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Hydrodynamics of QGP
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Equilibrium

How does one describe a system of N � 1 bodies?

Depends on how much “information” one wants.

Worst case: ψ(x1, · · · , xN)

Best case: Minimum information content. I.e. maximum entropy.
Need only a handful of numbers such as temperature and
chemical potential.

n(p) = 1/(eEp/T−µ/T ∓ 1)

These quantities are the Langrange multipliers that constraints
conserved quantities such as energy and charge.
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Non-Equilibrium

How does one describe a system of N � 1 bodies?

Depends on how much “information” one wants.

Worst case: ψ(x1, · · · , xN)

Best case: Minimum information content. I.e. maximum entropy.
Need only a handful of numbers such as temperature, and
chemical potential. But locally.

n(p, x) = 1/(epµuµ/T (x)−µ(x)/T (x) ∓ 1)

You only need to know few functions: T (t ,x), µ(t ,x) as well as the
collective velocity u(t ,x)

These quantities are the Langrange multipliers that constraints
conserved quantities such as energy, momentum and charge.
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Schematic idea of hydro evolution
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System is made up of “fluid cells”.

Each fluid cell feels a force according
to the pressure difference (gradient)
w.r.t. its neighbors

System evolves by “flowing” towards
lower pressure

NR: F = ma

−∇P = nm∂tu

where nm: mass density,
P: pressure,
u: flow velocity
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Physics from Hydro – What are we trying to learn?

What is the nature of the initial condition?

Do we reach local equilibrium in heavy ion collisions?

How hot is it?

How viscous is QGP?

(Is there a phase transition? If so what kind?)
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Physics from Hydrodynamics

Information content of single particle spectra

dNi

dy d2pT
=

dNi

2πpT dpT dy

(
1 +

∞∑
n=1

2vi,n(pT , y) cos(nφ)

)

“Flow”: vi,n(pT )

Came from

ε(xT , η) = ε(rT , η)

(
1 +

∞∑
n=1

2εn(rT , η) cos(nφ)

)

Pressure converts it into vi,n(pT )

History matters

εn → vi,n conversion contains information on the medium and its
evolution
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Physics from Hydrodynamics

Elliptic Flow – cos(2φ) component

Momentum anisotropy

x

y

Py

Px

Spatial anisotropy      Pressure does
                                    the conversion
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Physics from Hydrodynamics

Triangular Flow – cos(3φ) component

Py

Spatial anisotropy      Pressure does
                                    the conversion

Momentum anisotropy

y

x Px

[Alver and Roland, Phys.Rev.C81:054905, 2010]
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Physics from Hydrodynamics

Flows are about: Pressure converting
Spatial morphology εn(rT , η) ==> Momentum space morphology
vn(pT , y)

This is sensitive to
Initial Conditions
Flow dynamics (η/s)
Equation of State (to a less extent)

Jeon (McGill) Soft Stony Brook 2013 10 / 89



Physics from Hydrodynamics

Why is initial condition important?
Initial temperature (distribution) T0 > Tc

Beginning time of hydro (∼ thermalization time) τ0

The size of the hot spots σ0

What happens before the hydro stage?

v2 alone cannot determine all these ==> v3, v4, · · ·
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Physics from Hydrodynamics

Why is η/s important?
One of the central properties of QGP
Calculable in perturbative QCD η/s ∼ 1/g4 ln(1/g)

Calculable in AdS/CFT η/s = 1/4π
If η/s ∼ 1/4π, QGP must be sQGP
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Formulating Hydrodynamics

Equations for T ,u – Conservation laws

∂µ 〈Tµν〉 = 0

Stress-energy tensor Tµν has only 10 d.o.f. Cons. laws provide 4
constraints ==> 6 d.o.f. left.

No dynamical content yet.

Energy density and flow vector

Tµνuν = −εuµ

uµ: Time-like eigenvector of Tµν . Normalized to uµuµ = −1.

ε: Local energy density

This is always possible since Tµν is real and symmetric.

