Fundamental Symmetries

David Kawall, University of Massachusetts Amherst

- Standard Model : Inadequacies
- Experimental Tests of Standard Model and Symmetries
	- Baryon Number Violation : Proton Decay
	- Parity Violation : MOLLER at JLab
	- Charged Lepton Flavor Violation : $\mu N \to eN$
	- Electric Dipole Moment Searches : e, μ, n, p , nuclei
	- Precision Test of the Standard Model : Muon g-2
- Summary and Outlook

• My experience : experimentalist, worked on polarized deep-inelastic scattering, muonium hyperfine structure (test of bound state QED), muon g-2, electron EDM searches in polar diatomic molecules, polarized protonproton scattering with PHENIX collaboration at RHIC - to measure Δg and $\Delta \bar u$ and Δd , new muon g-2

- What is origin of the observed matter-antimatter asymmetry?
	- SM prediction off by >6 orders of magnitude
- SM doesn't explain $1/3$ relation between quark and lepton charges
- What is the origin of neutrino mass?
- What is dark matter? What is dark energy?
- Can we explain the extreme hierarchy of masses and strengths of forces?
- Why are there 3 families? Can the electroweak and strong forces be unified?
- \Rightarrow What about gravity ???
	- Is Standard Model a low-energy limit of a more fundamental theory ??
- Noether : ∃ conserved quantity for every continuous symmetry of Lagrangian
- Baryon number : conserved by $U(1)_B$ symmetry in SM, but broken by non-perturbative weak effects ('t Hooft, PRL 37, 8 (1976))

 \Rightarrow Proton can annihilate with neutron $\colon p+n\to e^+ + \bar{\nu}_\mu, \; p+n\to \mu^+ + \bar{\nu}_e$

- ⇒ SM proton decay rate contains pre-factor $e^{-4\pi \sin^2\theta_W/\alpha_{\rm QED}} \approx e^{-4\pi/0.0335}$. so $\Gamma \propto 10^{-163}$ s⁻¹ $\Leftrightarrow \tau_{\rm proton} > 10^{150}$ years !
- But : baryon number violation required for creation of matter in universe $(i.e.$ matter-antimatter asymmetry)
- Ultimate end of universe depends on proton stability
- Proton decay predicted in many Grand Unified Theories (GUTs)
- \bullet Scale at which forces unify, $M_G \approx 10^{16}$ GeV, well beyond EW scale $G_F^{-1/2} \approx 250$ GeV

 \Rightarrow Proton decay fantastic probe of profound physics, far beyond reach of accelerators

Why unify forces?

- \Rightarrow Standard model described by groups $SU(3)_c \otimes SU(2)_L \otimes U(1)_Y$ with 3 distinct couplings - can this be simplified?
- \Rightarrow Even electroweak unification doesn't predict relative EM and weak couplings
- \Rightarrow Why are there 3 generations of fermions? Why large hierarchy of masses? $m_{\rm top} > 10^5 m_e$
- \Rightarrow What is the origin of neutrino mass? Are neutrinos their own anti-particles?
- \Rightarrow What is the origin of the matter-antimatter asymmetry in the universe?
- \Rightarrow Quarks and lepton charged weak current doublets identical, $\left(\begin{array}{cc} \nu_e \ e \end{array}\right)$ e \sum L , $\int u$ d' \sum Are they related at more fundamental level?
- \Rightarrow Why is charge quantized? Why is $Q(e) + Q(p) = 0$? Why is $Q(d) = Q(e)/3$? Why not $Q(d) = Q(e)/5?$
- \Rightarrow Higgs hierarchy problem : radiative corrections should push Higgs mass to $M_P \approx 10^{19}$ GeV. Explained by SUSY?
- \Rightarrow Gravity not explained. Dark energy, dark matter, also unexplained, ...

 \Rightarrow Many of us will measure zero or consistency with SM for many years - but great new physics is almost certainly there, waiting to be discovered

L

$SU(N)$ Groups

- \bullet Elements of $SU(N)$ groups are $n \times n$ unitary matrices U with $\det \mathbf{1}$ $(U^{\dagger}U=1,\,\det(U){=}1)$
- Matrix elements are complex so nominally $2 \times n \times n$ elements; but $U^{\dagger}U = 1$ implies n constraints on diagonal elements, $n^2\!-n$ constraints on off-diagonal, 1 constraint to make $\mathsf{det}(U) \mathsf{=} 1 \Rightarrow \; n^2-1$ independent parameters
- For $SU(2)$ there are three independent parameters : α, β, γ ; think of Euler angles

$$
U(\alpha, \beta, \gamma) = \begin{pmatrix} e^{-i(\alpha + \gamma)/2} \cos \beta/2 & -e^{-i(\alpha - \gamma)/2} \sin \beta/2 \\ e^{i(\alpha - \gamma)/2} \sin \beta/2 & e^{i(\alpha + \gamma)/2} \cos \beta/2 \end{pmatrix}
$$

• Can write $U = e^{iH}$ for H Hermitian $(H = H^{\dagger}, U^{\dagger}U = (e^{iH})^{\dagger}(e^{iH}) = e^{i(H - H^{\dagger})} = 1$

