	30	28	90	92	144	30	147	126	80	64	00	Mpsa.	

which data sets determine which partons

which
data
sets
determ
ine wl
hich
partons

10 ⁻¹ 1	10 ⁻²	10 ^{~~}	10-4	rucial	sets c	f many data	interplay o
	,	· [0,	P N N	/2699	• 2543. • 3066.	χ²∕ #data p
		e,a	:			ne fit:	 quality of tl
			0.4	ion	stribut	uge gluon di	 notice the h
		A	0.6				
>	T			1.0002	ırXiv:090	horne, Watt, a	Martin, Stirling, T
				$x \gtrsim 0.05$	p d	$uu, dd \rightarrow Z$	$p\bar{p} \rightarrow (Z \rightarrow \ell^+ \ell^-) X$
1.			0.8	$0.01 \lesssim x \lesssim 0.5$	g, q $u, d, \overline{u}, \overline{d}$	$gg, qg, qq \rightarrow 2j$ $ud \rightarrow W, \bar{ud} \rightarrow W$	$p\bar{p} \rightarrow \text{jet} + X$ $p\bar{p} \rightarrow (W^{\pm} \rightarrow \ell^{\pm}\nu) X$
	-	g/10	/	$0.004 \gtrsim x \gtrsim 0.01$ $0.01 \lesssim x \lesssim 0.1$	с, <i>д</i>	$\gamma^* c \rightarrow c, \gamma^* g \rightarrow cc$ $\gamma^* g \rightarrow q\bar{q}$	$e^{\pm}p \rightarrow e^{-}ceA$ $e^{\pm}p \rightarrow jet + X$
	,		xf($x \ge 0.01$	$d_{\gamma S}$	W^+ $\{d, s\} \rightarrow \{u, c\}$	$e^+ p \rightarrow \bar{\nu} X$
= 10 GeV ²	ರ್ಶ		(x,0	$0.01 \lesssim x \lesssim 0.2$ $0.0001 \lesssim x \lesssim 0.1$	g, q, \bar{q}	$W^* \overline{s} \rightarrow \overline{c}$ $\gamma^* q \rightarrow q$	$\frac{\overline{\nu} N \rightarrow \mu^{\mp} \mu^{-} X}{e^{\pm} p \rightarrow e^{\pm} X}$
			2²) 1.2	$0.01 \gtrsim x \gtrsim 0.3$ $0.01 \lesssim x \lesssim 0.2$	q, q	$W^*g \rightarrow q$ $W^*s \rightarrow c$	$\nu N \to \mu^- \mu^+ X$ $\nu N \to \mu^- \mu^+ X$
t, 68% C.L.	VLO tr			$0.015 \lesssim x \gtrsim 0.35$	$\overline{d}/\overline{u}$	$(u\overline{d})/(u\overline{u}) \rightarrow \gamma^*$	$pn/pp \rightarrow \mu^+\mu^- X$
	:) ?	Г	L	$x \ge 0.01$ 0.015 $< x < 0.25$	$\frac{d}{u}$	$\gamma^* d/u \rightarrow d/u$ $u\bar{u} d\bar{d} \rightarrow \infty^*$	$\ell^{\pm} n/p \rightarrow \ell^{\pm} X$
				$x \gtrsim 0.01$	q, \bar{q}, g	$\gamma^* q \rightarrow q$	$\ell^{\pm} \{p, n\} \rightarrow \ell^{\pm} X$
				x range	Partons	Subprocess	Process

×

from R.D. Ball

when there is not enough room: gluons at small x

U

what drives the growth of the gluon density

observe that only 2 splitting fcts are singular at small x

$$P_{gq}(x)\Big|_{x \to 0} \approx \frac{2C_F}{x} \quad P_{gg}(x)\Big|_{x \to 0} \approx \frac{2C_A}{x}$$

-> small x region dominated by gluons

what drives the growth of the gluon density

 write down "gluon-only" DGLAP equation only valid for small x and large Q^2

$$\frac{dg(x,\mu^2)}{d\log\mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \frac{2C_A}{z} g(x/z,\mu^2)$$

 write down "gluon-only" DGLAP equation only valid for small x and large Q^2

$$\frac{dg(x,\mu^2)}{d\log\mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{dz}{z} \frac{2C_A}{z} g(x/z,\mu^2)$$

$$\frac{dg(x,\mu^2)}{d\log\mu^2} = \frac{\alpha_s}{2\pi} \int_{-\infty}^{1} \frac{dz}{z} \frac{2C_A}{z} g(x/z,\mu^2)$$

$$\frac{dg(x,\mu^2)}{d\log \mu^2} = \frac{\alpha_s}{2\pi} \int_{z}^{1} \frac{dz}{z} \frac{2C_A}{z} g(x/z,\mu^2)$$

