Physics from the Never-Setting* Neutrino Sun

Kate Scholberg Duke University NNPSS 2013

or anti-setting?

Neutrino Interactions with Matter

Neutrinos are aloof but not *completely* unsociable

$$v_{|} + N \rightarrow |^{\pm} + N'$$

Produces lepton with flavor corresponding to neutrino flavor

(must have enough energy to make lepton)

Flavor-blind

It's called the weak interaction for a reason

In astrophysics, the weakness of the interaction is both a blessing and a curse...

- they bring information from deep inside objects, from regions where photons are trapped
- but they require heroic efforts to detect!

The Story of Solar Neutrinos

How does the Sun shine?

ν -raying the Sun: a classic problem

"Tame" neutrinos complement the "wild" ones

How does the Sun shine? (or maybe yet more new physics...)

How does the Sun shine?

The sun is a mass of incandescent gas A gigantic nuclear furnace Where hydrogen is built into helium At a temperature of millions of degrees

-They Might Be Giants

Solar fusion reactions

Electron flavor neutrinos generated in solar fusion; spectrum is pretty well understood from weak physics

Homestake Chlorine Radiochemical Detector

Figure 2.3. Schematic drawing of the argon recovery system. The pump-eductor system forces helium gas through the tetrachloroethylene liquid and provides the helium gas flow through the argon collection system.

600 tons of cleaning fluid

Threshold: 0.81 MeV

v_e + ³⁷Cl → ³⁷Ar + e⁻

Extract atoms of ³⁷Ar every few months and count decays (35-day half life): ~ 12 per month!

Davis and Bahcall in 1967

Saw about 1/3 of the expected neutrinos

Could the Sun be going out??

Less apocalyptic (and less fine-tuned) ideas:

blame the Sun

Something wrong with the solar model? mixing between layers, abundances not understood...?

blame the neutrinos

Something funny about neutrinos? magnetic moment, decay...

Pontecorvo

or neutrino oscillations...?

Suppose electron neutrinos oscillate into v_{μ} or v_{τ} flavors, which don't have the oomph to make μ & τ via CC, ... so they effectively disappear

Distance traveled

Does it work out? Not really: for simplest case don't get the right suppression

$$P(\nu_f \to \nu_g) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$$

Example of oscillations in vacuum, for fixed v energy

Evolving ideas about oscillations...

AT SOLAR NEUTRINO ENERGIES:

All neutrino flavors Only electron neutrinos

The Sun tastes like electrons to solar v_e

Smirnov

Wolfenstein

The Mikheyev-Smirnov-Wolfenstein (MSW) Effect a.k.a. <u>"Matter Effects"</u>

VS.

The Sun tastes like electrons to solar v_e

extra energy $\sqrt{2} G_F N_e$ for v_e

extra forward scattering amplitude → need to modify Hamiltonian vs. NC only for $v_{\mu,\tau}$

$$\ket{
u(t)} = a_e(t) \ket{
u_e} + a_\mu(t) \ket{
u_\mu}$$

 $\frac{\frac{\Delta m^2}{2E}\sin 2\theta}{\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e}$ $\tan 2\theta_m =$

profile and vacuum

oscillation parameters

Notice the mixing amplitude gets large if:

$$\frac{\Delta m^2}{2E}\cos 2\theta = \sqrt{2}G_F N_e$$

Density varies continuously in the Sun

So for a given E, some density could satisfy the condition

$$\frac{\Delta m^2}{2E}\cos 2\theta = \sqrt{2}G_F N_e$$

and lead to large flavor transition, even for small intrinsic mixing: **MSW resonance**

Is this what's happening?