 \bullet Can pick n^2-1 Hermitian matrices G_i so any element U of $SU(N)$ can be written as :

$$
U = \exp\left(\sum_{i=1}^{n^2-1} i\theta_i G_i\right),\,
$$

 \bullet θ_i are real parameters, G_i are the generators of the group $(n^2-1$ of them)

- For $SU(2)$, can pick three Pauli matrices σ_i as generators
- \bullet Finally $\colon U=e^{G},$ $\det(e^{G})=e^{\text{Tr}G},$ so $\det(U){=}1$ implies generators G_i traceless, Hermitian
- (See G. Kane, Modern Elementary Particle Physics or J.-Q. Chen, Group Representation Theory for Physicists)

$SU(5)$ as a prototype GUT

- Georgi and Glashow, "Unity of All Elementary-Particle Forces", PRL 32, 438 (1974) : propose a minimal $SU(5)$ as a possible GUT (minimal \Leftrightarrow smallest Higgs sector)
- Fermions in 5 and 10 representations (versus SM singlets, doublets, triplets)

$$
\mathbf{\bar{5}} = \begin{pmatrix} \bar{d}_r \\ \bar{d}_g \\ \bar{d}_b \\ e^- \\ -\nu_e \end{pmatrix}_{L}, \quad \mathbf{10} = \begin{pmatrix} 0 & \bar{u}_b & -\bar{u}_g & -u_r & -d_r \\ -\bar{u}_b & 0 & \bar{u}_r & -u_g & -d_g \\ \bar{u}_g & -\bar{u}_r & 0 & -u_b & -d_b \\ u_r & u_g & u_b & 0 & e^+ \\ d_r & d_g & d_b & -e^+ & 0 \end{pmatrix}_{L}
$$

- 10 is antisymmetric, 15 particles total, $SU(5)$ gauge bosons enable transitions between multiplet members (like $SU(2)_L$ mixes doublet : $u + W^- \rightarrow d$, $e^- + W^+ \rightarrow \nu_e$)
- \bullet $SU(N)$ generators are traceless \Leftrightarrow sum of eigenvalues is 0
- Electric charge Q is linear combination of generators from $SU(2)_L$ and $U(1)_Y$: $Q = T_3 + Y/2$

 \Rightarrow In $SU(5)$, Q is a (traceless) generator so sum of electric charges in a representation is zero

$$
\Rightarrow Q(\nu_e) + Q(e^-) + 3Q(\bar{d}) = 0 \Rightarrow Q(\bar{d}) = \frac{1}{3}Q(e^-) = 0
$$

- \Rightarrow Electric charge of quarks is related to number of flavors, $Q(e^-)\equiv -Q(p)$ atoms neutral, charge quantized!
- Explain a remarkable amount, very appealing to think forces are unified
- What about $SU(N)$ gauge bosons?
- For $SU(5)$ should be $N^2 1 = 5^2 1 = 24$ bosons, versus $(3^2 1) + (2^2 1) + 1 = 12$ for SM
- Displayed in matrix form as (see G. Ross, Grand Unified Theories) :

$$
V_{SU(5)} = \begin{pmatrix} g_{r\bar{r}} - \frac{2}{\sqrt{30}}B & g_{r\bar{g}} & g_{r\bar{b}} & X_1 & Y_1 \\ g_{g\bar{r}} & g_{g\bar{g}} - \frac{2}{\sqrt{30}}B & g_{g\bar{b}} & X_2 & Y_2 \\ \hline g_{b\bar{r}} & g_{b\bar{g}} & g_{b\bar{b}} - \frac{2}{\sqrt{30}}B & X_3 & Y_3 \\ \overline{X}_1 & \overline{X}_2 & \overline{X}_3 & \frac{1}{\sqrt{2}}W^3 + \frac{3}{\sqrt{30}}B & W^+ \\ \overline{Y}_1 & \overline{Y}_2 & \overline{Y}_3 & W^- & -\frac{1}{\sqrt{2}}W^3 + \frac{3}{\sqrt{30}}B \end{pmatrix}
$$

- Color group $SU(3)$ operates in first 3 rows and columns, $SU(2)$ on last two
- Twelve new gauge bosons X_i , \bar{X}_i , Y_i , \bar{Y}_i , $i = 1, 2, 3$
- New bosons mediate transitions between quarks and leptons

• Interaction part of $SU(5)$ Lagrangian (see C. Quigg) :

$$
\mathcal{L}_{int} = -\frac{g_5}{2} G^a_\mu \left(\bar{u} \gamma^\mu \lambda^a u + \bar{d} \gamma^\mu \lambda^a d \right) - \frac{g_5}{2} W^i_\mu \left(\bar{L}_u \gamma^\mu \tau^i L_u + \bar{L}_e \gamma^\mu \tau^i L_e \right) \n- \frac{g_5}{2} \frac{3}{5} B_\mu \sum_{\text{fermions}} \bar{f} \gamma^\mu Y f \n+ \frac{g_5}{\sqrt{2}} \left[X^-_{\mu,\alpha} \left(\bar{d}_R^\alpha \gamma^\mu e_R^c + \bar{d}_L^\alpha \gamma^\mu e_L^c + \epsilon_{\alpha\beta\gamma} \bar{u}_L^{c\gamma} \gamma^\mu u_L^\beta \right) + H.C. \right] + \n+ \frac{g_5}{\sqrt{2}} \left[Y^-_{\mu,\alpha} \left(d \bar{d}_R^\alpha \gamma^\mu \nu_R^c + \bar{u}_L^\alpha \gamma^\mu e_L^c + \epsilon_{\alpha\beta\gamma} \bar{u}_L^{c\beta} \gamma^\mu d_L^\gamma \right) + H.C. \right]
$$

