Introduction to Hard Probes in Heavy Ion Collisions

Sangyong Jeon

Department of Physics McGill University Montréal, QC, CANADA

NNSPP Stonybrook University, July 2013

Jeon (McGill)

Jeon ((McGill)

2

<ロン <回と < 回と < 回と < 回と

Jet Quenching

æ

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Medium properties

- What is it made of? QGP or HG?
- Thermodynamic properties Temperature, Equation of state, etc.
- Transport properties Mean-free-path, transport coefficients, etc.
- Tools Change in jet properties
 - Jet Quenching
 - Jet Broadening

Away side jet disappears! – Proof of principle

ATLAS: Intact dijets in Pb+Pb

ATLAS: One jet is fully quenched in Pb+Pb

QCD Phase Diagram

Nobelprize.org

The Official Web Site of the Nobel Foundation

© Nobel Web AB 2007

Jeon (McGill)

Hard Probes

Stony Brook 2013 7 / 114

At high T

Running coupling

$$\alpha_{s}(Q^{2}) = \frac{12\pi}{(33 - 2N_{f})\ln(Q^{2}/\Lambda_{\text{QCD}}^{2})}$$

- When $Q \sim \Lambda_{QCD} \sim 200$ MeV, the above expression blows up: Not physical. Indicates breakdown of perturbation theory. Hadrons.
- Perturbative QCD is a theory of quarks and gluons *not* hadrons.
- At high T, $Q \sim T$.
- Possible phase transition around $T \sim \Lambda_{QCD}$?
- If $\mathbf{Q} \sim \mathbf{T}
 ightarrow \infty$, $\alpha_s
 ightarrow$ 0: Weakly coupled
- At ${\it Q}\sim$ few GeV, $lpha_{\it s}\sim$ 0.2 0.4

3

Another estimate of $T_{transition}$

• Density: Consider a pion gas.

$$n = 3 \int \frac{d^3 p}{(2\pi)^3} \, \frac{1}{e^{E_p/T} - 1} = 0.37 \; T^3$$

As *T* becomes larger, more and more pair creation results.Inter particle distance:

$$l_{\rm inter} = n^{1/3} = 1.4/T$$

At $\mathit{T}=$ 200 MeV, $\mathit{I}_{\mathrm{inter}} pprox$ 1.4 fm pprox d_{π}

Hagedorn Temperature

Hadronic density of states $\rho(m) \sim e^{m/T_H}$:

The smoothed mass spectrum of hadronic states as a function of mass. Experimental data: long-dashed green line with the 1411 states known in 1967; short-dashed red line with the 4627 states of 1996. The solid blue line represents the exponential fit yielding T_{H} =158 MeV. *CERN Courier, Sept, 2003*

- $\sum_{m} \int_{p} \rho(m) e^{-E_{p}/T}$: Not well defined when $T > T_{H}$ for hadronic matter.
- Phase transition around T_H : Hagedorn temperature \approx 160 MeV

- Perturbative calculation possible much above $Q = \Lambda_{QCD}$
- $Q \sim T$ at high T
- If *T* is much above the binding energy of hadrons
 Deconfinement
- At high enough *T*, the system is a plasma of weakly interacting quarks and gluons
- All the above arguments are plausible but not a proof

Lattice QCD Evidence

• F. Karsch, hep-lat/0403016. The color averaged heavy quark free energy at temperatures $T/T_c = 0.9, 0.94, 0.98, 1.05, 1.2, 1.5$ (from top to bottom) obtained in quenched QCD.

< 47 ▶

Lattice QCD Evidence of QGP

- From HotQCD Collaboration (C. DeTar, arXiv:0811.2429)
- "Cross-over" between 185 195 MeV

Stony Brook 2013 13 / 114

(4) (5) (4) (5)

Ordinary low T matter has paired up quarks

Jeon (M	cGill)
---------	--------

Collision can create more pairs

Pump up the volume (I mean, energy)!

Jeon (McGill

< 回 > < 三 > < 三 >

http://www.physics.adelaide.edu.au/

~dleinweb/VisualQCD/Nobel/

Expected properties

High number density

$$n \approx (24+16) \int \frac{d^3p}{(2\pi)^3} e^{-p/T} \approx 4 T^3$$
$$= 4 \left(\frac{T}{200 \text{ MeV}}\right)^3 \text{ fm}^{-3}$$

• High energy density

$$\varepsilon \approx (24+16) \int \frac{d^3p}{(2\pi)^3} p e^{-p/T} \approx 12 T^4$$
$$= 2.4 \left(\frac{T}{200 \text{ MeV}}\right)^4 \text{ GeV/fm}^3$$

Jeon (McGill)

Stony Brook 2013 18 / 114

э.

イロト イポト イヨト イヨト

Simple Estimates

With $\hbar = c = 1$

- 1 mole of hydrogen atom: 6.02×10^{23} atoms = 1 g (Avogadro's number)
- 1 hydrogen atom $m_{
 ho} pprox (1/6) imes 10^{-23} \, {
 m g} = (1/6) imes 10^{-26} \, {
 m kg}$

•
$$m_p = 940 \, \mathrm{MeV} \approx 1 \, \mathrm{GeV}$$

•
$$E = mc^2$$
: 1 GeV $\approx (1/6) \times 10^{-26}$ kg

$$\begin{array}{rcl} 2.4\,\text{GeV}/\text{fm}^3 &=& 0.4\times10^{-26}\,\text{kg}/(10^{-13}\,\text{cm})^3\\ &=& 0.4\times10^{-26+39}\,\text{kg/cm}^3\\ &=& 4\times10^{12}\,\text{kg/cm}^3 \end{array}$$

• Typical human: $\sim 100 \, \text{kg}$

$$2.4\,GeV/fm^3~\sim~4\times10^{10}\,human/cm^3$$

A D b 4 A b

э

With $\hbar = c = 1$

Another way of looking at the energy density

$$2.4\,GeV/fm^3 = 4\times 10^{12}\,kg/cm^3$$

• Restoring $c = 3 \times 10^8$ m/s,

 $2.4\,GeV/fm^3 = 4\times 10^{12}\times(9\times 10^{16})\,J/cm^3 = 3.6\times 10^{29}\,J/cm^3$

• World energy consumption (2008):

 $144\,pWh = 144\times 10^{15}\times 3.6\times 10^3\,J = 5.2\times 10^{20}\,J$

• A cubic centimeter of QGP can power the world for about 70 million years.