Jeon (McGill) Soft Stony Brook 2013 13 / 89



Hydrodynamics

So far:

Tµν = εuµuν + Wµν

with

Wµνuν = 0

This is just math. No physics input except that ε is the energy
density and uµ is the velocity of the energy flow.
Physics - Small scale physics is thermal ==> Local equilibrium
==> Equation of state (i.e. P = P(ε))

Wµν = (gµν + uµuν)P(ε) + πµν [ε,u] with πµνuν = 0
Ideal Hydro: πµν = 0 gives ∂t ((ε+ P)u) = −∇P for small u
Viscous Hydro:

πij = −η
2
(
∂ iuj + ∂ jui − g ij (2/3)∇·u

)
− ζg ij∇·u
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Validity of Hydrodynamics

∂µTµν = 0: This is an operator statement. This is valid no matter
what.

∂µ 〈Tµν〉 = 0: This is a statement about average. This is valid no
matter what.
Ideal Hydro

Tµν
id. = εuµuν + P(gµν + uµuν)

This assumes that the the system has isotropized ==> Ideal
Hydrodynamics is valid only after the system has isotropize. But
this is not enough.

P(x) = P(ε(x)): Equation of state. Valid only if local equilibrium is
reached. Recent most complete characterization of QCD
thermalization process: 1107.5050 by Moore and Kurkela.
teq ∼ α−2Q−1.

Jeon (McGill) Soft Stony Brook 2013 15 / 89



Validity of Hydrodynamics

Viscous Hydro

πij = −η∂〈iuj〉 (tranceless, symmetric and transverse to uµ)

Gradient expansion must be valid ==> Higher derivatives are
smaller.

This means local equlibrium is established in the length scale
much longer than the microscopic mean free path.

In fact, πij = −η∂〈iuj〉 induces unphysical faster-than-light
propagations.
==> Second order Israel-Stewart formalism: πij relaxes towards
−η∂〈iuj〉

d
dτ

πij = − 1
τr

(
πij − (−η∂〈iuj〉)

)
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Ideal Hydro

Stress-energy tensor

Tµν = εuµuν + P(uµuν − gµν)

Energy momentum conservation

0 = uµ∂µε+ (ε+ P)(∂µuµ)

and

(ε+ P)uµ∂µuα = ∂αP − uαuν∂νP

One can easily show that entropy is conserved

∂µ(suµ) = 0

using sT = ε+ P and TdS = dU + PdV → Tds = dε
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Solving Hydro – Need for τ, η

Idealized physical picture: Two infinitely energetic (v = c)
pancakes pulling away from each other

This slice is at rest

v = cv = −c

v = cv = −c

Moving frame

Rest frame

Moving with −u

Moving with +u

This is now at rest

Can’t distinguish the two cases ==> Boost invariance if
Ebeam = ±∞.
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Need for τ, η

Dynamic rapidity y is defined by:

E =
√

m2 + p2
T cosh(y)

pz =
√

m2 + p2
T cosh(y)

Ends with ±c are at y = ±∞ ==> The system occupies the whole
rapidity axis.

With γ = cosh ∆y and γv = sinh ∆y , Lorentz boost is just a
translation in the rapidity space

E ′ = γE + γvpz = mT cosh(y + ∆y)

p′z = γpz + γvE = mT sinh(y + ∆y)

The system must be homogeneous in y ==> Independent of y
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Solving Hydro – Need for τ, η

Space-time rapidity η defined by

t = τ cosh η
z = τ sinh η

Lorentz boost is just a translation in the rapidity space

t ′ = γt + γvz = τ cosh(η + ∆y)

z ′ = γz + γvt = τ sinh(η + ∆y)

A boost invariant system is independent of η as well.
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Solving Hydro – 1+1 D (Bjorken)

Simplify some more – No dependence on x , y . No dissipation.

The only thing a boost can do: Lorentz transform the fluid velocity
uµ.

Boost invariance: Fluid velocity can only be
uµ = (t/τ,0,0, z/τ) = (cosh η,0,0, sinh η).

Let

ε = ε(τ)

P = P(τ)

The energy-momentum conservation becomes

dε
dτ

= −ε+ P
τ
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Bjorken 1+1 D – cont
dε
dτ

= −ε+ P
τ

can be rewritten as

ds
dτ

= −s
τ

using Ts = ε+ P and TdS = dU + PdV .
Also,

dε
dτ

= −(1 + v2
s )ε

τ

using v2
s =

∂P
∂ε

Solutions

s(τ) = s0

(τ0

τ

)
and

ε(τ) = ε0

(τ0

τ

)1+v2
s
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Solving Hydro – Need for τ, η

At RHIC: ymax ≈ ±5.4

At LHC: ymax ≈ ±8.0

Not ±∞, but big enough

More technical reason: Hard to contain this system in t − z as the
boundary of the system linearly increases with time

In τ, η, ηmax > ymax is enough.