• Doublets *L* given by
$$
L_u = \begin{pmatrix} u \\ d' \end{pmatrix}_L
$$
, $L_e = \begin{pmatrix} \nu_e \\ e \end{pmatrix}_L$

- First three terms are from SM, though now with single coupling g_5
- Color $SU(3)$ $a = 1...8$, $SU(2)$ $i = 1, 2, 3$, $\alpha = r, g, b$, c indicates anti-particle
- X bosons (electric charge -4/3) and Y (electric charge -1/3) mediate quarks \Leftrightarrow leptons
- X, Y boson exchange will allow baryon number violation \Rightarrow proton decay

Proton decay in $SU(5)$

- \bullet See possible decay mode : $p \rightarrow e^+ + \pi^0$
- What about proton lifetime? Estimate similar to τ_μ

$$
\tau_{\mu} = \left(\frac{M_W}{m_{\mu} g_w}\right)^4 \frac{12\hbar (8\pi)^3}{m_{\mu} c^2} \propto \frac{M_W^4}{m_{\mu}^5} \text{ so expect } \tau_p \propto \frac{M_X^4}{m_p^5}
$$

• What do we use for new gauge boson masses M_X , M_Y ?

- Coupling strength depends on momentum transfer of virtual gauge bosons
- EM force increases at smaller length scale (α_1)
- Weak and strong force weaken at higher energy scales (α_2, α_3)
- Quickly review origin of this behavior

Unification of Forces (see Kane, Quigg, ...)

$$
\mathcal{M} \propto e_0 \bar{u}(k')\gamma^{\mu}u(k)\epsilon_{\mu} -
$$
\n
$$
\int \frac{d^4p}{(2\pi)^4} [e_0 \bar{u}(k')\gamma^{\mu}u(k)] \times \frac{1}{q^2} \frac{[e_0 \bar{u}(p)\gamma_{\mu}u(p-q)] [e_0 \bar{u}(p-q)\gamma^{\lambda}u(p)]}{(p^2 - M^2) [(p-q)^2 - M^2]} \epsilon_{\lambda}
$$
\n
$$
= e_0 \bar{u}(k')\gamma^{\mu}u(k) \times \left[\epsilon_{\mu} - \frac{e_0^2 \epsilon^{\lambda}}{q^2} \int \frac{d^4p}{(2\pi)^4} \frac{[\bar{u}(p)\gamma_{\mu}u(p-q)][e\bar{u}(p-q)\gamma_{\lambda}u(p)]}{(p^2 - M^2) [(p-q)^2 - M^2]} \right]
$$
\n
$$
= e_0 \bar{u}(k')\gamma^{\mu}u(k) \times [\epsilon_{\mu} - \epsilon^{\lambda}T_{\mu\lambda}(q^2)], \quad T_{\mu\lambda} = g_{\mu\lambda}I(q^2) \text{ since } \epsilon_{\mu}q^{\mu} = 0
$$
\n• What is $I(q^2)$? See C. Quigg or favorite QFT book

Unification of Forces (see Kane, Quigg, ...)

$$
I(q^2) = \frac{\alpha_0}{3\pi} \int_{M^2}^{\infty} \frac{dp^2}{p^2} - \frac{2\alpha_0}{\pi} \int_0^1 dx x (1 - x) \ln\left[1 - \frac{q^2 x (1 - x)}{M^2}\right]
$$

\n
$$
\approx \frac{\alpha_0}{3\pi} \ln \frac{\Lambda^2}{M^2} - \frac{\alpha_0}{3\pi} \ln \frac{-q^2}{M^2};
$$
 for large $\frac{q^2}{M^2}$, cutoff Λ , $\alpha_0 \equiv \frac{e_0^2}{4\pi}$
\n
$$
= \frac{\alpha_0}{3\pi} \frac{\Lambda^2}{(-q^2)}
$$

• So, amplitude describing diagram below is proportional to :

• Can keep adding more loops

$$
\mathcal{M} \approx e_0^2 \left[1 - \left(\frac{\alpha_0}{3\pi} \ln \frac{\Lambda^2}{(-q^2)} \right) + \left(\frac{\alpha_0}{3\pi} \ln \frac{\Lambda^2}{(-q^2)} \right)^2 + \dots \right] \left([\bar{u}(k')\gamma^\mu u(k)] \left[\bar{u}(p')\gamma_\mu u(p) \right] \right)
$$