э.

With $\hbar = c = 1$

• Pressure $P \approx \epsilon/3$

 $P = 0.8\,{
m GeV}/{
m fm^3} pprox 1.3 imes 10^{12}\,{
m kg}/{
m cm^3} = 1.3 imes 10^{18}\,{
m kg}/{
m m^3}$

• SI Unit for pressure: $Pa = N/m^2 = kg/m/s^2$

• Restoring
$$c = 3 \times 10^8$$
 m/s,

 $P pprox 1.3 imes 10^{18} imes (9 imes 10^{16}) \, kg/m/s^2 pprox 10^{35} \, Pa pprox 10^{30} \, atm$

э

How do you achieve high temperature?

- Temperature = energy (1 eV \approx 12,000K)
- More usefully, the energy density:

$$arepsilon = g \int rac{d^3
ho}{(2\pi)^3} \, extsf{E}_{
ho} \, extsf{e}^{- extsf{E}_{
ho}/ au} pprox rac{3g}{\pi^2} extsf{T}^4$$

- To get high temperature: Get high energy density --> Cram maximum possible energy into the smallest possible volume while randomizing the momenta --> Relativistic heavy ion collisions.
- What to expect: *dN*/*dη* and *dE*/*dη* grow something like (ln s)ⁿ with n ~ 1 ⇒ T should behave something like (ln s)ⁿ with n ~ 1

(B) (A) (B) (A)

- High temperature —> Thermal photons
- High density \implies *Jet quenching*
- High pressure → Hydrodynamic flow
 - The size of the eliptic flow depends on the shear viscosity η .
 - If weakly coupled, $\eta/s \gg$ 1 : pprox Ideal gas
 - If stronly coupled, $\eta/s \ll 1$: \approx Perfect (Ideal) fluid.
- Neutrality —> Tight unlike-sign correlation
- Critical point —> Large momentum fluctuations

э.

Fig. 4. The ν -dependence of the ratio $\langle \mathcal{M}_A \rangle$ of hadrons produced in the forward region. The histograms labeled Y, C, G and S correspond to the yoyo formation model, the constituent formation model, the Glauber limit (l = 0) and to the string-flip model, respectively. For the constituent formation model, the zero scattering component has been included (dashed histogram). The data are from refs. [1, 2]. Miklos Gyulassy and Michael Plümer *Jet quenching in lepton nucleus scattering* in Nuclear Physics B Volume 346, 1 (1990).

Key Idea: Compare high p_T spectrum in sth-*N* and sth-*A* by plotting the ratio.

How jets are disappearing in hot/dense medium can tell us about the medium

Fig. 7 Dijet reduction factor for central U + U collisions at $\sqrt{s} = 200$ GeV/n as a function of the dijet energy $E = P_{T1} + P_{T2}$, for different values of κ_Q/κ_H assuming $\kappa_H = 16$ GeV/fm.

transverse coordinate, ϕ the azimuthal angle of the jet and $\tau_f(r, \phi)$ the escape time. Assuming only Bjorken[31] scaling longitudinal expansion and a Bag model equation of state[31], one can find the time dependence of $dE(\tau)/dx$ and get the reduction rate of jet production at fixed P_T by averaging over the initial coordinates $(r, \phi)[22]$,

$$R_{AA}(E) = \frac{\sigma^{jet}(E)_{quenching}}{\sigma^{jet}(E)_{no-quenching}}.$$
(11)

In the plasma phase, the temperature decreases as $T(\tau)/T_c = (\tau_Q/\tau)^{1/3}$. According to Eq. 9, $dE/dx \approx \kappa_Q (\tau_Q' \tau)^{2/3}$, denoting the energy loss in the plasma phase by

Xin-Nian Wang and Miklos Gyulassy, Jets in relativistic heavy ion collisions in BNL RHIC Workshop 1990:0079-102 (QCD199:R2:1990)

QM 2002 (PHENIX)

Presented by S. Mioduszewski at QM 2002

< ロ > < 同 > < 回 > < 回 >

PHENIX, arXiv:1208.2254

イロト イ団ト イヨト イヨト

 $\frac{dN_{AA}/dp_T}{N_{\rm coll}dN_{\rm DD}/dp_T}\approx {\rm Const.}$

Slight rising is becoming evident at high p_T .

Stony Brook 2013 26 / 114

In 2012

PHENIX, arXiv:1208.2254

 $\frac{dN_{AA}/dp_T}{N_{\rm coll}dN_{pp}/dp_T}\approx {\rm Const.}$

Slight rising is becoming evident at high p_T .

Jeon (McGill)

Stony Brook 2013 26 / 114

Centrality

For instance:

- 0 5% means top 5% of all collisions in terms of the number of particles produced (multiplicity).
- 70 80% means the collection of events whose multiplicity ranks between bottom 30% and bottom 20%.
- Centrality and impact parameter *b* not strictly 1 to 1, but very close.

Jeon (McGill)

CMS, 1208.6218v1

Can we understand the features?

< ロ > < 同 > < 回 > < 回 >

- R_{AA} < 1: Energy loss
- R_{AA} > 1: Energy gain

Jeon (McGill)

э.