More experimental information coming in... Water Cherenkov Detectors

Elastic scattering of ~MeV solar v's on electrons

real time detection, with *directionality*

Kamiokande II in Japan (original motivation: search for proton decay)

E>~7 MeV : sensitive to ⁸B tail of spectrum

Kamiokande-II, 1991

~40% of expectation: still a deficit

Later: significant improvement from Super-K (consistent with earlier results)

SUPERKAMIOKANDE INSTITUTE FOR COSMIC RAY RESEARCH UNIVERSITY OF TOKYO 22.5 kton, <~ 5 MeV threshold

NIKKEN SEKKEI

The Sun in neutrinos from Super-K

Disclaimer: the visible Sun occupies < 1 pixel, and neutrinos emerge from an even smaller region!

Two measurements at two energy thresholds

Next: gallium radiochemical experiments

v_e + ⁷¹Ga → ⁷¹Ge + e⁻

Gallex/GNO (Gallium Neutrino Observatory) at LNGS, Italy: 1991-2006

Used gallium chloride (30 tons of Ga)

The SAGE Experiment

Caucasus mountains, Russia

Based on liquid gallium 50 tons

1990-2007

Gallium solar neutrino results

D. Hahn, Nu2008

SAGE

Again clear shortfall: about 60% of standard solar model expectation (pp neutrinos)

The picture in the mid-1990's: the "classic" solar neutrino problem

Different detectors are sensitive to different neutrino energy ranges

Energy-dependent suppression observed

No known solar model could explain... could it be $v_e \rightarrow v_{\mu,\tau}$?

"Classic" allowed parameters for solar neutrino oscillations (Ga+CI+ water)

In 1998, atmospheric neutrinos results from Super-K show ~ GeV neutrinos are oscillating

Hunting for "Smoking Guns": oscillation signatures

• Day/night effect: regeneration of v_e in Earth due to matter effect enhances v_e flux at night for some parameters

 Seasonal variation: variation with L for vacuum oscillation (beyond 7% expected from Earth orbit)

e

Recoil energy spectrum

Seasonal variation

Day/night asymmetry

No strong effects (besides suppression) observed at Super-K ⇒ constrain parameters

But there's another smoking gun...

Spectral distortion

- Day/night effect: regeneration of v_e in Earth due to matter effect enhances v_e flux at night for some parameters
 - <u>Seasonal variation</u>: variation with L (beyond 7% expected from Earth orbit)

No strong effects observed at Super-K (constrain parameters)

Neutral Current Excess: *direct evidence* for flavor transformation

The Sudbury Neutrino Observatory

1 kton D₂O, 1.7 kton H₂O $v_e^+ d \rightarrow p + p + e^-$ CC $v_x^+ d \rightarrow v_x^- + p + n$ NC $v_{e,x}^+ e^- \rightarrow v_{e,x}^- + e^-$ Elastic scattering (CC, NC)

Sudbury, Canada

Cherenkov light from e⁻ Neutron detection

SNO's unique feature: NC detection

$$v_x + d \rightarrow v_x + p + n$$
 flavor-blind

Tag NC via detection of neutron

- Phase I: capture on d (D_2O) $n+d \rightarrow t+\gamma+6.25$ MeV
 - Phase II: capture on CI (salt, NaCI) $n+{}^{35}Cl \rightarrow {}^{36}Cl + \gamma + 8.6$ MeV
 - Phase III: neutron detectors (NCD) $n+{}^{3}He \rightarrow p+t+0.76$ MeV

Neutrino flavor information from SNO

$$v_{e}^{+} d \rightarrow p + p + e^{-} CC \text{ specifically tags } v_{e} \text{ component}$$

$$\phi_{CC}^{-} \phi(v_{e})$$

$$v_{x}^{+} d \rightarrow v_{x}^{+} + p + n NC \text{ flavor-blind} \Rightarrow \underset{total active flux}{\text{measure}}$$

$$\phi_{NC}^{-} \phi(v_{e}) + \phi(v_{\mu,\tau}) \sim \text{total flux}$$

$$v_{e,x}^{+} e^{-} \rightarrow v_{e,x}^{+} e^{-} Elastic \text{scattering}} \underset{(CC, NC)}{\text{mixture of } v_{e} \text{ and all}}$$

$$\phi_{ES}^{-} \phi(v_{e}) + 0.15\phi(v_{\mu,\tau})$$

Also look for distortion of CC spectrum, night enhancement

Phase I SNO Results, 2002

Fit data for CC, NC, ES components

Clear evidence from SNO for oscillation to $\nu_{\mu,\tau}$

Clear evidence from SNO for oscillation to $\nu_{\mu,\tau}$

Conclusion: v_e 's *are* oscillating into active v's! The solar neutrino problem solved!