\n
$$
\approx e_0^2 \left[1 - \epsilon_0 + \epsilon_0^2 - \epsilon_0^3 + \dots \right] \left([\bar{u}(k')\gamma^\mu u(k)] \left[\bar{u}(p')\gamma_\mu u(p) \right] \right)
$$

\n
$$
\approx \left[\frac{e_0^2}{1 + \epsilon_0} \right] \left[\bar{u}(k')\gamma^\mu u(k) \right] \times \left[\bar{u}(p')\gamma_\mu u(p) \right], \text{ where } \epsilon_0 = \frac{\alpha_0}{3\pi} \ln \frac{\Lambda^2}{(-q^2)}
$$

\n
$$
\mathcal{M} \approx \left[\frac{e_0^2}{1 + \frac{\alpha_0}{3\pi} \ln \frac{\Lambda^2}{(-q^2)}} \right] \left[\bar{u}(k')\gamma^\mu u(k) \right] \times \left[\bar{u}(p')\gamma_\mu u(p) \right]
$$

 \bullet Include higher order diagrams by replacing "bare" e_0 with q^2 -dependent coupling :

$$
e_0^2 \Rightarrow e^2(q^2) = \frac{e_0^2}{1 + \frac{\alpha_0}{3\pi} \ln \frac{\Lambda^2}{(-q^2)}}
$$

 \bullet So coupling α $measured$ at μ^2 includes all loops, given by :

$$
\alpha(\mu^2) = \frac{\alpha_0}{1 + \frac{\alpha_0}{3\pi} \ln \frac{\Lambda^2}{\mu^2}}
$$

 \bullet Use measurement of $\alpha(\mu^2)$ at μ^2 to determine α at any other momentum transfer q^2 :

$$
\alpha(q^2) = \frac{\alpha_0}{1 + \frac{\alpha_0}{3\pi} \ln\left[\frac{\Lambda^2}{-q^2}\right]}
$$

$$
= \frac{\alpha_0}{1 + \frac{\alpha_0}{3\pi} \ln\left[\frac{\Lambda^2}{\mu^2} \cdot \frac{\mu^2}{-q^2}\right]}
$$

$$
\Rightarrow \alpha(q^2) = \frac{\alpha(\mu^2)}{1 + \frac{\alpha(\mu^2)}{3\pi} \ln\left[\frac{\mu^2}{-q^2}\right]}
$$

• No more dependence on cut-off Λ or unmeasurable α_0 , just depends on one finite, measured value $\alpha(\mu^2)$. Also see $\alpha(q^2)$ increases as momentum transfer increases

- \bullet Result above for e^\pm in loops : need to include $\mu,~\tau,$ and quarks
- \bullet Should include contributions from all charged particles for which $|q^2| >> m^2$
- Multiply coefficient of correction by : $n_l + 3\left(\frac{4}{9}\right)$ 9 $\bigg\}\,n_u+3\,\bigg(\frac{1}{2}\,\bigg)$ 9 \sum n_d
- \bullet n_l is number of leptons, n_u is number of quarks with $Q=2/3$, factor 3 is for three colors
- \Rightarrow Contribution depends on charge 2 since couple to γ on each side of loop
- \Rightarrow Each family contributes factor 8/3
- \Rightarrow Need to include loops with W^{\pm} when $|q^2| >> M_W^2$
- \Rightarrow How much stronger is α at $q^2=M_W^2$ versus $\alpha(4M_e)^2\approx 1/137?$
- \Rightarrow Number particles in loops $n_l = n_d = 3$, $n_u = 2$ gives factor 20/3 $(n_u = 2 \text{ since } M_{\text{top}} > M_W$, no contribution from top)

$$
\frac{\alpha(M_W^2)}{\alpha(4M_e^2)} \approx \frac{1}{1 - \frac{20/3}{3\pi \times 137} \ln\left[\frac{M_W^2}{4M_e^2}\right]} \approx 1.066
$$

\n
$$
\Rightarrow \alpha(M_W^2) \approx \frac{1}{128}
$$

 \Rightarrow Running of coupling sensitive to particle content

- For QCD, similar effects but : no lepton contribution, quark color charges are the same, gluons self-couple
- \bullet For quark loops $\alpha(\mu^2)/3\pi$ $\;\Rightarrow\; \alpha_3(\mu^2)/6\pi$ for each flavor
- Gluon loops lead to contribution with opposite sign, larger in magnitude
- \bullet Gluon loops lead to anti-screening, weakening with q^2 , asymptotic freedon

$$
\frac{\alpha(\mu^2)}{3\pi} \Rightarrow \frac{\alpha_3(\mu^2)}{4\pi} \left(\frac{2}{3}n_f - 11\right)
$$

$$
\alpha_3(q^2) = \frac{\alpha_3(\mu^2)}{1 + \frac{\alpha_3(\mu^2)}{12\pi} (33 - 2n_f) \ln\left[\frac{-q^2}{\mu^2}\right]}
$$