・ロト ・ 四ト ・ ヨト ・ ヨト

Two ways to understand $R_{AA} < 1$

- The spectrum can shift down when particles actually disappear (depletion)
- The spectrum can shift to the left by energy loss *This is the more realistic scenario.*

Jeon (McGill)

- For high p_T , $dN_{\rm pp}/dp_T \approx 1/p_T^n$.
- Suppose, on average, a particle with *p_T* loses Δ*p_T* while traversing QGP.
- Then the number of particles with *p_T* in AA is the same as the number of particles with *p_T* + Δ*p_T* in pp.

$$R_{AA} = \frac{dN_{AA}/dp_T}{N_{\rm col}dN_{pp}/dp_T} \approx \frac{dN_{pp}/dp_T|_{p_T + \Delta p_T}}{dN_{pp}/dp_T|_{p_T}}$$

- What we want to learn: Behavior of Δp_T in the medium
- Shape of R_{AA} depends very much on the shape of dN_{pp}/dp_T

э

A B F A B F

Very Rough Understanding

• Suppose $dN_{pp}/dp_T = 1/p_T^n$ (realistic for high p_T)

$$R_{AA} \approx \left(rac{p_T}{p_T + \Delta p_T}
ight)^n = \left(rac{1}{1 + \Delta p_T/p_T}
ight)^n$$

- Suppose $\Delta p_T / p_T = 0.2$: $R_{AA} = 0.2$ for n = 8, $R_{AA} = 0.5$ for n = 4.
- Let $\Delta p_T \propto p_T^s$.
- R_{AA} constant if s = 1
- R_{AA} approaches 1 as $p_T \rightarrow \infty$ if s < 1.
- R_{AA} approaches 0 as $p_T \rightarrow \infty$ if s > 1.

э.

BA 4 BA

$R_{AA} < 1 - Final state energy loss$

- High energy particle
- Initial energy $E_p = p_z$
- Just after collision: $p'_x = p_z$
- *Final state interactions* with the QGP medium add little bits to p'_z but *subtract little bits* from p'_x .
- Resulting in:

Hard Probes

$R_{AA} > 1 -$ Initial state energy gain

- Low energy particle
- Initial state interactions with other nucleons add not-so-small momentum (compared to the original energy) in both directions.
- |p'| > |p|
- After the hard collision:
 p''_x ≈ |p'| > p_z ⇒ Energy gain
Jet Quenching – Schematic Ideas

Jeon (McGill)

Hard Probes

Stony Brook 2013 35 / 114

æ

If $Q \gg \Lambda_{QCD}$, $\alpha_s(Q) \ll 1$: Jet production is perturbative.

Calculation is possible.

If $Q \gg \Lambda_{QCD}$, $\alpha_s(Q) \ll 1$: Jet production is perturbative.

► Calculation is possible.

➡ We understand this process in hadron-hadron collisions.

Hadron-Hadron Jet production scheme:

$$\begin{aligned} \frac{d\sigma}{dt} &= \\ \int_{abcd} f_{a/A}(x_a, Q_f) f_{b/B}(x_b, Q_f) \\ &\times \frac{d\sigma_{ab \to cd}}{dt} D(z_c, Q) \end{aligned}$$

∃ > < ∃</p>

Heavy Ion Collisions

What we want to study:

< 17 ▶

 How does QGP modify jet property?

Jeon (McGill)

(4) (5) (4) (5)

Heavy Ion Collisions

What we want to study:

 How does QGP modify jet property?

Complications: How well do we know the *initial* condition?

- Nuclear initial condition?
- What happens to a jet between the production and the formation of (hydrodynamic) QGP?

∃ ► < ∃ ►</p>

Heavy Ion Collisions

Stony Brook 2013 37 / 114

э

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Relevant processes for E-loss

Elastic scatterings with thermal particles

Collinear radiation

- Hot and dense system Requires resummation: HTL & LPM
- Finite size system
- System is evolving

∃ ▶ ∢

< < >>

Radiational Energy Loss – Why coherence matters

Process to study

• Radiative (Inelastic) energy loss via collinear gluon emission

Stony Brook 2013 41 / 114

Incoherent emission

- Interference terms $T_n^*T_m$ with $n \neq m$ negligible.
- Single emission probabilist scales like the number of scatterers:

 $\mathcal{P}_{N_{sc}} \approx N_{sc} \mathcal{P}_{1}$

Jeon (McGill)

Coherent emission

Single emission probability scales like

$$\mathcal{P}_{N_{
m sc}} pprox rac{N_{
m sc}}{N_{
m coh}} \mathcal{P}_1$$

where $N_{\rm coh}$ is the number of scattering centers that destructively interfere.

- The medium's power to induce radiation is reduced.
- In the unit length, there are effectively,

$$N_{\rm eff. sc} = \frac{1}{I_{\rm coh}} = \frac{1}{I_{\rm mfp}} \frac{1}{N_{\rm coh}} = \frac{1}{I_{\rm coh}}$$

Effective Emission rate

• Coherent Emission rate:

$$rac{d\mathcal{P}}{dt}pprox rac{c}{I_{
m coh}}\mathcal{P}_{
m 1}$$

Incoherent Emission rate:

$$rac{d\mathcal{P}}{dt}pproxrac{c}{I_{\mathrm{mfp}}}\mathcal{P}_{1}$$

• Here, \mathcal{P}_1 : Bethe-Heitler

$$\mathcal{P}_1 \approx \frac{\alpha_S N_c}{\pi \omega}$$

for small ω

Coherent scattering can be important

Following BDMPS

• What we need to calculate R_{AA} : Differential gluon radiation rate $\omega \frac{dN_g}{d\omega dz}$

Medium dependence comes through a scattering length scale

$$\omega \frac{dN_g}{d\omega dz} \approx \frac{1}{I} \omega \left. \frac{dN_g}{d\omega} \right|_{\rm B}$$

 $l \approx t$

Goal for today

Goal for the day: Roughly Understand these features from the behavior of the unit scattering length / in

$$\omega \frac{dN_g}{d\omega dz} \approx \frac{1}{I} \omega \left. \frac{dN_g}{d\omega} \right|_{\rm BH}$$

< ロ > < 同 > < 回 > < 回 >

Following BDMPS

• If all scatterings are incoherent $(I_{mfp} > I_{coh})$,

$$I = I_{\rm mfp} = 1/\rho\sigma$$

• If $I_{coh} \ge I_{mfp} \implies$ LPM effect:

All scatterings within *l*_{coh} effectively count as a single scattering.

