Introduction to Hard Probes in Heavy Ion Collisions

Sangyong Jeon

Department of Physics McGill University Montréal, QC, CANADA

NNSPP Stonybrook University, July 2013

つへへ

K ロ ト K 伺 ト K ヨ ト K

Mr. McGill going home after a hard day's work[.](#page-3-0)

4 0 8

つへへ

Rutherford carried out his Nobel (1908) winning work at McGill (1898-1907). His *original* equipments on display

4 0 8

- Charles Gale
- **Sangyong Jeon**
- *Björn Schenke* (Formerly McGill, now BNL)
- *Clint Young* (Formerly McGill, Now UMinn)
- *Gabriel Denicol*
- *Matt Luzum*
- **o** Sangwook Ryu
- Gojko Vujanovic
- Jean-Francois Paquet
- Michael Richard
- **Igor Kozlov**
- Khadija El Berhoumi
- Jean-Bernard Rose

● ト

• Why do it?

- To study QGP
- Most extreme environment ever created: *T* ∼ 1 GeV. This existed only at around 1 microsecond after the Big Bang
- How do we understand it?
	- Theory: Many-body QCD
	- Experimental probes:
		- Soft
		- Hard

- Hard Probes \sim Large momentum/energy phenomena
- $pQCD$ applies We know how to do this
- **•** Produced *before* QGP is formed in the same way as in hadron-hadron collisions
- Difference between *pp*, *pA* and *AA* tells us about the medium.
- Caveat: How well do we know the *nuclear initial state?*

• Medium properties

- What is it made of? Quarks? Gluons? Hadrons?
- Thermodynamic properties Temperature, Equation of state, etc.
- Transport properties Mean-free-path, transport coefficients, etc.
- Tools
	- o Jets
	- **e** Hard Photons

1 pQCD

- ² Jet Quenching
- ³ Hard Photons
	- My goal for these lectures: Qualitative understanding

4 0 8

 \leftarrow \leftarrow \leftarrow

B K -4 B Þ

• Early hard probe experiments

 \leftarrow

• Early hard probe experiments

 \leftarrow

What is a hard probe?

• Early hard probe experiments

• Rutherford's α scattering experiment (1911)

$$
\frac{d\sigma}{d\cos\theta} = \frac{\pi}{2} Z^2 \alpha_{\text{EM}}^2 \left(\frac{\hbar c}{E_{\text{kin}}}\right)^2
$$

$$
\times \frac{1}{(1 - \cos\theta)^2}
$$

- Small angle scattering dominates $d\sigma/d\cos\theta \propto 1/\theta^4$
- But backscattering prob. is finite, favoring Rutherford's model over Thompson's (which causes no backscatteri[ng](#page-12-0))

Fast-forward to the present

ATLAS: Intact dijets in Pb+Pb ATLAS: One jet is fully quenched in Pb+Pb

- Simplest conclusion to draw: The medium is *opaque*.
- We want to know much more than that!

- Must be known & calculable using pQCD.
- Must be created *before* QGP forms
- Both requirements satisfied if the energy scale is much large compared to $\Lambda_{\text{QCD}} \approx 200$ MeV and the length (time) scale is much shorter than \sim 1 fm.
- **Example: Jets (high energy partons) with** $E \gg 1$ **GeV and Heavy** quarks (c, b) with $M \gg 1$ GeV

Probes

- Propagation of hard partons or "Jets"
- Quarkonium suppression
- High p_T electromagnetic probes (real and virtual photons)
- Goal
	- To characterize *QGP*
	- To characterize initial state (nPDF, CGC?)

4 0 8

Gluon fields are grabbing each other

Þ

 299

医下半面

 \mathcal{A}

4 ロ ト ィ *同* ト

Review of some basic concepts - Feynman Rules

(a) Propagators: Gluon, quark, and ghost lines of momentum k

$$
\begin{array}{lll}\n\kappa \cdot a & \text{OTOT}(\mathcal{M}, b) & \frac{1}{k_{\text{avg}}^{(k)}} \left[-g^{\mu\nu} + \left(1 - \frac{1}{\lambda} \right) \frac{g^{\mu\nu}}{k_{\text{avg}}} \right] & \text{covariant gauge} \\
& i \frac{1}{k_{\text{avg}}} \left[-g^{\mu\nu} + \frac{\mu^{\mu} \mu^{\nu} + \mu^{\nu \nu}}{k_{\text{avg}}} - n^2 \frac{g^{\mu} \mu^{\nu}}{(n \, k)^2} \right] & \text{physical gauge} \\
& k & \rightarrow & \n\end{array}
$$

$$
\alpha,i \xrightarrow{\qquad \qquad } \beta,j \qquad i_{\frac{\delta_{ij}}{k^2-m^2+i\varepsilon}}[k+m]_{\beta_0}
$$