- for fixed coupling this leads to C с и Ж "double logarithmic approximation"
- $xg(x,Q^2) \sim \exp\left(2\sqrt{\frac{\alpha_S C_A}{\pi}}\log(1/x)\log(Q^2/Q_0^2)\right)$

predicts rise that is faster than $\log^{a}(1/x)$ but slower than $(1/x)^{a}$

but what happens at small x for not so large (fixed) Q²?

but what happens at small x for not so large (fixed) Q²?

"high-energy (Regge) limit of QCD"

- aim to resum terms ≈ α_s log(1/x)
- Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation: evolves in x not Q^2
- BFKL predicts a power-like growth $xg(x,Q^2) \sim (1/x)^{lpha_P-1}$

much faster than in DGLAP

but what happens at small x for not so large (fixed) Q²?

"high-energy (Regge) limit of QCD"

- aim to resum terms ≈ α_s log(1/x)
- Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation: evolves in x not Q²
- BFKL predicts a power-like growth $xg(x,Q^2) \sim (1/x)^{lpha_P-1}$

much faster than in DGLAP

BIG problem

- proton quickly fills up with gluons (transverse size now fixed !)
- hadronic cross sections violate ln²s bound (Froissart-Martin) and grow like a power

color dipole model

make progress by viewing, e.g., DIS from a "different angle"

splitting into a quark-antiquark pair ("color dipole") which scatters off the proton (= "slow" gluon field) DIS in the **proton rest frame** can be viewed as the photon Y Y NIN

color dipole model

make progress by viewing, e.g., DIS from a "different angle"

splitting into a quark-antiquark pair ("color dipole") which scatters off the proton (= "slow" gluon field) DIS in the **proton rest frame** can be viewed as the photon Y

factorization now in terms of

probability of photon fluctuating into qq-pair

probability of dipole scattering on the target

QCD

QED

color dipole model

make progress by viewing, e.g., DIS from a "different angle"

scatters off the proton (= "slow" gluon field) splitting into a quark-antiquark pair ("color dipole") which DIS in the **proton rest frame** can be viewed as the photon

factorization now in terms of

OCO

introduces dipole-nucleon scattering amplitude N as fund. building block

energy dependence of N described by Balitsky-Kovchegov equation
color dipole model

make progress by viewing, e.g., DIS from a "different angle"

scatters off the proton (= "slow" gluon field) splitting into a quark-antiquark pair ("color dipole") which DIS in the **proton rest frame** can be viewed as the photon

factorization now in terms of

probability of photon fluctuating into qq-pair

probability of dipole scattering on the target

QED

QCD

introduces dipole-nucleon scattering amplitude N as fund. building block

energy dependence of N described by Balitsky-Kovchegov equation

non-linear -> includes multiple scatterings for unitarization

•generates saturation scale Q_s

suited to treat collective phenomena (shadowing, diffration)

impact parameter dependence

when a N^xLO calculation is not good enough

observation: fixed N^xLO order QCD calculations are not necessarily reliable and can be an issue also at colliders, even the LHC this often happens at low energy fixed-target experiments

reason: structure of the perturbative series and IR cancellation

at partonic threshold / near exclusive boundary:

- just enough energy to produce, e.g., high-p $_{\mathsf{T}}$ parton
- "inhibited" radiation (general phenomenon for gauge theories)

all order structure of partonic cross sections

let's consider pp scattering:

logarithms related to $\ \widehat{x}_T = rac{2p_T}{\sqrt{s}}
ightarrow 1$ partonic threshold

general structure of partonic cross sections at the kth order:

$$p_T^3 \frac{d\hat{\sigma}_{ab}}{dp_T} = p_T^3 \frac{d\hat{\sigma}_{ab}^{\text{Born}}}{dp_T} \left[1 + \underbrace{\mathcal{A}_1 \alpha_s \ln^2 \left(1 - \hat{x}_T^2\right) + \mathcal{B}_1 \alpha_s \ln \left(1 - \hat{x}_T^2\right)}_{\text{NLO}} + \underbrace{\mathcal{B}_1 \alpha_s \ln \left(1 - \hat{x}_T^2\right)}_{\text{NLO}} + \dots + \underbrace{\mathcal{A}_k \alpha_s^k \ln^{2k} \left(1 - \hat{x}_T^2\right)}_{\text{NLO}} + \dots \right] + \dots$$