- Since $(33 n_f) = (33 2 \times 6) > 0$, QCD coupling decreases as momentum transfer increases \Rightarrow asymptotic freedom
- \bullet At very large q^2 , $\alpha_3(q^2)$ independent of $\alpha_3(\mu^2)$ \bullet For small q^2 , denominator approach zero as $q^2 \Rightarrow \Lambda_{\rm QCD}$

$$
\Lambda_{\rm QCD} \approx \mu \exp\left(-\frac{6\pi}{(33 - 2n_f)\alpha_3(\mu^2)}\right) \approx 170 \text{ MeV}
$$

- Using $\mu \approx 10$ GeV, $\alpha_3(\mu^2) \approx 0.2$, $n_f = 5$
- Sets the approximate scale for bound states of strongly interacting particles
- For weak interaction : exchanged boson is Z , gauge bosons in loops $(W^{\pm},\,Z,\,H)$ dominate over fermions since weak charge larger
- Running of weak coupling like strong coupling : gets weaker as momentum transfer increases
- Grand Unification : if 3 forces emerge from breaking symmetry of a simpler gauge group reunification occurs at some high scale (for instance $SU(5) \supset SU(3)_c \times SU(2)_L \times U(1)_Y$)
- Strong and weak force, non-Abelian gauge groups, decrease in strength; EM has Abelian group, increases : could unite
- Can write EM and weak couplings reflecting normalization from EW unification :

$$
\alpha_1 \equiv \frac{5}{3} \frac{g^2}{4\pi} = \frac{5\alpha_{\text{QED}}}{3\cos^2 \theta_W}
$$

\n
$$
\alpha_2 \equiv \frac{g^2}{4\pi} = \frac{\alpha_{\text{QED}}}{\sin^2 \theta_W}
$$

\n
$$
\alpha_3 \equiv \frac{g_3^2}{4\pi}, \text{ so}
$$

\n
$$
\frac{1}{\alpha_i(q^2)} = \frac{1}{\alpha_i(\mu^2)} + \frac{b_i}{4\pi} \ln\left[\frac{q^2}{\mu^2}\right] \text{ where } b_i = [-41/10, 19/6, 7]
$$

(see A.V. Gladyshev and D.I. Kazakov, arXiv:1212.2548 [hep-ph])

Unification of Forces (see Kane : Modern Elementary Particle Physics)

• If forces unify, expect : $\alpha_5 = \alpha_1(M_G^2) = \alpha_2(M_G^2) = \alpha_3(M_G^2)$

$$
\frac{1}{\alpha_2(\mu^2)} + \frac{b_2}{4\pi} \ln \left[\frac{M_G^2}{\mu^2} \right] = \frac{1}{\alpha_3(\mu^2)} + \frac{b_3}{4\pi} \ln \left[\frac{M_G^2}{\mu^2} \right]
$$

$$
\frac{1}{\alpha_2(\mu^2)} - \frac{1}{\alpha_3(\mu^2)} = 2 \frac{b_3 - b_2}{4\pi} \ln \frac{M_G}{\mu}
$$

where $b_3 - b_2 = 11 - \frac{22}{3} = \frac{11}{3}$, depends on gauge bosons only

$$
\ln \frac{M_G}{\mu} = \frac{6\pi}{11} \left(\frac{1}{\alpha_2(\mu^2)} - \frac{1}{\alpha_3(\mu^2)} \right)
$$

at $\mu = M_Z$, $\alpha_2(M_Z) \approx 0.034$, $\alpha_3(M_Z) \approx 0.118$, so

$$
\ln \frac{M_G}{M_Z} \approx 35.8 \Rightarrow M_G \approx 10^{17}
$$

• Result exponentially sensitive to measurement of couplings, affected by higher order corrections

- \bullet More exact treatment gives $M_G\approx 10^{15}$ GeV, $\tau_p\approx$ 1 α_5^2 5 M_G^4 m_p^5 $\approx 10^{30 \pm 1.5}$ years
- \bullet Minimal $SU(5)$ ruled out by IMB experiment, $\tau_p > 5.5 \times 10^{32}$ years for $p \rightarrow e^+ + \pi^0$
- See P. Langacker, Phys. Rep. 72 , 185 (1981); C. McGrew et $al.$, Phys. Rev. D 59 , 052004 (1999).

Unification of Forces (see Kane : Modern Elementary Particle Physics)

• In SM, strength of EM and weak forces are independent, even though theory "unified"

$$
\bullet \ \alpha_1 = e^2/4\pi, \ g_1 = e/\sin\theta_W, \ g_2 = e/\cos\theta_W, \ \sin^2\theta_W \approx 0.23
$$

- In GUTs, the mixing angle is predicted.
- In SM, $Q = T_3 Y/2$, in $SU(5)$, expect $Q = T_3 + cT_1$, c depends on group
- \bullet Can write covariant derivative in $SU(5)$ in terms of $SU(5)$ gauge bosons V_a^μ \mathcal{I}^{μ}_a and single coupling g_5 :

$$
\partial^{\mu} - ig_5 T_a V_a^{\mu} = \partial^{\mu} - ig_5 (T_3 W_3^{\mu} + T_1 B^{\mu} + ..), \text{ now recall SM relation}
$$