(b) Vertices (all momenta defined to flow in)

(i)
$$
-ig[T_c^{(P)}]_{ji}[\gamma_{\mu}]_{j}
$$

(ii) $gC_{abc}k'_a$

(iii) $-gC_{\alpha_1\alpha_2\alpha_3}[g^{\nu_1\nu_2}(p_1-p_2)^{\nu_3}+g^{\nu_2\nu_3}(p_2-p_3)^{\nu_1}+g^{\nu_3\nu_1}(p_3-p_1)^{\nu_2}]$

 $-ig^2[-C_{ca_1a_2}C_{ca_3a_4}(g^{\nu_1\nu_3}g^{\nu_2\nu_4}-g^{\nu_1\nu_4}g^{\nu_2\nu_3})$ + $C_{c0, a3}C_{c0, a5}(g^{x_1x_2}g^{x_3x_2}-g^{x_1x_2}g^{x_3x_4})$ (iv) + $C_{\alpha_1\alpha_4}C_{\alpha_2\alpha_3}(g^{\tau_1\tau_2}g^{\tau_4\tau_3}-g^{\nu_1\nu_3}g^{\nu_4\nu_2})$

> Figure 1: Perturbation theory rules for QCD. 19

\n- \n
$$
G_{ba}^{\mu\nu} = \frac{i\delta_{ba}}{k^2 + i\epsilon} \left(-g^{\mu\nu} + (1 - 1/\lambda) \frac{k^{\mu}k^{\nu}}{k^2 + i\epsilon} \right)
$$
\n
\n- \n
$$
S_{ij}^{\beta\alpha} = i \frac{\delta_{ij}}{k^2 - m^2 + i\epsilon} (k_{\mu}\gamma^{\mu} + m)_{\beta\alpha}
$$
\n
\n- \n
$$
-ig[T_{c}^{(F)}]_{\beta} [\gamma_{\mu}]_{\beta\alpha}
$$
\n
\n- \n
$$
-gf_{a_1a_2a_3} (g^{\nu_1\nu_2}(p_1 - p_2)^{\nu_3} + \text{perm.})
$$
\n
\n

$$
\begin{array}{l} \bullet \ -ig^2(f_{e a_1 a_2} f_{e a_3 a_4} (g^{\nu_1 \nu_3} g^{\nu_2 \nu_4} - g^{\nu_1 \nu_4} g^{\nu_2 \nu_3}) \\ + \text{perm. on 234)} \end{array}
$$

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ⊁

Þ

Review of some basic concepts

Basic unit:

 $\hbar c = 197.3 \,\text{MeV} \cdot \text{fm} \approx 0.2 \,\text{GeV} \cdot \text{fm}$

- With $\hbar = c = 1$
- Units Mass: GeV/*c* 2 Momentum: GeV/*c* Energy: GeV Length: $\hbar c/GeV$
- \bullet 200 MeV \leftrightarrow 1/fm
- \bullet 1 fm \leftrightarrow 1/(200 MeV)

 \bullet Thermal energy $k_B = 8.617 \times 10^{-5}$ eVK⁻¹ With $k_B=1$, 1 eV $=$ 11, 605 K or 290 K $\approx \frac{1}{40}$ eV

Review of some basic concepts

Spatial resolution: ∆*x*∆*p* ≥ 1/2

• Shorter the wavelength (larger the momentum) sees spatial details up to $\Delta x \approx \lambda$.

Review of some basic concepts

Energy-Time uncertainty: |∆*E*|∆*t* ≥ 1/2

•
$$
\Delta E = p^0 - \sqrt{p^2 + m^2}
$$
.

• If
$$
\Delta E = 0
$$
, then $p^{\mu}p_{\mu} = m^2$: On-shell

• If
$$
\Delta E \neq 0
$$
, the $p^{\mu}p_{\mu} \neq m^2$: Off-shell

Interpretation

An off-shell state can exist only for ∆*t* ∼ 1/|∆*E*|.

 $\textsf{This interaction lasts } \Delta t \sim 1/|(|\mathbf{p}| + |\mathbf{k}| - \sqrt{(\mathbf{p} + \mathbf{k})^2})|$

つへへ

Hard Probe time scale

Off-shell scale with $k' = k + Q$

 $Q^2 = (k - k')_{\mu} (k - k')^{\mu} = (|\mathbf{k}| - |\mathbf{k}|)^2 - (|\mathbf{k}| - 0)^2 - (0 - |\mathbf{k}|)^2 \propto \sqrt{k}$ *s*

Time scale:

$$
\Delta\tau\sim 1/\sqrt{|(k-k')^2|}\sim 1/\sqrt{s}
$$

4 0 8

Perturbative QCD

÷.