Price to pay: ∂µTµν = 0 becomes complicated.
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Including Viscosity

Generalized Israel-Stewart

For example, shear viscosity: Baier, Romatschke, Son, Starinets,
Stephanov (0712.2451)

∆µα∆νβDπαβ = − 1
τπ

(
πµν − 2η∇〈µu µ〉 +

4
3
τππ

µν(∂αuα)

)
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Physics Issue 1: Initial state
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Reminder

What we want to do:
Study how initial state spatial anisotropy

ε(xT , η) = ε(rT , η)

(
1 +

∞∑
n=1

2εn(rT , η) cos(nφ)

)

turns into the final state momentum anisotropy

dNi

dy d2pT
=

dNi

2πpT dpT dy

(
1 +

∞∑
n=1

2vi,n(pT , y) cos(nφ)

)

Wants to get history of physical quantities P,u, η/s, · · · from the
flow coefficients vi,n(pT ) – Need many different measurements

Jeon (McGill) Soft Stony Brook 2013 26 / 89



Smooth Geometry

Overlap ("the almond")

y

Target Nucleus Projectile Nucleus

Impact parameter b

Radius R

x, y: Reaction plane axis

x

Thickness function

TA(s) =

∫
dz ρA(s, z)

Overlap function:
TAB(s,b) = TA(s)TB(b + s)
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Smooth Geometry

Overlap ("the almond")

y

Target Nucleus Projectile Nucleus

Impact parameter b

Radius R

x, y: Reaction plane axis

x

Participants: Npart(s,b) ∝ TA(s) + TB(b + s)

Binary scatterings: Nbin(s,b) ∝ TAB(s,b)

Initial energy density

ε(s,b) = c1 [TA(s) + TB(b + s)] + c2TAB(s,b)
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Smooth Geometry

Overlap ("the almond")

y

Target Nucleus Projectile Nucleus

Impact parameter b

Radius R

x, y: Reaction plane axis

x

Ultimately, initial geometry determines the initial conditions and
the final flow pattern.

Initial geometry also determines number of jets at s and the path
conditions for those jets.
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Smooth Geometry

Overlap ("the almond")

y

Target Nucleus Projectile Nucleus

Impact parameter b

Radius R

x, y: Reaction plane axis

x

Smooth initial states have up-down, left-right symmetry: Initial
states only has cos(2nφ) components such as v2, v4, v6, · · ·
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Physics from Hydrodynamics

What determines the initial shape?

Averaged smooth initial condition ==> Only veven’s survive.

Positions of the collision points
Size and spread of the collision points
Energy deposit at each collision point (Npart vs Ncoll)
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Physics from Hydrodynamics

What determines the initial shape?

Fluctuating initial condition ==> All vn are non-zero.

Positions of the collision points
Size and spread of the collision points
Energy deposit at each collision point (Npart vs Ncoll)
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Why go beyond v2?

vodd 6= 0 due to fluctuations is obvious once you see it
[Alver and Roland, Phys.Rev.C81:054905, 2010]

v2 and v3 are sensitive to the different features of the initial
condition

Elliptic flow: Sensitive to the overall almond shape

Triangular flow: Less so. More local in the sense that average
initial condition gives zero v3.

Viscosity effect on different features is different
Viscosity smears out lumps.
Viscosity reduces differential flow - Triangle is “rounder” than ellipse
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Effect of viscosity

The velocities eventually become the same.

eta = 0

The relative velocity of the two layers does not change.

eta = 0

No friction

Friction between the layers
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Effect of viscosity

U3

U1

U2

η = 0 means u1 < u2 < u3 is maintained
for a long time

η 6= 0 means that u1 ' u2 ' u3 is
achieved more quickly

Shear viscosity smears out flow
differences (it’s a diffusion)

Shear Viscosity reduces non-sphericity
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εn