"threshold logarithms"

all order structure of partonic cross sections

let's consider pp scattering:

logarithms related to partonic threshold $\hat{x}_T = \frac{2p_T}{\sqrt{\hat{s}}} \to 1$

general structure of partonic cross sections at the kth order:

$$p_T^3 \frac{d\hat{\sigma}_{ab}}{dp_T} = p_T^3 \frac{d\hat{\sigma}_{ab}^{\text{Born}}}{dp_T} \left[1 + \underbrace{\mathcal{A}_1 \alpha_s \ln^2 \left(1 - \hat{x}_T^2\right)}_{\text{NLO}} + \underbrace{\mathcal{B}_1 \alpha_s \ln \left(1 - \hat{x}_T^2\right)}_{\text{NLO}} + \underbrace{\mathcal{A}_1 \alpha_s \ln^2 \left(1 - \hat{x}_T^2\right)}_{\text{NLO}} + \dots + \underbrace{\mathcal{A}_k \alpha_s^k \ln^{2k} \left(1 - \hat{x}_T^2\right)}_{\text{HLO}} + \dots \right] + \dots$$

where relevant? ... convolution with steeply falling parton luminosity Lab:

"threshold logarithms"

$$\sigma \propto \sum_{a,b} \int_{\tau}^{1} \frac{dz}{z} \mathcal{L}_{ab} \left(\frac{\tau}{z}\right) d\hat{\sigma}_{ab}(z)$$
 z = 1 emphasized,

in particular as au
ightarrow 1

ightarrow important for fixed target phenomenology: threshold region more relevant (large $\, au$)

large at small τ/z

resummations – how are they done

may spoil perturbative series unless taken into account to all orders

resummation of such terms has reached a high level of sophistication

Sterman; Catani, Trentadue; Laenen, Oderda, Sterman; Catani et al.; Sterman, Vogelsang; Kidonakis, Owens; ...

- worked out for most processes of interest at least to NLL
- well defined class of higher-order corrections
- often of much phenomenological relevance

resummations – how are they done

 $\alpha_s^k \ln^{2k}(1-\widehat{x}_T^2)$

unless taken into account to all orders may spoil perturbative series

resummation of such terms has reached a high level of sophistication

Sterman; Catani, Trentadue; Laenen, Oderda, Sterman; Catani et al.; Sterman, Vogelsang; Kidonakis, Owens; ...

- worked out for most processes of interest at least to NLL
- well defined class of higher-order corrections

00000 6

00000

H

 often of much phenomenological relevance even for high mass particle production at the LHC

Mellin moments for threshold logs $\alpha_s^k \ln^{2k}(1 - \hat{x}_T^2) \rightarrow \alpha_s^k \ln^{2k}(N)$

fixed order calculations needed to determine "coefficients"

the more orders are known, the more subleading logs can be resummed

Fixed order calculation

Fixed order calculation

Fixed order calculation

		NNLO	NLO	LO
	$lpha_{ m s}^{ m 3} { m L}^{ m 6}$ $lpha_{ m s}^{ m 4} { m L}^{ m 8}$	$lpha_{ m s}^{2} { m L}^{4}$	$\alpha_s L^2$	
••	$lpha_{ m s}^{ m 3} { m L}^{ m 5}$ $lpha_{ m s}^{ m 4} { m L}^{ m 7}$	$\alpha_{ m s}^2 { m L}^3$	$\alpha_{\rm s} {f L}$	
••	$lpha_{s}^{2} L^{4}$ $lpha_{s}^{4} L^{6}$	$\alpha_s^2 L^2$	$\alpha_{\rm s}$	
••	$lpha_{ m s}^{ m 9} { m L}^{ m 9}$ $lpha_{ m s}^{ m 4} { m L}^{ m 5}$	$\alpha_s^2 L$		
	+ + : :	+	+	

NkLO				NNLO	NLO	LO
$\alpha_{ m s}^{ m k} { m L}^{ m 2k}$	•••	$lpha_{ m s}^4{ m L}^8$	$lpha_{ m s}^{ m 3}{ m L}^{ m 6}$	$lpha_{ m s}^{2} { m L}^{4}$	$\alpha_s L^2$	
$\alpha_{s}^{k} L^{2k-1}$	•••	$\alpha_{\rm s}^4 { m L}^7$	$lpha_{ m s}^{ m 3}{ m L}^{ m 5}$	$\alpha_s^2 L^3$	$\alpha_{s} \mathbf{L}$	
$lpha_{ m s}^{ m k} { m L}^{2 m k-2}$	•••	$lpha_{ m s}^4{ m L}^6$	$lpha_{ m s}^{ m 3}{ m L}^{ m 4}$	$\alpha_{ m s}^{2} { m L}^{2}$	$\alpha_{\mathbf{s}}$	
$\alpha_s^k L^{2k-3} +$	•••	$\alpha_s^4 L^5 + \dots$	$\alpha_s^3 L^3 + \cdots$	$\alpha_s^2 \mathbf{L} + \cdots$	+	