 299

ラメス 国

 \sim

4 ロ ト ィ *同* ト

− Interaction of quarks and gluons QCD

- *N^f* flavors of quarks
- *N*² − 1 gluons

Perturbation Theory when g << 1

- Calculate physical quantities as an expansion in the small coupling constant *g*
- Corrections to vertices
- Corrections to propagators

4 0 8

- Calculate physical quantities as an expansion in the small coupling constant *g*
- **Corrections to vertices**
- Corrections to propagators

S. Bethke, arXiv:1210.0325.

• Perturbative expansion possible because of asymptotic freedom

$$
\bullet \ \ Q^2 \frac{\partial \alpha_S}{\partial Q^2} = -\beta_0 \alpha_S^2 - \beta_1 \alpha_S^3 + \cdots
$$

$$
\bullet\ \alpha_S(Q^2)\approx
$$

1 $((33 - 2n_f)/12\pi)$ ln $(Q^2/\Lambda_{\rm QCD}^2)$

pQCD reliable for *^Q* >[∼] 1 GeV

イロト イ押ト イヨト イヨ

Intuitive understanding of asymptotic freedom

- QED: Surrounded by virtual *ee*¯ cloud
- Virtual −*e* cloud drawn closer to $q > 0 \implies$ Screening
- Larger $Q \implies$ smaller distance \implies Sees less of the $cloud \implies Closer to bare$ charge
- Possible because the original *q* never changes and photons do not carry charges

Intuitive understanding of asymptotic freedom

- OCD: Can resolve more soft virtual gluons at larger *Q*
- The color of the real particle can change whenever a gluon is emitted.
- Larger $Q \implies$ More frequent changes \Longrightarrow Less average color charge \Longrightarrow Asymptotic freedom

• As $Q \rightarrow \Lambda_{\text{OCD}}$,

$$
\alpha_S(Q^2) \approx \frac{1}{((33-2n_f)/12\pi)\ln(Q^2/\Lambda_{\mathrm{QCD}}^2)} \rightarrow \infty
$$

- Hadrons are *O*(Λ_{OCD}) objects.
- Anything that has to do with hadron properties such as color confinement and hadronization is *non-perturbative.*
- In the IR limit, perturbation theory does not work \implies Factorize what can be calculated with pQCD (UV) and what cannot be calculated (IR)

Factorization Theorem

Hadron-Hadron Jet production scheme:

$$
\sigma = \int_{abcd} f_{a/A}(x_a, Q_f) f_{b/B}(x_b, Q_f)
$$

$$
\times \sigma_{ab \to cd} D_{C/c}(z_C, Q)
$$

4 ロ ト ィ *同* ト

重

 299

ラメス 国

 $\left($

● How realistic pQCD calculations are done

 $\sigma_{hh'\to C+X} =$ $\int_{abcd}dx_1dx_2f_{a/h}(x_1,Q_f)f_{b/h'}(x_2,Q_f)\sigma_{ab\rightarrow cd}(Q_R)D_{C/c}(z_C,Q'_f)$

- *fa*/*^h* (*x*1, *Qf*): Parton distribution function. Probability to have a parton type *a* with the momentum fraction x_1 in a hadron *h*. Depends on the factorization scale *Q^f* .
- $D_{C/c}(z_C, Q'_f)$: Fragmentation function. Probability to create a hadron type *C* our of parton type *c* carrying the momentum fraction Z_c .
- σ*ab*→*cd* (*QR*): Parton-parton scattering cross-section.

 QQQ

• How realistic pQCD calculations are done

 $\sigma_{hh'\to C+X} =$ $\int_{abcd}dx_1dx_2f_{a/h}(x_1,Q_f)f_{b/h'}(x_2,Q_f)\sigma_{ab\rightarrow cd}(Q_R)D_{C/c}(z_C,Q'_f)$

- pQCD controls the *evolutions* of $f_{a/h}(x_1, Q_f)$ and $D_{C/c}(z_C, Q'_f)$. But pQCD cannot determine the initial data because this is dominated by IR processes.
- **pQCD** can calculate $\sigma_{ab\rightarrow cd}(Q_R)$ when the renormalization scale Q_R can be set high (that is, when \sqrt{s} is large)

- Weizsäcker-Williams field Highly contracted in the *z* direction
- Coulomb potential in the rest frame of the charge

$$
\varphi = \bm{Q}/|\mathbf{r}|
$$

• In the moving frame

$$
A^{\mu}(x') = \Lambda^{\mu}_{\nu}A^{\nu}(x(x'))
$$

• The coordinate in the moving frame $x' = (t, x, y, z)$. This corresponds to the rest frame position

$$
x=(t\gamma-z\gamma v,x,y,z\gamma-t\gamma v).
$$

- Weizsäcker-Williams field Highly contracted in the *z* direction
- Coulomb potential in the rest frame of the charge

$$
\varphi = \textbf{Q}/|\textbf{r}|
$$

 \bullet In the moving frame

$$
\mathsf{A}^{\mu}=\frac{\mathsf{Q}(\gamma,0,0,\gamma\mathsf{V})}{\sqrt{(z-\mathsf{V}t)^2\gamma^2+\Delta\mathbf{x}_\perp^2}}
$$