-10 -5 5 10

-10

-5

5

10

This causes elliptic flow. It is
harder to destroy this than
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εn

-10 -5 5 10

-10

-5

5

10

this (v3) ...
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εn

-10 -5 5 10
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5
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or this (v4) ...
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εn

-10 -5 5 10

-10

-5

5

10

or this (v10) ...
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Initial Conditions

Differences in models:
Position of the energy deposite (collision sites)

Energy deposit at each collision sites (xNpart + (1− x)Ncoll)

Size and spread of the initial lump
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Collision Geometry

b + r

b

r

b: Impact parameter. Vector between two centers in transverse
space

r⊥: Position vector from the center of the target nucleus

b + r⊥: Position vector from the center of the projectile nucleus
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Initial Conditions

MC-Glauber
Sample Wood-Saxon thickness function

TA(r⊥) =

∫
dz

ρ0

1 + e(R−r)/a

TA(b + r⊥) =

∫
dz ′

ρ0

1 + e(R−r ′)/a

for nucleon positions

NN collision occurs if two nucleons are within D =
√
σNN/π

For each wounded nucleon, deposite ε0e−(x−xC)
2/2σ2

0
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Detour: Saturation

[BFKL, JIMWLK, BK]

Gluon distributions for protons for Q2 = 10 GeV2 and
Q2 = 100 GeV2.

Looks like growing indefinitely: Unphysical
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Detour: Saturation

[BFKL, JIMWLK, BK]

q
g g

g g

q
g

g

− Interaction of quarks and gluons
QCD 

g

g

Leading order BFKL equation (evolution in x) takes into account
splitting, but not recombination.

When density is high, recombination must be taken into account
==> JIMWLK & BK

Density is high: Classical field limit

Recombination: Non-linear effect
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Detour: Saturation

[BFKL, JIMWLK, BK]
Saturation (or Recombination) scale

Transverse gluon density

ρ ∼ xgA(x ,Q2)

S⊥
∼ Axg(x ,Q2)

A2/3 ∼ A1/3xg(x ,Q2)

Recombination cross-section
σgg→g ∼ α2

s

Q2

Saturation when

ρσ�→g ∼ 1

Saturation scale

Q2
s = αs(Qs)A1/3xg(x ,Q2

s )
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Detour: Saturation

Classical field equation of QCD

DµGµν = Jν

where

Dµ = ∂µ − igAa
µTa

and

Ga
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν

Jµa = ρAδ
µ+ + ρBδ

µ−: Color source

Gluon field

Aµ = AµA + AµB + AµPθ(τ)

The produced field AP after the collision is what we are after
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Schematically

Static color charges Classical gluon field

Jets are produced

High energy photons

Nuclei are breaking up

Gluon fields are grabbing each other

Hard Scatterings
occur at this stage

gluons and classical gluon field.

Nucleus remnant

Jets propagating

Photons are produced

Entropy is produced.
Pre−equilibrium mix of streaming quarks,
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Initial Conditions

MC-KLN Drescher and Nara, PRC 75:034905
Sample Wood-Saxon thickness function

TA(r⊥) =

∫
dz

ρ0

1 + e(R−r)/a

TA(b + r⊥) =

∫
dz ′

ρ0

1 + e(R−r ′)/a

for nucleon positions
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Initial Conditions

MC-KLN Drescher and Nara, PRC 75:034905
Calculate thickness function again:

tA(r⊥) =
# of nucleons in the tube at r⊥

S

tA(b + r⊥) =
# of nucleons in the tube at b+r⊥

S

where S = σNN is the cross-section of the tube
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Initial Conditions

MC-KLN Drescher and Nara, PRC 75:034905
Calculate the saturation scale

Q2
s,A(x , r⊥) = 2 GeV2

(
tA(r⊥)

1.53

)(
0.01

x

)λ

Calculate the unintegrated gluon density function

φ(x ,k2
⊥; r⊥) =

1
αs(Q2

s )

Q2
s

max(Q2
s ,k2
⊥)
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Initial Conditions

MC-KLN Drescher and Nara, PRC 75:034905
Deposite energy with an approximate the gAgB → gP process

dEg

d2r⊥dyd2p⊥

=
4Nc

N2
c − 1

1
|p⊥|

∫
d2k⊥ αsφA((p⊥ + k⊥)2/4)φA((p⊥ − k⊥)2/4)
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Initial Conditions