\n
$$
B^{\mu} = A^{\mu} \cos \theta_W + Z^{\mu} \sin \theta_W,
$$

\n
$$
W_3^{\mu} = -A^{\mu} \sin \theta_W + Z^{\mu} \cos \theta_W
$$

\n
$$
\Rightarrow -g_5 T_3 \sin \theta_W + g_5 T_1 \cos \theta_W = -g_5 \sin \theta_W (T_3 - \cot \theta_W T_1)
$$

\n
$$
= eQ \text{ which is the coupling (charge) to photon } A^{\mu}
$$

• So charge
$$
e = g_5 \sin \theta_W
$$
, $c = -\cot \theta_W$

- Try to solve for $c: Tr(Q^2) = Tr(T_3 + cT_1)^2 = Tr T_3^3 + Tr T_1^2$
- But $Tr T_3^2 = Tr T_1^2$ so $1 + c^2 = Tr Q^2 / Tr T_3^2$
- From 5 multiplet : $TrQ^2 = 0 + 1 + 3(1/9) = 4/3$ $TrT_3^2 = \frac{1}{4} + \frac{1}{4} + 0 + 0 + 0 = 1/2$
- So $1 + c^2 = 8/3$, and $c^2 = 5/3$

• From this we $predict:$

$$
\sin^2 \theta_W = \frac{g_1^2}{g_1^2 + g_2^2} = \frac{1}{1 + c^2} = \frac{3}{8} = 0.375
$$
 at unification scale

• We can run couplings down to lower scale using $\alpha_5=c^2\alpha_1,\,\,\alpha_2=\alpha_5$:

$$
\sin^2 \theta_W = \frac{\alpha_1}{\alpha_1 + \alpha_2} = \frac{1}{1 + \alpha_2/\alpha_1}
$$

= $\frac{1}{1 + \frac{0.033}{0.009}} \approx 0.21$ at M_W , big change from 3/8

• Was strong motivation to pursue these ideas

Unification of Forces

- Coupling strength depends on momentum transfer of virtual gauge bosons
- Familiar plot shows that in SM the couplings don't "unify" Unify the Couplings don't "unify"
t shows that in SM the couplings don't "unify"
- See for instance A.V. GLadyshev and D.I. Kazakov, arXiv:1212.2548v1 [hep-ph] is the smooth in the comparing start of the smooth smooth in the minimal model of the smooth smooth is not a M
SM and the MSSM and the Mariakov arXiv:1212 2548v1 [hen-r

- precision knowledge of couplings • Demonstrates importance of for extrapolation to higher scales
- For couplings to unify, slopes need to change - need new particle between 100 GeV scale and 10^{17} GeV

Unification of Forces

- For couplings to unify, slopes need to change need new particle between 100 GeV scale and 10^{17} GeV : SUSY introduces many new gauge bosons
- Coefficients (slope parameters) $b_i = [-41/10, 19.6, 7] \rightarrow [-33/5, -1, 3]$

(A.V. GLadyshev and D.I. Kazakov, arXiv:1212.2548v1 [hep-ph])

- Notice change of slope at thresholds for MSSM particles
- \bullet $M_{SUSY} \approx 10^{3.4 \pm 0.9 \pm 0.4}$ GeV $M_{GUT} \approx 10^{15.8 \pm 0.3 \pm 0.1}$ GeV $\alpha_{GUT}^{-1} \approx 26.3 \pm 1.9 \pm 1.0$
- Uncertainties from couplings, SUSY mass splittings
- SUSY GUTs solve Higgs hierarchy problem : ordinarily get contributions to Higgs mass of order $M_{X,Y}$
- In SUSY GUTs, superpartners contribute to M_H with same magnitude, opposite sign

Proton Decay in SUSY

- SUSY increases M_{GUT} by a rough factor of 10 compared to $SU(5)$, so τ_p increases by 104
- SUSY also predicts $\sin^2\theta_W = 0.233 \pm 0.003$, agrees with measurement $0.23116(12)$
- SUSY predicts new decay modes for proton with Higgsino exchange, particles must be from different generations - so decay products must be 2nd or 3rd generations (see P. Nath and P.F. Perez, Phys. Rep. 441, 191 (2007); arXiv:hep-ph/0601023)
- SUSY decay mode : $p \to \bar{\nu} K^+$

Proton Decay : Super-Kamiokande

- 50 ktons water, 22.5 ktons fiducial volume, in Kamioka, Japan
- 7.5 \times 10³³ $p + 6 \times 10^{33}$ n
- Stainless steel tanks, 39.3 m diameter, 41.4 m tall
- 1000 m rock overburden
- Inner detector : 20% coverage with 5182 20" PMTs
- Detect Cherenkov radiation from decay products, PID determines if e -like (e shower, multiple overlapping Cherenkov rings in diffuse cone) or μ -like (well defined circular ring)