• $I = I_{\rm coh}$

- (E

< < >>

Mean free path (textbook definition)

$$\frac{1}{l_{\rm mfp}} \equiv \int d^3 k \,\rho(k) \,\int dq^2 \,(1 - \cos\theta_{\rho k}) \frac{d\sigma^{\rm el}}{dq^2}$$

where

- $\rho(k)$: density, $(1 \cos \theta_{pk})$: flux factor
- Elastic cross-section (Coulombic) $\frac{d\sigma}{dq^2} \approx C_R \frac{2\pi\alpha_s^2}{(q^2)^2}$

Estimation of Imfp

• Mean free path (textbook definition)

$$\frac{1}{l_{\rm mfp}} \equiv \int d^3 k \,\rho(k) \,\int dq^2 \,(1 - \cos\theta_{\rho k}) \frac{d\sigma^{\rm el}}{dq^2}$$

where

- $\rho(k)$: density, $(1 \cos \theta_{pk})$: flux factor
- Elastic cross-section (Coulombic) $\frac{d\sigma}{dq^2} \approx C_R \frac{2\pi\alpha_s^2}{(q^2)^2}$

• With thermal $\rho(k)$, this yields

$$\frac{1}{I_{\rm mfp}} \sim \int d^3 k \rho(k) \int_{m_D^2}^{\infty} dq^2 \frac{\alpha_S^2}{q^4} \sim T^3 \alpha_S^2 / m_D^2 \sim \alpha_S T$$

æ

Estimation of $I_{\rm coh}$

• $E \gg \omega_g \gg \mu$

æ

< 3

< • • • **•**

Estimation of Icoh

- $\omega \ll E \implies$ The radiated gluon random walks away from the original parton. Original parton's trajectory is less affected.
- From the geometry $\frac{\omega_g}{k_T^g} \approx \frac{I_{\rm coh}}{I_T}$
- Separation condition: I_T is longer than the transverse size of the radiated gluon. $I_T \approx 1/k_T^g$
- Putting together,

$$I_{
m coh} pprox rac{\omega_g}{(k_T^g)^2}$$

Estimation of Icoh

• We have:
$$I_{\rm coh} \approx rac{\omega_g}{(k_T^g)^2}$$

• After suffering N_{coh} collisions (random walk),

$$\left\langle (k_T^g)^2 \right\rangle = N_{\rm coh} \mu^2 = \frac{I_{\rm coh}}{I_{\rm mfp}} \mu^2$$

• Becomes, with $\hat{q} = \mu^2 / I_{mfp}$ and $E_{LPM} = \mu^2 I_{mfp}$,

$$I_{\rm coh} \approx I_{\rm mfp} \sqrt{\frac{\omega_g}{E_{\rm LPM}}} = \sqrt{\frac{\omega_g}{\hat{q}}}$$

Estimation of μ^2

• Debye mass

- Second row: Physical forward scattering with particles in the medium
- The last term is easiest to calculate:

$$m_D^2 \propto g^2 \int \frac{d^3k}{E_k} f(k) \propto g^2 T^2$$

 ● Effectively, this adds m²_DA²₀ to the Lagrangian → NOT gauge invariant → Gauge invariant formulation: Hard Thermal Loops

Physical origin of Debye mass

E & M

- Let Q > 0. Within the range R
 - Positive charges are pushed away: $Q_+ = Q_0 \delta Q$
 - Negative charges are pulled in: $Q_{-} = Q_0 + \delta Q$
- At position R, apparent net charge is reduced

$$Q_{\text{net}} = Q + (Q_0 - \delta Q) - (Q_0 + \delta Q) = Q - 2\delta Q$$

This is screening.

 When it's moving, there is a net potential energy associated with Q even in charge neutral medium
Acts like a "mass"

Physical origin of Debye mass

E & M

Potential in a thermal system

$$\nabla^2 \Phi(\mathbf{r}) = -\rho(\mathbf{r})$$

• Medium composed of many charged particles

$$\rho(\mathbf{r}) = qn_+(\mathbf{r}) - qn_-(\mathbf{r})$$

• Boltzmann Density:

$$n_{\pm}(\mathbf{r}) = \int \frac{d^{3}k}{(2\pi)^{3}} e^{-E/T}$$

= $\int \frac{d^{3}k}{(2\pi)^{3}} e^{-\sqrt{k^{2}+m^{2}}} e^{\mp q\Phi(\mathbf{r})/T}$
= $n_{0}(T)e^{\mp q\Phi(\mathbf{r})/T}$
 $\approx n_{0}(T)(1 \mp q\Phi(\mathbf{r})/T)$

3 > 4 3

A D M A A A M M

- E & M
- Boltzmann Density:

$$n_{\pm}(\mathbf{r}) \approx n_0(T)(1 \mp q \Phi(\mathbf{r})/T)$$

• Linearized equation for the potential:

$$abla^2 \Phi - m_D^2 \Phi pprox 0$$

where

$$m_D^2 = 2q^2(n_0(T)/T)$$

3 > 4 3

What we learned so far

Coherence length

$$I_{
m coh} pprox I_{
m mfp} \sqrt{rac{\omega_g}{E_{
m LPM}}} = \sqrt{rac{\omega_g}{\hat{q}}}$$

where $\hat{q} = \mu^2 / I_{\rm mfp}$ (average momentum transfer squared per collision) If your chosen process is

• Soft gluon emission, $\omega_g < \mu^2 I_{\rm mfp}$,

• Hard gluon emission, $E \gg \omega_g > \mu^2 I_{\rm mfp}$,

→ Coherence matters. Resummation needed.

Both

> Need the cross-section that is correct in both limits.