[Tribedy & Venugopalan, Nucl.Phys.A850 136; Tribedy & Venugopalan,
PLB710 125; Schenke, Tribedy & Venugopalan, PRL108 252301; Gale, Jeon,
Schenke, Tribedy & Venugopalan, PRL110 012302]

IP-Glasma
Sample the position of the nucleons.
Calcualte the saturation momentum for each nucleon using the
IP-Sat model (Kowalski & Teaney, PRD68 114005)
Calculate the color charge density by summing over all Qs at the
given global position

gµ(x ,b) = c
∑

i

Qs(x ,bi)
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Initial Conditions

[Tribedy & Venugopalan, Nucl.Phys.A850 136; Tribedy & Venugopalan,
PLB710 125; Schenke, Tribedy & Venugopalan, PRL108 252301; Gale, Jeon,
Schenke, Tribedy & Venugopalan, PRL110 012302]

IP-Glasma
Sample the color charge distribution of each nucleus using the
Gaussian distribution

WA[ρ] = exp
(
−ρaρb/(g2µ2

A)
)

Solve the Classical Yang-Mills equation
After evolving for τ0 calculate Tµν

Connect it to Hydro
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Comparison

[Schenke, Tribedy & Venugopalan, PRL108 252301; Schenke, Gale & Jeon,
arXiv:1301.5893v1]
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Initial conditions

Different size and distribution of εn

Test: Need to get the vn(pT ) for various centralities

Test: Need to get the e-by-e distribution of integrated vn
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Physics Issue 2: Viscosity
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Effect of viscosity

The velocities eventually become the same.

eta = 0

The relative velocity of the two layers does not change.

eta = 0

No friction

Friction between the layers
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Effect of viscosity

U3

U1

U2

η = 0 means u1 < u2 < u3 is maintained
for a long time

η 6= 0 means that u1 ' u2 ' u3 is
achieved more quickly

Shear viscosity smears out flow
differences (it’s a diffusion)

Shear Viscosity reduces non-sphericity
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Interaction Strength and Viscosity

Weak coupling allows rapid momentum diffusion

Easy mixing

Weakly coupled
Long distance until next collision

Large η/s: uµ(x) changes due to pressure gradient and diffusion
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Interaction Strength and Viscosity

Strong coupling does not allow momentum diffusion

Mixing takes very long time

Strongly coupled
Very short distance until next collision

Small η/s: uµ(x) changes due to pressure gradient only
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Kinetic Theory estimate

(x) = 0

Longitudinal flow

Longitudinal flow

u

uz

z
Transverse particle transfer

vx
l

l

(x+l)

(x−l)

uz
uz : Flow velocity
vx : Average speed of micro-

scopic particles

Rough estimate (fluid rest frame, or uz(x) = 0)
The momentum density: T0z = (ε+ P)u0uz diffuses in the x
direction with vx = ux/u0. Net change:

〈ε+ P〉 |vx |u0(uz(x − lmfp)− uz(x + lmfp))

≈ −2 〈ε+ P〉 |vx |u0 lmfp∂xuz(x)

∼ −ηu0∂xuz

Here lmfp: Mean free path
Recall thermo. id.: 〈ε+ P〉 = sT

η ∼ 〈ε+ P〉 lmfp 〈|vx |〉 ∼ s T lmfp 〈|vx |〉
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Perturbative estimate

High Temperature limit: 〈|vx |〉 = O(1)

η/s ≈ Tlmfp ≈
T
nσ
∼ 1

T 2σ
The only energy scale: T

σ ∼ (coupling constant)#

T 2

Hence

η

s
∼ 1

(coupling constant)#

Perturbative QCD partonic 2-2 cross-section

dσel

dt
= C

2πα2
S

t2

(
1 +

u2

s2

)
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Perturbative estimate - Cont.

Naively expect

η/s ∼ 1
α2

s

Coulomb enhancement (cut-off by mD) leads to

η/s ∼ 1
α2

s ln(1/αs)
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QCD η calc

Relevant processes

)

(F ) (G )

(E)

(J )(I)

(D)

(H )

(C)(B)(A

(∼ 80 %)

. . .

t1 t2 t3 tN

s1
s2

sM

p

k

p   k

. . . .