Proton Decay : $p \rightarrow e^+ + \pi^0$ Detection in Super-K

- Good events : fully contained in fiducial volume, 2-3 rings consistent with EM shower
- \bullet Reconstructed π^0 mass of 85-185 MeV $/c^2$, no e from μ decay
- \bullet Total mass range 800-1050 MeV $/c^2$
- Net momentum < 250 MeV/ c (can have momentum from Fermi motion of nucleon in $16O$ nucleus, meson-nucleon interactions (elastic scattering, charge exchange, absorption) : modeled carefully, include nuclear de-excitation with γ
- \bullet Efficiency $\approx 44\%$, mainly limited by π^0 absorption in ^{16}O nucleus
- \bullet Background from atmospheric neutrinos : $\bar{\nu}_e + p \rightarrow e^+ + \pi^0 + n$
- Invariant mass of backgrounds typically less than for p decay, momentum range larger

Proton Decay : $p \rightarrow e^+ + \pi^0$ Detection in Super-K

- H. Nishino et $al.$, Phys. Rev. D 85, 112001 (2012)
- \bullet Set limits on nucleon decay to charged anti-lepton $(e^+$ or $\mu^+)$ and light mesons $(\pi^0, \pi^-, \eta, \rho^0, \rho^-, \omega)$
- No signals observed, backgrounds typically due to atmospheric neutrino interactions Limits from 3.6×10^{31} to 8.2×10^{33} years at 90% C.L. depending on mode
- Exposure 49.2 kiloton-years, for $p \to e^+ + \pi^0$, background 0.11 ± 0.02 events, no candidates, lifetime 8.2×10^{33} years at 90% C.L.

Proton Decay Limits versus Model Predictions

• Minimal $SU(5)$ ruled out from $p \rightarrow e^+ + \pi^0$

- \bullet Improving $p \rightarrow e^+ + K^0, \; p \rightarrow \mu^+ + K^0$ by order of magnitude would have big impact
- Plans to get to beyond $\tau_p > 10^{35}$ years

Proton Decay : Prospects

- Achieving another order of magnitude or more in τ very important
- Super Kamiokande will continue to run with improved analysis, searches in new channels
- Next generation detectors will be necessary

(from Ed Kearns, Boston University)

- Achieving another order of magnitude or more in τ very important
- Super Kamiokande will continue to run with improved analysis, searches in new channels
- Next generation detectors will be necessary
- Electroweak interactions tested extensively, consistency at 0.1% level
- No compelling discrepancies between electroweak observables and Standard Model • $\sin^2 \hat{\theta}(M_Z)(\bar{MS}) = 0.231\ 16(12)$, known at 5×10^{-4} level

- \Rightarrow Direct searches for new particles and new physics at LHC complemented by precision measurements
- \Rightarrow Look for deviations from Standard Model predictions at lower center of mass energies, through radiative corrections
- \Rightarrow Compelling theoretical arguments for new physics at TeV scale

MOLLER Experiment at JLab : Precision Test of Electroweak Physics

• Proposes a measurement of parity-violating asymmetry A_{PV} in longitudinally polarized $e^$ off unpolarized e^-

$$
A_{PV} \equiv \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma L}
$$

- σ_R (σ_L) is scattering cross-section for incident right (left) handed electrons
- $A_{PV} \neq 0$ violates parity
- \bullet At $Q^2 << M_Z^2$ parity nonconservation comes from interference between EM and weak amplitudes

• The unpolarized cross-section is dominated by photon exchange, given by :

$$
\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{2m_e E} \frac{(3 + \cos^2 \theta)^2}{\sin^4 \theta} = \frac{\alpha^2}{4m_e E} \frac{1 + y^4 + (1 - y)^4}{y^2 (1 - y)^2},
$$

• α is fine structure constant, E incident beam energy, θ scattering angle, $y \equiv 1 - E'/E$, E^{\prime} energy of scattered e

MOLLER Experiment at JLab : Precision Test of Electroweak Physics

 \bullet A_{PV} due to interference between photon and Z^0 exchange diagrams \bullet Remember - e coupling to Z^0 is different for left and right-handed e

• See E. Derman and W.J. Marciano, Annals Phys. 121, 147 (1979)

$$
A_{PV} = m_e E \frac{G_F}{\sqrt{2\pi\alpha} (3 + \cos^2 \theta)^2} Q_W^e m_e E \frac{G_F}{\sqrt{2\pi\alpha} 1 + y^4 + (1 - y)^4} Q_W^e
$$

 \bullet Q^e_W proportional to product of electron vector and axial-vector coupling to Z^0

- \bullet Q_W^e weak charge of the electron
- \bullet At leading order $Q_W^e=1-4\sin^2\theta_W$; modified at 1-loop and beyond $\to 1-4\sin^2\theta_W(Q^2)$
- At M_Z , $\sin^2 \theta_W(M_Z) \approx 0.23116(12)$, $Q_W^e \approx 0.075$
- ⇒ At $Q^2 \approx 0.0056$ GeV² of MOLLER experiment, $\sin^2\theta_W \approx 3\%$ larger $Q_W^2 \approx 0.0469 \pm 0.0006$, change of 40% compared to tree level value at $M_Z!$
- \bullet Very sensitive to running of $\sin^2\theta_W$