- Key quantity: $E_{\text{LPM}} = \mu^2 I_{\text{mfp}} \sim T$ in pert. thermal QCD
- Key quantity: $\hat{q} \sim \alpha_S^2 T^3$ in pert. thermal QCD

Rough Idea – Multiple Emission (Poisson ansatz)

After each collision, there is a finite probability to emit

Number of effective collisions

- Let the emission probability be p
- Total number of *effective* collisions N_{trial} taking into account of I_{mfp} and I_{coh}.
- Average number of emissions $\langle n \rangle = N_{\text{trial}} p$
- Probability to emit n gluons

$$P(n) = \frac{N_{\text{trial}}!}{n!(N_{\text{trial}}-n)!} \rho^n (1-\rho)^{N_{\text{trial}}-n}$$

Rough Idea – Multiple Emission (Poisson ansatz)

• Poisson probability: Limit of binary process as $\lim_{N_{trial} \to \infty} N_{trial} p \to \langle n \rangle$

$$P(n) = e^{-\langle n
angle} rac{\langle n
angle^n}{n!}$$

• Average number of gluons emitted up to $t_i < t$

$$\langle n \rangle = \int_{-\infty}^{E} d\omega \int_{t_{i}}^{t} dz \frac{dN}{dzd\omega} = \int_{-\infty}^{E} d\omega \frac{dN}{d\omega}(t)$$

• Probability to lose ϵ amount of energy by emitting *n* gluons:

$$\langle n \rangle^{n} \rightarrow D(\epsilon, t)$$

$$= \int_{-\infty}^{E} d\omega_{1} \frac{dN}{d\omega_{1}} \int_{-\infty}^{E} d\omega_{2} \frac{dN}{d\omega_{2}} \cdots \int_{-\infty}^{E} d\omega_{n} \frac{dN}{d\omega_{n}} \delta(\epsilon - \sum_{k=1}^{n} \omega_{k})$$

$$= \sum_{k=1}^{n} (McGill) \qquad \text{Hard Probes} \qquad \text{Story Brook 2013} \quad 60/114$$

Rough Idea – Multiple Emission (Poisson ansatz)

Parton spectrum at t

$$P(p,t) = \int d\epsilon D(\epsilon,t) P_0(p+\epsilon)$$

where

$$D(\epsilon, t) = e^{-\int d\omega \frac{dN}{d\omega}(\omega, t)} \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^{n} \int d\omega_i \frac{dN}{d\omega_i}(\omega_i, t) \right] \delta\left(\epsilon - \sum_{i=1}^{n} \omega_i\right)$$

Can easily show that this Poisson ansatz solves:

$$\frac{dP(p,t)}{dt} = \int d\omega \, \frac{dN_{\text{Poiss.}}}{d\omega dt}(\omega) P(p+\omega,t) - P(p,t) \int d\omega \, \frac{dN_{\text{Poiss.}}}{d\omega dt}(\omega)$$

with the p (jet energy) independent rate

$$\frac{dN}{d\omega}(\omega,t) = \int_{t_0}^t dt' \, \frac{dN_{\text{Poiss.}}}{d\omega dt}(\omega,t')$$

Rough Idea - The behavior of R_{AA}

Use $R_{AA} \approx 1/(1 + \epsilon/p)^n \approx e^{-n\epsilon/p}$ when $n \gg 1$. Include gain by absoprtion or $\omega < 0$:

$${\cal R}_{AA}(p) = {P(p)\over P_0(p)} pprox \exp\left(-\int_{-\infty}^\infty d\omega \, \int_0^t dt' \, (dN_{
m inel+el}/d\omega dt)(1-e^{-\omega n/p})
ight)$$

For the radiation rate, use simple estimates

$$\begin{split} \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} \frac{N_c}{I_{\rm mfp}} & \text{for } 0 < \omega < I_{\rm mfp} \mu^2 \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} N_c \sqrt{\frac{\mu^2}{I_{\rm mfp} \omega}} & \text{for } I_{\rm mfp} \mu^2 < \omega < I_{\rm mfp} \mu^2 (L/I_{\rm mfp})^2 \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} \frac{N_c}{L} & \text{for } I_{\rm mfp} \mu^2 (L/I_{\rm mfp})^2 < \omega < E \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi |\omega|} \frac{N_c}{I_{\rm mfp}} e^{-|\omega|/T} & \text{for } \omega < 0 \end{split}$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Rough Idea - The behavior of R_{AA}

For elastic energy loss,

$$\begin{aligned} \mathcal{R}_{AA}^{\text{el}} &\approx & \exp\left(-\int_{-\infty}^{\infty} d\omega \int_{0}^{t} dt' (d\Gamma_{\text{el}}/d\omega dt)(1-e^{-\omega n/p})\right) \\ &\approx & \exp\left(-t\left(\frac{dE}{dt}\frac{K(\omega_{0})}{|\omega_{0}|}\right)\right) \\ &\approx & \exp\left(-t\left(\frac{dE}{dt}\right)\left(\frac{n}{p}\right)\left(1-\frac{nT}{p}\right)\right) \end{aligned}$$

valid for p > nT and we used

$$\begin{aligned} \mathcal{K}(\omega_0) &= (1+n_B(|\omega_0|))(1-e^{-|\omega_0|n/p}) + n_B(|\omega_0|)(1-e^{|\omega_0|n/p}) \\ &\approx |\omega_0|\left(\frac{n}{p}\right)\left(1-\frac{nT}{p}\right) \quad \text{for small } \omega_0 \end{aligned}$$

where ω_0 is the typical gluon energy

Jeon (McGill)

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Elastic scattering rate

Coulombic t-channel dominates

Rough Idea - Elastic energy loss(Following Bjorken)

Mean free path (textbook definition)

$$\frac{1}{I_{\rm mfp}} \equiv \int d^3k \,\rho(k) \,\int dq^2 \,(1 - \cos\theta_{\rho k}) \frac{d\sigma^{\rm el}}{dq^2}$$

Energy loss per unit length

$$\frac{dE}{dz} = \int d^3k \,\rho(k) \,\int dq^2 \,(1 - \cos\theta_{pk}) \Delta E \frac{d\sigma^{\rm el}}{dq^2}$$

where

•
$$\rho(k)$$
: density, $(1 - \cos \theta_{pk}) \Delta E \approx q^2/2k$: flux factor