T =

(∼ 20 %)
Use kinetic theory

df
dt

= C2↔2 + C1↔2

Complication: 1↔ 2 process needs resummation (LPM effect, AMY)
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QCD Estimates of η/s

Danielewicz and Gyulassy [PRD 31, 53 (1985)]:
η/s bound from the kinetic theory: Recall: η ∼ s T lmfp 〈|vx |〉 Use
lmfp 〈|vx |〉 ∼ ∆x∆p/m to get

η

s
>∼

1
12
≈ 0.08 ≈ (1/4π)

QCD estimate in the small αS limit with Nf = 2 and 2→ 2 only
(min. at αS = 0.6):

η ≈ T
ση
≈ 0.57T 3

α2
S ln(1/αS)

>∼ 0.2s ≈ (2.5/4π)s

Baym, Monien, Pethick and Ravenhall [PRL 64, 1867 (1990)]

η ≈ 1.16T 3

α2
S ln(1/αS)

>∼ 0.4s ≈ (5/4π)s

M. Thoma [PLB 269, 144 (1991)]

η ≈ 1.02T 3

α2
S ln(1/αS)

>∼ 0.4s ≈ (5/4π)s
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Full leading order calculation of η/s

Arnold-Moore-Yaffe (JHEP 0305, 051 (2003)) [Plots: Guy]:
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Minimum η/s ≈ 0.6 ≈ 7.5/4π for αS ≈ 0.3

NB: Approximate formula η/s ≈ 1
15.4α2

S ln(0.46/αS)

is not good for αS >
1

4π(1+Nf/6)
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Shear viscosity in N=4 SYM

Son, Starinets, Policastro, Kovtun, Buchel, Liu, ...
Strong coupling limit, 4 ingredients

Kubo formula

η = lim
ω→0

1
2ω

∫
dt d3x eiωt 〈[Txy (x),Txy (0)]〉

Gauge-Gravity duality

σabs(ω) =
8πG
ω

∫
dt d3x eiωt 〈[Txy (x),Txy (0)]〉

limω→0 σabs(ω) = Ablackhole

Entropy of the BH : s = Ablackhole/4G
Therefore, (including the first order correction)

η

s
=

1
4π

(
1 +

7.12
(g2Nc)3/2

)
Correction is small if g � 1 (10 % at g = 2.4).
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N = 4 SYM

Perturbative
calculation and the
strong coupling
calculation behave
very differently

S. Carno-Huot, S. Jeon and G. D. Moore, Phys. Rev. Lett. 98, 172303 (2007)
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Experimental Evidence for η/s ∼ 1/4π

Theoretical situation:
Perturbative calculations: η/s ≥ 7.5/(4π)

AdS/CFT in the infinite coupling limit: η/s = 1/(4π)

Roughly an order of magnitude difference ==> Testable!

A relativistic heavy ion collision produces a complicated system
==> Need a hydrodynamics simulation suite

We use MUSIC (3+1D e-by-e viscous hydrodynamics)

Viscosity measurement is through the flow coefficients

dN
dyd2pT

=
dN

2πdypT dpT

(
1 + 2

∞∑
n=1

vn cos(n(φ− ψn))

)

vn is a translation of the eccentricities εn via pressure gradient
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MUSIC

MUScl for Ion Collisions

MUSCL: Monotone Upstream-centered Schemes for Conservation Laws
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Current MUSIC (and MARTINI) Team

Charles Gale (McGill)

Sangyong Jeon (McGill)

Björn Schenke (Formerly McGill, now BNL)

Clint Young (Formerly McGill, now UMN)

Gabriel Denicol (McGill)

Matt Luzum (McGill/LBL)

Sangwook Ryu (McGill)

Gojko Vujanovic (McGill)

Jean-Francois Paquet (McGill)

Michael Richard (McGill)

Igor Kozlov (McGill)
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MUSIC

3+1D Event-by-Event Viscous Hydrodynamics
3+1D parallel implementation of new Kurganov-Tadmor Scheme
in (τ, η) with an additional baryon current
(No need for a Riemann Solver. Semi-discrete method.)