Fixed order calculation

$N^{k}LO \quad \alpha_{s}^{k} L^{2k}$ NNLO NLO $lpha_{ m s}^2 { m L}^4$ $\alpha_{\rm s} {\rm L}^2$ $lpha_{ m s}^4\,{ m L}^8$ $lpha_{ m s}^{ m 3} { m L}^{ m 6}$ $\alpha_{\rm s}^{\rm k} {\rm L}^{2{\rm k}-1}$ $lpha_{ m s}^4\,{ m L}^7$ $\alpha_s^3 L^5$ $\alpha_s^2 L^3$ $\alpha_{s} L$ $\alpha_{\rm s}^{\rm k} {\rm L}^{2{\rm k}-2}$ $lpha_{ m s}^4 \, { m L}^6$ $\alpha_s^2 L^2$ $\alpha_{ m s}^{ m 3} \, { m L}^4$ α_s $lpha_{ m s}^{ m k} { m L}^{2 m k-3}$ $lpha_{ m s}^4 \, { m L}^5$ $lpha_{ m s}^{ m 3}\,{ m L}^{ m 3}$ $\alpha_s^2 L$ + + + : + +

Resummation

Fixed order calculation

NkLO NNLO NLO $\alpha_{\rm s}^{\rm k}\,{\rm L}^{\rm 2k}$ $\alpha_s L^2$ $lpha_{ m s}^{2} { m L}^{4}$ $lpha_{ m s}^4\,{ m L}^8$ $lpha_{ m s}^{ m 3}\,{ m L}^{ m 6}$ $\alpha_{\rm s}^{\rm k} {\rm L}^{2{\rm k}-1}$ $lpha_{ m s}^4\,{ m L}^7$ $\alpha_s^3 L^5$ $\alpha_s^2 L^3$ $\alpha_{s} L$ $\alpha_{\rm s}^{\rm k} {\rm L}^{2{\rm k}-2}$ $lpha_{ m s}^4 \, { m L}^6$ $\alpha_{ m s}^{ m 3} \, { m L}^4$ $\alpha_{\rm s}^2 \, {\rm L}^2$ α_s $lpha_{ m s}^4 \, { m L}^5$ $lpha_{ m s}^{ m k} { m L}^{2 m k-3}$ $lpha_{ m s}^{ m 3}\,{ m L}^{ m 3}$ $\alpha_s^2 L$ + +

+ :

+

Resummation

+

Fixed order calculation

5				
NLO	$\alpha_s L^2$	$\alpha_{s} L$	$\alpha_{ m s}$	+
NNLO	$\alpha_{ m s}^2 { m L}^4$	$\alpha_{ m s}^{2} { m L}^{3}$	$\alpha_{ m s}^{2} { m L}^{2}$	$\alpha_s^2 \mathbf{L} + \cdots$
	$\alpha_{\rm s}^3 { m L}^6$	$\alpha_{ m s}^{ m 3} { m L}^{ m 5}$	$lpha_{ m s}^{ m 3}{ m L}^{ m 4}$	$\alpha_s^3 L^3 + \cdots$
	$lpha_{ m s}^4{ m L}^8$	$lpha_{ m s}^{ m 4}{ m L}^{ m 7}$	$lpha_{ m s}^4{ m L}^6$	$\alpha_s^4 L^5 + \dots$
NkLO	$\alpha_{ m s}^{ m k} { m L}^{2 m k}$	$\alpha_{\rm s}^{\rm k} {\rm L}^{2{\rm k}-1}$	$\alpha_{ m s}^{ m k} { m L}^{2 m k-2}$	$\alpha_{s}^{k} L^{2k-3} +$
		NLL		