• Elastic cross-section (Coulombic) $\frac{d\sigma}{da^2} \approx \frac{C_R}{(a^2)^2} \frac{2\pi \alpha_s^2}{(a^2)^2}$

Jeon (McGill)

• With thermal ρ , this yields

$$\left(\frac{dE}{dz}\right)_{\rm coll} \sim \int d^3 k \rho(k) / k \int dq^2 \alpha_S^2 / q^2 \sim \alpha_S^2 T^2 \ln(ET/m_D^2)$$

Upper limit determined by

$$q^2=(p-k)^2=p^2+k^2-2pkpprox-2pk\sim ET$$

when $|\mathbf{p}| = E$ (emitter) and $|\mathbf{k}| = O(T)$ (thermal scatterer) Lower limit determined by the Debye mass $m_D = O(gT)$. More precisely,

$$\frac{dE}{dt} = \frac{1}{2E} \int_{k,k',p'} \delta^4(p+k-p'-k') (E-E') |M|^2 f(E_k) [1 \pm f(E'_k)] \\ = C_r \pi \alpha_s^2 T^2 \left[\ln(ET/m_g^2) + D_r \right]$$

where C_r and D_r are channel dependent O(1) constants.

Rough Idea - The behavior of R_{AA}

- Upper line: Without elastic
- Lower line: With elastic
- Flat *R* is produced in both cases up to *O*(10 *T*).
- *R* just not that sensitive to *p* in the RHIC-relevant range.

Jeon (McGill)

Hard Probes

CMS: Up to $p_T = 100 \text{ GeV}$

No longer flat. Slow rise for $p_T \gtrsim 10 \,\text{GeV}$. Can we understand these features?

< ロ > < 同 > < 回 > < 回 >

Rough Idea - The behavior of R_{AA}

- Red: Elastic on, thermal absorption on
- Blue: Elastic on, thermal absorption off
- Green: Elastic off, thermal absorption on
- Magenta: Elastic off, thermal absorption off
- Dip, rise, leveling-off roughly reproduced
- No dip if thermal absorption is turned off

Jeon (McGill)

For other features, first recall

Use $R_{AA} \approx 1/(1 + \epsilon/p)^n \approx e^{-n\epsilon/p}$ when $n \gg 1$. Include gain by absoprtion or $\omega < 0$:

$${\cal R}_{AA}(p) = {P(p)\over P_0(p)} pprox \exp\left(-\int_{-\infty}^\infty d\omega \, \int_0^t dt' \, (dN_{
m inel+el}/d\omega dt)(1-e^{-\omega n/p})
ight)$$

For the radiation rate, use simple estimates

$$\begin{split} \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} \frac{N_c}{I_{\rm mfp}} & \text{for } 0 < \omega < I_{\rm mfp} \mu^2 \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} N_c \sqrt{\frac{\mu^2}{I_{\rm mfp} \omega}} & \text{for } I_{\rm mfp} \mu^2 < \omega < I_{\rm mfp} \mu^2 (L/I_{\rm mfp})^2 \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi \omega} \frac{N_c}{L} & \text{for } I_{\rm mfp} \mu^2 (L/I_{\rm mfp})^2 < \omega < E \\ \frac{dN}{d\omega dt} &\approx \frac{\alpha}{\pi |\omega|} \frac{N_c}{I_{\rm mfp}} e^{-|\omega|/T} & \text{for } \omega < 0 \end{split}$$

< ロ > < 同 > < 回 > < 回 >

Flat then slow rise

With E = p (original parton energy) and the system size L and $(1 - e^{-n\omega/E}) \approx n\omega/E$: • If $E < E_{\text{LPM}} = \mu^2 l_{\text{mfp}}$, $\ln R_{AA} \approx -L \int_0^E d\omega \frac{dN}{d\omega dt} \left(\frac{n\omega}{E}\right) \approx \frac{nL}{E} \int_0^E d\omega \omega \left(\frac{\alpha_S}{\pi \omega} \frac{N_c}{l_{\text{mfp}}}\right) \sim \text{Const.}$ Flat R_{AA}

• If
$$E_{\text{LPM}} < E < E_L = L^2 \mu^2 / l_{\text{mfp}}$$
,
In $R_{AA} \approx -\frac{nL}{E} \int_0^{E_{\text{LPM}}} d\omega \omega \left(\frac{\alpha_S}{\pi \omega} \frac{N_c}{l_{\text{mfp}}}\right)$
 $-\frac{nL}{E} \int_{E_{\text{LPM}}}^E d\omega \omega \left(\frac{\alpha_S}{\pi \omega} N_c \sqrt{\frac{\mu^2}{l_{\text{mfp}}\omega}}\right)$
 $\approx -\frac{nL\alpha_S N_c}{\pi l_{\text{mfp}}} \left(2\sqrt{\frac{E_{\text{LPM}}}{E}}\right)$

Slowly rising R_{AA}

э

BAR 4 BA

Plateau at high p_T

- If $E > E_L = L^2 \mu^2 / I_{\rm mfp}$,

$$\ln R_{AA} \approx -\frac{nL}{E} \int_{0}^{E_{\rm LPM}} d\omega \omega \left(\frac{\alpha_{\rm S}}{\pi \omega} \frac{N_c}{I_{\rm mfp}}\right) \\ -\frac{nL}{E} \int_{E_{\rm LPM}}^{E_{\rm L}} d\omega \omega \left(\frac{\alpha_{\rm S}}{\pi \omega} N_c \sqrt{\frac{\mu^2}{I_{\rm mfp}\omega}}\right) \\ -\frac{nL}{E} \int_{E_{\rm L}}^{E} d\omega \omega \left(\frac{\alpha_{\rm S}}{\pi \omega} \frac{N_c}{L}\right) \\ \approx -n \frac{\alpha_{\rm S} N_c}{\pi} \left(1 + \frac{E_{\rm L}}{E} (1 - I_{\rm mfp}/L)\right)$$

This is approximately constant for large *E*.