Ideal and Viscous Hydro

Event-by-Event fluctuating initial condition

Sophisticated Freeze-out surface construction

Full resonance decay (3+1D version of Kolb and Heinz)

Many different equation of states including the newest from
Huovinen and Petreczky

New Development: Glasma Initial Conditions & UrQMD
after-burner
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Fluctuating Initial Condition

Each event is not symmetric: Fluctuating initial condition ==> All vn
are non-zero.
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Ideal vs. Viscous

[Movies by B. Schenke]
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Ideal vs. Viscous
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Fluctuations and Viscosity

Magnitude of higher harmonics, v3, v4, · · · ,
(almost) independent of centrality – Local
fluctuations dominate

Higher harmonics are easier to destroy that v2

which is a global distortion – Viscosity effect.

To get a good handle on flow: Both fluctuations
and viscosity are essential
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E-by-E MUSIC vs LHC Data
[Schenke, Jeon and Gale, Phys. Rev. C 85, 024901 (2012)]
Best value η/s = 0.16 = 2/(4π).
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Glasma Initial Condition
[Gale, Jeon, Schenke, Tribedy and Venugopalan, arXiv:1209.6330]
Best value η/s = 0.2 = 2.5/(4π).
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Glasma Initial Condition

[Gale, Jeon, Schenke, Tribedy and Venugopalan, arXiv:1209.6330]
E-by-E distributions
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New Development: UrQMD Afterburner

v2 at RHIC (Midrapidity). In each centrality class: 100 UrQMD times 100
MUSIC events. [Ryu, Jeon, Gale, Schenke and Young, arXiv:1210.4558]

η/s = 1/4π

Using previous MUSIC
parameters that were tuned to
reproduce PHENIX vn
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LHC Spectra

In each centrality class: 100 MUSIC times 10 UrQMD events.
η/s = 2/(4π). ALICE data from QM12.
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LHC Flows

In each centrality class: 100 MUSIC times 10 UrQMD events
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Conclusions and questions for η/s

Strong flows: Strongest evidence that η/s has to be small

η/s much larger than 0.2 cannot be accommodated within current
understanding of the system.

Perturbative result of η/s = 0.4− 0.6 is out.

Using the LQCD EoS.

LQCD estimate (η + 3ζ/4)/s ≈ 0.20− 0.26 between
1.58Tc − 2.32Tc .
[H. Meyer, Eur.Phys.J.A47:86,2011]

Does this mean very large coupling?
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Jet Quenching

Fact: Jets lose energy (ATLAS images).
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Jet Quenching

Fact: Jets lose energy (ATLAS images).

Jeon (McGill) Soft Stony Brook 2013 72 / 89



Energy Loss Mechanism

Collisional energy loss rate [Wicks, Horowitz, Djordjevic and
Gyulassy, NPA 784, 426 (2007), Qin, Gale, Moore, Jeon and
Ruppert, Eur. Phys. J. C 61, 819 (2009)]:

dE
dx
≈ C1πα

2
ST 2

[
log
(

Ep

αST

)
+ C2

]
C1,2: Depends on the process. O(1).

Radiational ∝ α2
S (Arnold, Moore, Yaffe, JHEP 0206, 030 (2002))

z

. .
.

t1 t2 t3 tN

s1

s2

sM

p

k

p   k

. . . .

==> = + + +
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What we want to get at

What αS do we need for these?
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Tool

Event generator
– Jet propagation through evolving QGP medium.

Several on the market. We use MARTINI.
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MART INI
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MARTINI

Modular Alogorithm for Relativistic Treatment of Heavy IoN
Interactions

Hybrid approach
Calculate Hydrodynamic evolution of the soft mode (MUSIC)
Propagate jets in the evolving medium according to McGill-AMY
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Heavy Ion Collisions

QGP

QGP

x1

x2

Q

Nucleus

Nucleus

HIC Jet production scheme:

dσAB

dt
=

∫
geometry

∫
abcdc′

× fa/A(xa,Qf )fb/B(xb,Qf )

× dσab→cd

dt
× P(xc → x ′c |T ,uµ)

× D(z ′c ,Q)

P(xc → x ′c |T ,uµ): Medium
modification of high energy
parton property
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MARTINI - Basic Idea

QGP

QGP

x1

x2

Q

Nucleus

Nucleus

dσAB

dt
=

∫
geometry

∫
abcdc′

× fa/A(xa,Qf )fb/B(xb,Qf )