• Pure gauge in the $v \rightarrow 1$ limit

$$
A^{\mu} \approx \frac{Q(1,0,0,1)}{|z - \nu t|} = Q \partial_{\mu} \ln |z - \nu t|
$$

- Weizsäcker-Williams field Highly contracted in the *z* direction *F* µν ≈ 0 unless *z* ≈ *vt*
- In the rest frame: Coulomb field is made up of space-like virtual photons $q^{\mu}q_{\mu} = -\mathbf{q}^2$ with $q_0 = 0$.
- **O** In the Lab frame: $q^{\prime \mu} = (q^z \sinh \eta, \mathbf{q}_{\perp}, q^z \cosh \eta)$
- \bullet For large n , $|\Delta E| = |q^- - |{\bf q}|| \sim e^{-\eta} {\bf q}^2/q_z$ ==> ∆*t* ∼ 1/|∆*E*| ∼ *e* ^η*q^z* /**q** ² ==> virtual photons look almost like real photons.

- Weizsäcker-Williams field Highly contracted in the *z* direction *F* µν ≈ 0 unless *z* ≈ *vt*
- \bullet To a first approximation, the approaching particles *do not* know about each other until they are on top of each other.
- Initial photon momentum distribution *factorizes:* $F(x_1, x_2) = f(x_1) f(x_2)$ but this is not exact.
- • In QCD, color neutrality of hadrons help.

eelleleleel

*Q*₀: Coarse grained. You see one almost on-shell parton.

 Ω

 \leftarrow \leftarrow \leftarrow

B K

4 D.K.

$Q_0 < Q_1$: Start to resolve another parton

4 0 8

4 同 下

ミャイミ

Þ

$Q_0 < Q_1 < Q_2$: And another

4 D.K. \leftarrow \leftarrow \leftarrow ミャイミ

∍ 298

$Q_0 < Q_1 < Q_2 < Q_3$: And another

4 0 8

 \leftarrow \leftarrow \leftarrow

You get the idea

4 D.K. \leftarrow \leftarrow \leftarrow E.

Þ

$$
Q^2\frac{\partial}{\partial Q^2}\left(\begin{array}{c}q^S\\g\end{array}\right)=\frac{\alpha_S(Q^2)}{2\pi}\left(\begin{array}{cc}P_{qq}&2n_fP_{qg}\\P_{gq}&P_{gg}\end{array}\right)\otimes\left(\begin{array}{c}q^S\\g\end{array}\right)
$$

where *Pij*: Splitting function ∼ Probability to end up with *ij* in the final state.

Þ

 298

イロト イ押ト イヨト イヨ

- ρ is on-shell: $\rho^2=0$
- Diverges when either *k* or *l* is on-shell
- This happens either *k* is very soft so that

$$
l^2=(p-k)^2\approx p^2
$$

or *p* and *k* are almost collinear

$$
l^2 = (p - k)^2 = p^2 + k^2 - 2pk
$$

\approx 0

Splitting can cause IR divergence

• $g \rightarrow q\bar{q}$ and $g \rightarrow q\bar{q}g$

4 0 8

- Only the *sum* is IR finite because soft and collinear divergences
- Splitting functions know about this

- Observables must be IR safe.
- 3rd diagram must be treated as 2-jet when the radiation is soft or collinear \implies IR-safe Jet definitions

- Fragmentation function similarly runs
- 3 different scales: Q_f for the pdf, Q_R for $\sigma(Q_R)$ and Q_f' for the fragmentation function
- In principle, physical observables should not depend on these scales. However, factorization theorem is only *approximate*.
- Lots of freedom to choose the scales. Usually something like

$$
Q_f = Q_R = Q'_f = \# p_T
$$

works OK where *p^T* is the momentum of the *final* state particle.

pQCD & Factorization at work

K ロメ K 御 メ K 君 メ K 君 X

Þ

pQCD & Factorization at work

CTEQ 06 Proton PDF's

• Larger $Q \implies$ More soft partons

∋⇒ 4 E E

 299

 \leftarrow \Box \rightarrow \leftarrow \leftarrow \Box \rightarrow

pQCD & Factorization at work

Gluon distributions for $Q^2 = 10\,\text{GeV}^2$ and $Q^2 = 100\,\text{GeV}^2$.

Þ

 QQQ

ラメス 国

4 0 8

A R