Jeon (McGill)

- Dip-rise-flat feature qualitatively understandable
- Opaque medium
- Density of the medium
- Dip in *R_{AA}*: Could be an indirect indication of the initial temperature.
- Plateau at high p_T: Could be an indication that *I*_{coh} > *L* is reached.
 ⇒ Extract *q̂* from *I*_{coh} ≈ √ω/*q̂*?

Understanding high p_T part of v_2

• v_2 and R_{AA} : Is there a relationship?

Understanding high p_T part of v_2

Jeon (McGill)

Stony Brook 2013 74 / 114

Understanding high p_T part of v_2

Start with an isotropic distribution of high energy particles

• After going through the almond:

$$p_x = E - \Delta E_x$$

 $p_y = E - \Delta E_y$

That is,

$$p_x^2 pprox E^2 - 2\Delta E_x E$$

• Elliptic flow definition:

$$v_{2} = \frac{\langle p_{x}^{2} - p_{y}^{2} \rangle}{\langle p_{x}^{2} + p_{y}^{2} \rangle}$$

$$\sim \frac{2\Delta E_{y} E - 2\Delta E_{x} E}{2E^{2}}$$

$$= \left(\frac{\Delta E_{y} - \Delta E_{x}}{E}\right)$$

Jeon (McGill)

Stony Brook 2013 75 / 114

Approx. relationship between R_{AA} and v_2 at high p_T

• BDMPS: If
$$dN/p_T dp_T \approx 1/p_T^n$$
, $\ln R_{AA} \approx -n \frac{\Delta E}{F}$

• If $E < E_{\text{LPM}} = \mu^2 I_{\text{mfp}}$, $\ln R_{AA} \approx -\frac{nL}{E} \frac{\alpha_S N_c}{\pi_{\text{mfp}}}$

$$v_2 \sim \left(rac{\Delta E_y - \Delta E_x}{E}
ight) \propto (L_y - L_x)$$

Flat v₂

• If $E_{\text{LPM}} < E < E_L = L^2 \mu^2 / I_{\text{mfp}}$, In $R_{AA} \sim -\frac{nL\alpha_S N_c}{\pi I_{\text{mfp}}} \left(2\sqrt{\frac{E_{\text{LPM}}}{E}} - \frac{E_{\text{LPM}}}{E} \right)$ $v_2 \sim \left(\frac{\Delta E_y - \Delta E_x}{E} \right) \propto (L_y - L_x) \sqrt{\frac{\hat{q}}{E}}$

Slowly falling v2

Jeon (McGill)

• If
$$E > E_L = L^2 \mu^2 / I_{mfp}$$
, $\ln R_{AA} \approx -n \frac{\alpha_S N_c}{\pi} \left(1 + \frac{E_L}{E} (1 - I_{mfp} / L) \right)$
 $v_2 \sim \left(\frac{\Delta E_y - \Delta E_x}{E} \right) \propto (L_y^2 - L_x^2) \frac{\hat{q}}{E}$

Faster falling v₂

Э.

イロト イヨト イヨト イヨト

LHC Data

Data: ALICE and CMS

- High $p_T v_2$: Flat, then falls like $1/\sqrt{p_T}$ and then $1/p_T$.
- Can understand high p_T data qualitatively although $1/p_T$ behavior may not be visible since this is for $E > E_L$.
- The slope $dv_2/dp_T \propto -\sqrt{\hat{q}}$
- Of course, this is very rough: Viscosity also curves it down and p_T ≥ 3 GeV may not be high enough.

イロト イヨト イヨト イヨト

Thermal QCD calculation of the radiation rate

Jeon (McGill)

Hard Probes

Stony Brook 2013 79 / 114

- Medium is weakly coupled QGP with thermal quarks and gluons
- Requires *g* ≪ 1, *p* > *T*, *k* > *T*

- Medium is weakly coupled QGP with thermal quarks and gluons
- Requires *g* ≪ 1, *p* > *T*, *k* > *T*
- Sum all interactions with the medium including the self-energy

Need to resum.

- Medium is weakly coupled QGP with thermal quarks and gluons
- Requires *g* ≪ 1, *p* > *T*, *k* > *T*
- Sum all interactions with the medium including the self-energy
- Leading order: 3 different kinds of collinear pinching poles

< ロ > < 同 > < 回 > < 回 >

• What pinching does: Let

$$P = \left(\frac{i}{p_1^2 + m_2^2 + 2iE_1\Gamma_1}\right)^* \frac{i}{p_2^2 + m_1^2 + 2iE_2\Gamma_2}$$

• Poles for positive energies at $p_1^0 = E_1 - i\Gamma_1$ and $p_2^0 = E_2 + i\Gamma_2$

• If $p_1^0 = E_1 - i\Gamma_1$ puts p_2 also almost on-shell,

$$P\propto rac{1}{E_1E_2}\delta(p_1^0-E_1)rac{1}{\delta E+i\Gamma_2+i\Gamma_1}$$

where δE : difference in the real part of the energy

 Physically, this means that an almost on-shell particle lives a long time Δt ~ 1/δE ~ 1/Γ ⇒ Introduces a secular divergence

• Pinching poles occur when

• $p_1 \approx p_2$: Soft momentum exchange or radiation.

If
$$p_1^2 + m^2 = O(g^2 T^2)$$
, so is $p_2^2 + m^2 = O(g^2 T^2)$.

• $p_2 = xp_1$: Collinear radiation. When $p_1^2 + m^2 = O(g^2T^2)$,

$$p_2^2 + m^2 = x^2 p_1^2 + m^2 + O(g^2 T^2) = (1 - x^2)m^2 + O(g^2 T^2)$$

When $m \approx gT$, the whole expression is $O(g^2T^2)$.