× dσab→cd

dt
× P(xc → x ′c |T ,uµ)

× D(z ′c ,Q)

Sample collision geometry
using Wood-Saxon
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MARTINI - Basic Idea

QGP

QGP

x1

x2

Q

Nucleus

Nucleus

dσAB

dt
=

∫
geometry

∫
abcdc′

× fa/A(xa,Qf )fb/B(xb,Qf )

× dσab→cd

dt
× P(xc → x ′c |T ,uµ)

× D(z ′c ,Q)

PYTHIA 8.1 generates
high pT partons

Shadowing included

Shower (Radiation) stops
at Q =

√
pT/τ0
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MARTINI - Basic Idea

QGP

QGP

x1

x2

Q

Nucleus

Nucleus

dσAB

dt
=

∫
geometry

∫
abcdc′

× fa/A(xa,Qf )fb/B(xb,Qf )

× dσab→cd

dt
× P(xc → x ′c |T ,uµ)

× D(z ′c ,Q)

Hydrodynamic phase
(MUSIC)

AMY evolution – MC
simulation of the rate equ’s.
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Parton propagation
Process include in MARTINI (all of them can be switched on & off):

Inelastic:

Elastic:

Conversion:

Photon: emission & conversion
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Parton propagation
Resummation for the inelastic processes included:

z

. .
.

t1 t2 t3 tN

s1

s2

sM

p

k

p   k

. . . .

All such graphs are leading order (BDMPS)

Full leading order SD-Eq (AMY): (Figure from G. Qin)

= + + +
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Parton propagation

(PYTHIA 8.1)

An example path in MARTINI. (Figure from B. Schenke)
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Ideal MUSIC

While this is happening in the background ...
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MARTINI – The Movie

Projection on to the longitudinal plane
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MARTINI – The Movie

Projection onto the transverse plane
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Pion production

[Schenke, Jeon and Gale, Phys. Rev. C 80, 054913 (2009)]

π0 spectra and RAA
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For RHIC, αS = 0.29
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Photon production

[Schenke, Jeon and Gale, Phys. Rev. C 80, 054913 (2009)]

Spectra and Rγ
AA
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Azimuthal dependence of RAA

RAA(pT ,∆φ)
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MARTINI – LHC dN/dA

[Young, Schenke, Jeon, Gale, Phys. Rev. C 84, 024907 (2011)].

A = (Et − Ea)/(Et + Ea)

This is with ideal hydro with a smooth initial condition

Full jet reconstruction with FASTJET

αS = 0.27 seems to work.
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MARTINI – LHC dN/dA

[Young, Schenke, Jeon, Gale, Phys. Rev. C 84, 024907 (2011)].

A = (Et − Ea)/(Et + Ea)

This is with ideal hydro with a smooth initial condition

Full jet reconstruction with FASTJET

αS = 0.27 seems to work.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

dN
/d

A j

Aj

p+p PYTHIA+fastjet
s=0.3

s=0.27
s=0.25

ATLAS p+p 7 TeV
ATLAS Pb+Pb 0-10%

ATLAS, QM 2011

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.2  0.4  0.6  0.8  1

dN
/d

A
j

Aj

αs=0.3
αs=0.27

CMS Pb+Pb 0-10%

CMS, arXiv: 1102.1957 (2011)

Jeon (McGill) Soft Stony Brook 2013 87 / 89



Not the full story

[Clint Young’s HP2012 Proceedings]
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RAA – For LHC, constant αS suppresses jets too much.

Need to incorporate finite length effect (Caron-Huot-Gale) and
running αs. This is with maximum αS = 0.27.

Don’t quite get azimuthal dependence yet. ∆φ broadening may be
due to the background fluctuations ==> Need to combine UrQMD
background?
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Few last words

So many nuclear experiments are being done/planned. – RHIC,
LHC, Raon, FRIB, FAIR, JPARC, Dubna, HIRFL-CSR ...

There never have been a time in history when so much
information is so readily available.

This is a great time to be/become a nuclear physicist.

Work hard. Think hard. Dream big.

McGill Physics hompage: www.physics.mcgill.ca
My email: jeon@physics.mcgill.ca
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