MOLLER Experiment at JLab : Precision Test of Electroweak Physics

- $A_{PV} \approx 35$ ppb, goal of MOLLER is measurement with statistical precision 0.73 ppb, 2.3% measurement of Q_W^e (Spokesperson Krishna Kumar, thanks for material)
- Determines $\delta(\sin^2\theta_W) \pm 0.00029$ (0.1%); comparable to single best measurements from LEP and SLC
- Would use 11 GeV polarized e^- beam in Hall A
- \bullet What is physics motivation for a precision measurement of $\sin^2\theta_W$?
- Electroweak theory provides precise predictions with negligible uncertainty corrections at 1-loop level all known
- Comparison with precise experimental result $(\approx 10^{-3} \cdot G_F)$ sensitive to new physics at TeV scale
- \bullet Uniquely sensitive to purely leptonic amplitudes at $Q^2 << M_Z^2$

• See A. Czarnecki and W. J. Marciano, Int. J. Mod. Phys. A 15, 2365 (2000) [arXiv:hepph/0003049]

• Express amplitudes of new high energy dynamics as contact interaction between leptons :

$$
\mathcal{L}_{e_1 e_2} = \sum_{i,j=L,R} \frac{g_{ij}^2}{2\Lambda^2} \bar{e}_i \gamma_\mu e_i \bar{e}_j \gamma^\mu e_j. \tag{1}
$$

- $e_{L/R} = \frac{1}{2}$ $\frac{1}{2}(1\mp\gamma_5)Y_e$ chiral projections of electron spinor, Λ mass scale of new interaction, $g_{ij}=g_{ij}^{\ast}$ are new couplings, $g_{RL}=g_{LR}$
- \bullet For 0.023 measurement of Q_W^e , sensitivity to new interactions (like lepton compositeness):

$$
\frac{\Lambda}{\sqrt{|g_{RR}^2 - g_{LL}^2|}} = \frac{1}{\sqrt{\sqrt{2}G_F|\Delta Q_W^e|}} \approx \frac{246 \text{ GeV}}{\sqrt{0.023 Q_W^e}} = 7.5 \text{ TeV}
$$
\n(2)

• For $\sqrt{|g_{RR}^2 - g_{LL}^2|} = 2\pi$, $\Lambda = 47$ TeV, electron structure probed at 4×10^{-21} m

- Best contact interaction limits on leptons from LEP, on quarks from Tevatron and LHC . \bullet But LEP only sensitive to g_{RL}^2 and $g_{RR}^2+g_{LL}^2$ - insensitive to PV combination $g_{RR}^2-g_L^2$ LL
- \bullet New Z' bosons, like Z_χ from $SO(10)$, predict PV couplings :

$$
\sqrt{|g_{RR}^2 - g_{LL}^2|} = \sqrt{\frac{4\pi\alpha}{3\cos^2\theta_W}} \approx 0.2 \implies Z_\chi \approx 1.5 \text{ TeV}
$$

• Get sensitivity up to $Z_{LR} \approx 1.8$ TeV from left-right symmetric models

MOLLER Experiment and Supersymmetry

- New particles in Minimal Supersymmetric Standard Model (MSSM) enter A_{PV} through radiative loops
- \bullet Effects from MSSM as large as $+8\%$ on Q_W^e , can be measured to significance of 3.5 σ
- \bullet If R-parity violated, Q_W^e can shift by -18%, an 8 σ effect
- MOLLER can help distinguish between R-parity conserving and violating SUSY; RPC lightest SUSY particle could be dark matter candidate (plot below from DOE proposal)

Figure 3: Relative shifts in the electron and proton weak charges due to SUSY effects. Dots indicate the range of allowed MSSM-loop corrections. The interior of the truncated elliptical regions give possible shifts due to R-parity violating (RPV) SUSY interactions, where (a) and (b) correspond to different assumptions on limits derived from first row CKM unitarity constraints.

 $\mathsf{MOLLER}:\mathsf{Measurement}$ of $\sin^2\theta_W$

- Plot from DOE proposal, shows 3 planned measurements with projected sensitivity, arbitrary central values
- Notice : some tension between left-right asymmetry in Z production at SLC $A_{LR}(had)$ vs forward backward asymmetry in Z decays to b-quarks $A_{FB}(b)$ at LEP
- MOLLER will achieve similar 0.1% accuracy, potentially influence world average

MOLLER : Technical Challenges (K. Kumar)

Technical Challenges

- ~150 GHz scattered electron rate
	- Design to flip Pockels cell ~ 2 kHz
	- 80 ppm pulse-to-pulse statistical fluctuations

. 1 nm control of beam centroid on target

- Improved methods of "slow helicity reversal"
- > 10 gm/cm² liquid hydrogen target
	- -1.5 m; \sim 5 kW @ 85 uA
- Full Azimuthal acceptance with θ_{lab} 5 mrad
	- novel two-toroid spectrometer
	- radiation hard, highly segmented integrating detectors
- **Robust and Redundant 0.4% beam polarimetry**
	- Pursue both Compton and Atomic Hydrogen techniques

• MOLLER Collaboration

- $-$ ~100 authors, ~30 institutions
- Expertise from SAMPLE A4, HAPPEX, GO, PREX, Qweak, E158
- 4th generation JLab parity experiment

- 20M\$ proposal to DoE NP
- 3-4 years construction
- 2-3 years running

• First data \approx 2017