 $\phi_{\text{CC}} = \phi(v_e) \qquad \qquad \phi_{\text{NC}} = \phi(v_e) + \phi(v_{\mu,\tau}) \sim \text{total flux}$

$$\phi_{\rm ES} = \phi(v_e) + 0.15\phi(v_{\mu,\tau})$$

G. Orebi-Gann

SNO Final Analysis Results

Energy spectrum & day/night effect (matter in Earth) from SNO & SK constrain oscillation parameters

Electron neutrino survival probability vs v energy

Oscillation parameters measured with "wild" solar neutrinos...

The KamLAND Experiment

Mozumi, Japan

Look at solar LMA parameter space using reactor antineutrinos Sum of reactor fluxes from Japan, Korea

E_v~few MeV, L~180 km (no matter effects)

Scintillation detectors

Liquid scintillator C_nH_{2n} volume surrounded by photomultipliers

- lots of photons
 low threshold, good neutron tagging possible
- little directional capability (light is ~isotropic)

Inverse Beta Decay (CC) $\overline{v}_e + p \rightarrow e^+ + n$

In any detector with lots of free protons (e.g. water, scint) this dominates

KamLAND: 1 kton scintillator

First KamLAND result (2003): observed suppression of reactor \overline{v}_e 's selects the LMA region

KamLAND observed spectrum

KamLAND oscillation pattern from measured
antineutrino spectrum $P(\nu_f \rightarrow \nu_g) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 L}{E}\right)$

Overall fit to the solar+KamLAND data

A "movie" of the past 8 years of solar parameter space

plots made by H. Lim from H. Murayama's PDG web page

Recent global fit (solar + KL) from C. Gonzalez-Garcia, ICHEP 2012

But there's more: the Borexino Experiment Gran Sasso, Italy

Go after recoil electrons from the ⁷Be line

Heroic (and successful) struggle with radioactive (ambient & cosmogenic) backgrounds

Even more heroic extraction of pep neutrino rates (and limits on CNO neutrinos)

0.8

1.0

1.2

1.4

Energy / MeV

Borexino solar neutrino data at low energy can constrain exotic models

Before: exotic oscillation scenarios allowed

After: consistent with standard solar model and standard matter oscillation scenario

What's next for solar neutrinos?

We now have the basic picture, but there are are still gaps & discrepancies...

Latest solar models inconsistent with helioseismology ... neutrino info can help

What experiments are next for solar neutrinos?

- SK and Borexino still running
- SNO+: SNO acrylic vessel filled
 - with scintillator (+Nd for 0nubbk)
- Farther future: LENA, 50 kt scintillator in Finland

Ultra-low energy (sub MeV) real-time solar pp v detectors

The Frontier

Vast pp neutrino flux barely touched!

- detectors can be relatively small (~10 tons) thanks to huge pp flux
- want real-time energy resolution
- must be ultra-clean to defeat radioactive background

CLEAN: liquid neon (argon)

XMASS: liquid xenon

$$v_{e(\mu\tau)} + e \rightarrow v_{e(\mu\tau)} + e$$

Note: noble liquid detectors have gotten "distracted" by WIMP searches...

Measured recoil energy spectrum in xenon

Nuclear recoils induced by DM may be an easier signal!

A dedicated future solar neutrino experiment:

LENS: indium-loaded scintillator

use delayed triple coincidence to reject background

$$v_e^{+115}In \rightarrow e^- + (\tau = 4.76\,\mu s)2\gamma + {}^{115}Sn$$

The Story of Solar Neutrinos