Resummation

Fixed order calculation

	NkLO		NNLO	NLO	LO
LL	$lpha_{ m s}^{ m k} { m L}^{2 m k}$	$lpha_{ m s}^{ m 3} { m L}^{ m 6}$ $lpha_{ m s}^{ m 4} { m L}^{ m 8}$	$\alpha_{ m s}^{2} { m L}^{4}$	$\alpha_s L^2$	
NLL	$\alpha_{\rm s}^{\rm k} {\rm L}^{2{\rm k}-1}$	$lpha_{ m s}^{ m 3} { m L}^{ m 5}$ $lpha_{ m s}^{ m 4} { m L}^{ m 7}$	$\alpha_{\rm s}^{2} {\rm L}^{3}$	$\alpha_{s} L$	
NNLL	$lpha_{ m s}^{ m k} { m L}^{2 m k-2}$	$lpha_{ m s}^{ m 3} { m L}^{ m 4}$ $lpha_{ m s}^{ m 4} { m L}^{ m 6}$	$\alpha_{\rm s}^2 {\rm L}^2$	$\alpha_{\mathbf{s}}$	
	$\alpha_{s}^{k} L^{2k-3} +$	$\alpha_s^3 L^3 + \cdots$ $\alpha_s^4 L^5 + \cdots$	$\alpha_s^2 \mathbf{L} + \cdots$	+	

Resummation

some leading log exponents

(assuming fixed α_s for simplicity)

color factors for soft gluon radiation matter:

moderate enhancement, unless x_{Bj} large

some leading log exponents

(assuming fixed α_s for simplicity)

color factors for soft gluon radiation matter:

exponents positive — enhancement

→ power corrections may be added afterwards if pheno. needed studying power corrections prior to resummations makes no sense	 → need some "minimal prescription" to avoid Landau pole (where a_s→∞) Catani, Mangano, Nason, Trentadue: define resummed result such that series is asymptotic w/o factorial growth associated with power corrections [achieved by particular choice of Mellin contour] 	important technical issue: resummations are sensitive to strong coupling regime
--	---	--

resummations: window to non-perturbative regime

window to the non-perturbative regime so far little explored
studying power corrections prior to resummations makes no sense
ightarrow power corrections may be added afterwards if pheno. needed
[achieved by particular choice of Mellin contour]
define resummed result such that series is asymptotic w/o factorial growth associated with power corrections
Catani, Mangano, Nason, Trentadue:
$ ightarrow$ need some "minimal prescription" to avoid Landau pole (where $lpha_{s} ightarrow\infty$)
resummations are sensitive to strong coubling regime
important technical issue:
resummations: window to non-perturbative regime

"convergence" of an asymptotic series

see, "Renormalons" review by M. Beneke, hep-ph/9807443

ightarrow big trouble: the perturbative series is not convergent but only asymptotic

• **big trouble**: the perturbative series is not convergent but only asymptotic

suppose we keep calculating higher and higher orders $\alpha_s^{n+1} \beta_0^n n!$ factorial growth

"convergence" of an asymptotic series

see, "Renormalons" review by M. Beneke, hep-ph/9807443

pQCD – non-perturbative bridge

"renormalon ambiguity" <-> incompleteness of pQCD series

ightarrow we can only define what the sum of the perturbative series is

like truncating it at the minimal term

pQCD – non-perturbative bridge

"renormalon ambiguity" <-> incompleteness of pQCD series ightarrow we can only define what the sum of the perturbative series is like truncating it at the minimal term

what is missing is a genuine ambiguity eventually lifted by non-perturbative (NP) corrections:

 $R = R^{pQCD} + R^{NP}$

pQCD – non-perturbative bridge

- "renormalon ambiguity" \leftrightarrow incompleteness of pQCD series ightarrow we can only define what the sum of the perturbative series is like truncating it at the minimal term
- what is missing is a genuine ambiguity eventually lifted by non-perturbative (NP) corrections:

$$R = R^{pQCD} + R^{NP}$$

 $R^{NP} = \exp\left(-p\ln\frac{Q^2}{\Lambda^2}\right) = \left(\frac{\Lambda^2}{\Lambda^2}\right)$

the value of **p** depends on the process and can sometimes be predicted

- QCD: NP corrections are power suppressed:

SUMMARY & OUTLOOK

QCD: the most perfect gauge theory (so far)

simple $\mathcal L$ but rich & complex phenomenology; tew parameters

(issue: CP, axions?) in principle complete up to the Planck scale

-10

for all the structure in the visible universe highly non-trivial ground state responsible

chiral symmetry breaking, hadrons **emergent phenomena**: confinement,

C

continement

structure of hadrons non-perturbative

interplay between High Energy and Hadron Physics

perturbative methods

hard scattering

asymptotic freedom

we have just explored the tip of the iceberg

enjoy the other lectures !

we have just explored the tip of the iceberg