э

3 + 4 = +

• SD Equation for the vertex F

$$2\mathbf{h} = i\delta E(\mathbf{h}, p, k)\mathbf{F}_{s}(\mathbf{h}) + g^{2} \int \frac{d^{2}\mathbf{q}_{\perp}}{(2\pi)^{2}} C(\mathbf{q}_{\perp}) \times \\ \times \Big\{ (C_{s} - C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} - k \mathbf{q}_{\perp})] \\ + (C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} + \rho \mathbf{q}_{\perp})] \\ + (C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} - (p - k) \mathbf{q}_{\perp})] \Big\}, \\ \delta E(\mathbf{h}, p, k) = \frac{\mathbf{h}^{2}}{2pk(p-k)} + \frac{m_{k}^{g2}}{2k} + \frac{m_{p-k}^{g2}}{2(p-k)} - \frac{m_{p}^{s2}}{2p}.$$

• $\mathbf{h} = (\mathbf{p} \times \mathbf{k}) \times \mathbf{e}_{||}$ — Must keep track of both \mathbf{p}_{\perp} and \mathbf{k}_{\perp} now. For photons, we could just set $\mathbf{k}_{\perp} = 0$.

< ロ > < 同 > < 回 > < 回 >

• SD Equation for the vertex F

$$2\mathbf{h} = i\delta E(\mathbf{h}, p, k)\mathbf{F}_{s}(\mathbf{h}) + g^{2} \int \frac{d^{2}\mathbf{q}_{\perp}}{(2\pi)^{2}} C(\mathbf{q}_{\perp}) \times \\ \times \Big\{ (C_{s} - C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} - k \mathbf{q}_{\perp})] \\ + (C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} + \rho \mathbf{q}_{\perp})] \\ + (C_{A}/2)[\mathbf{F}_{s}(\mathbf{h}) - \mathbf{F}_{s}(\mathbf{h} - (\rho - k) \mathbf{q}_{\perp})] \Big\}, \\ \delta E(\mathbf{h}, p, k) = \frac{\mathbf{h}^{2}}{2pk(\rho - k)} + \frac{m_{k}^{g2}}{2k} + \frac{m_{\rho - k}^{s2}}{2(\rho - k)} - \frac{m_{\rho}^{s2}}{2p}.$$

- s: Process dependence. $q \rightarrow qg, g \rightarrow gg, g \rightarrow q\bar{q}$.
- g
 ightarrow q ar q: Exchange coeff. of the first and second line
- m_s^2 : Medium induced thermal masses of the emitter.

Jeon (McGill)

• Rate for p > T, k > T (valid for $p \gg T$ and $k \gg T$ as well)

$$\begin{split} \frac{dN_g(p,k)}{dkdt} &= \frac{C_s g_s^2}{16\pi\rho^7} \frac{1}{1\pm e^{-k/T}} \frac{1}{1\pm e^{-(p-k)/T}} \times \\ &\times \begin{cases} \frac{1+(1-x)^2}{x^3(1-x)^2} & q \to qg \\ N_f \frac{x^2+(1-x)^2}{x^2(1-x)^2} & g \to q\bar{q} \\ \frac{1+x^4+(1-x)^4}{x^3(1-x)^3} & g \to gg \end{cases} \\ &\times \int \frac{d^2 \mathbf{h}}{(2\pi)^2} 2\mathbf{h} \cdot \operatorname{Re} \mathbf{F}_s(\mathbf{h},p,k) \,, \end{split}$$

• s: Process dependence.

3

• Evolution - Medium enters through $T(t, \mathbf{x})$ and $u^{\mu}(t, \mathbf{x})$

$$\begin{aligned} \frac{d\mathcal{P}_q(p)}{dt} &= \int_k \mathcal{P}_q(p+k) \frac{dN_{qg}^q(p+k,k)}{dkdt} - \mathcal{P}_q(p) \int_k \frac{dN_{qg}^q(p,k)}{dkdt} \\ &+ \int_k 2\mathcal{P}_g(p+k) \frac{dN_{q\bar{q}}^q(p+k,k)}{dkdt} , \\ \frac{d\mathcal{P}_g(p)}{dt} &= \int_k \mathcal{P}_q(p+k) \frac{dN_{qg}^q(p+k,p)}{dkdt} + \int_k \mathcal{P}_g(p+k) \frac{dN_{gg}^g(p+k,k)}{dkdt} \\ &- \mathcal{P}_g(p) \int_k \left(\frac{dN_{q\bar{q}}^q(p,k)}{dkdt} + \frac{dN_{gg}^g(p,k)}{dkdt} \Theta(k-p/2) \right) \end{aligned}$$

Э.

イロト イヨト イヨト イヨト

Modified fragmentation function with jet initial condition s, n, p_i

$$\begin{split} \bar{D}_{\pi^{0},c}(z,Q;\mathbf{s},\mathbf{n}) &= \int dp_{f} \frac{z'}{z} \left(\mathcal{P}_{qq/c}(p_{f};p_{i})D_{\pi^{0}/q}(z',Q) + \mathcal{P}_{g/c}(p_{f};p_{i})D_{\pi^{0}/g}(z',Q) \right) ,\\ \tilde{D}(z,Q) &= \int d^{2}s \, \frac{T_{A}(\mathbf{s})T_{B}(\mathbf{s}+\mathbf{b})}{T_{AB}(\mathbf{b})} \, \bar{D}_{\pi^{0},c}(z,Q;\mathbf{s},\mathbf{n}) \end{split}$$

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

- Collision geometry including path length fluctuations are all included.
- Both BH and LPM limits included
- Includes all leading order splittings
- Includes thermal absorption
- All produced quarks and gluons fragment
- Medium evolution (*T*(*t*, **x**), *u*_µ(*t*, **x**)) fully taken into account including the effect of flow vector
- Easy to add other process such as elastic coll. γ production within leading order QCD/QED.

What is not included yet (vacuum-medium interference)

Included in the PDF scale dependence

• The *L*² dependence in the heuristic BDMPS expression we got before

$$\ln R_{AA} \approx -n \frac{\alpha_{S} N_{c}}{\pi} \left(1 - \frac{L \mu^{2}}{E} + \frac{E_{L}}{E} \right)$$

cannot be reproduced since original AMY always assumes $L > I_{\rm coh}$.

• Finite size effect is being worked on (Caron-Huot and Gale).