Introduction to Hard Probes in Heavy Ion Collisions

Sangyong Jeon

Department of Physics McGill University Montréal, QC, CANADA

NNSPP Stonybrook University, July 2013

Jeon (McGill)

Jeon (McGill)

Hard Probes

イロト イヨト イヨト イヨト

Mr. McGill going home after a hard day's work.

Jeon (McGill)

Rutherford carried out his Nobel (1908) winning work at McGill (1898-1907). His *original* equipments on display

Jeon (McGill)

- Charles Gale
- Sangyong Jeon
- Björn Schenke (Formerly McGill, now BNL)
- Clint Young (Formerly McGill, Now UMinn)
- Gabriel Denicol
- Matt Luzum

- Sangwook Ryu
- Gojko Vujanovic
- Jean-Francois Paquet
- Michael Richard
- Igor Kozlov
- Khadija El Berhoumi
- Jean-Bernard Rose

< 47 ▶

- (E

• Why do it?

- To study QGP
- Most extreme environment ever created: $T \sim 1 \, \text{GeV}$. This existed only at around 1 microsecond after the Big Bang
- How do we understand it?
 - Theory: Many-body QCD
 - Experimental probes:
 - Soft
 - Hard

- Hard Probes \sim Large momentum/energy phenomena
- pQCD applies We know how to do this
- Produced *before* QGP is formed in the same way as in hadron-hadron collisions
- Difference between *pp*, *pA* and *AA* tells us about the medium.
- Caveat: How well do we know the nuclear initial state?

Medium properties

- What is it made of? Quarks? Gluons? Hadrons?
- Thermodynamic properties Temperature, Equation of state, etc.
- Transport properties Mean-free-path, transport coefficients, etc.
- Tools
 - Jets
 - Hard Photons

pQCD

- 2 Jet Quenching
- Hard Photons

• My goal for these lectures: Qualitative understanding

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Early hard probe experiments

What is a hard probe?

Early hard probe experiments

What is a hard probe?

• Early hard probe experiments

 Rutherford's α scattering experiment (1911)

$$\frac{d\sigma}{d\cos\theta} = \frac{\pi}{2}Z^2 \alpha_{\rm EM}^2 \left(\frac{\hbar c}{E_{\rm kin}}\right)^2 \\ \times \frac{1}{(1-\cos\theta)^2}$$

- Small angle scattering dominates $d\sigma/d\cos\theta \propto 1/\theta^4$
- But backscattering prob. is finite, favoring Rutherford's model over Thompson's (which causes no backscattering)

Fast-forward to the present

ATLAS: Intact dijets in Pb+Pb

ATLAS: One jet is fully quenched in Pb+Pb

- Simplest conclusion to draw: The medium is opaque.
- We want to know much more than that!

- Must be known & calculable using pQCD.
- Must be created *before* QGP forms
- Both requirements satisfied if the energy scale is much large compared to $\Lambda_{QCD}\approx 200$ MeV and the length (time) scale is much shorter than \sim 1 fm.
- Example: Jets (high energy partons) with $E \gg 1$ GeV and Heavy quarks (*c*, *b*) with $M \gg 1$ GeV

Probes

- Propagation of hard partons or "Jets"
- Quarkonium suppression
- High p_T electromagnetic probes (real and virtual photons)

Goal

- To characterize QGP
- To characterize initial state (nPDF, CGC?)

< < >>

Gluon fields are grabbing each other

Jeon (McGill
--------	--------

Review of some basic concepts - Feynman Rules

(a) Propagators: Gluon, quark, and ghost lines of momentum k

 $v, a \quad \overbrace{0}^{k} \underbrace{0}_{k} \underbrace{0}_{k} b = i \frac{d_{kk}}{k^2 + k} [-g^{kr} + (1 - \frac{1}{2}) \frac{k^{kr}}{k^2 + k}] \quad \text{covariant gauge}$ $i \frac{d_{kk}}{k^2 + k} [-g^{kr} + \frac{k^{kr} + k^{kr}}{k^2} - n^2 \frac{k^{kr}}{(k^2)}] \quad \text{physical gauge}$

$$a, i \longrightarrow \beta, j = i \frac{\delta_{ij}}{k^2 - m^2 + \delta_i} [k + m]_{\beta k}$$

 $a - - \rightarrow - - b = i \frac{\delta_{ij}}{k^2 - m^2 + \delta_i} [k + m]_{\beta k}$

(b) Vertices (all momenta defined to flow in)

(i) $-ig[T_c^{(F)}]_{ji}[\gamma_{\mu}]_{\beta \alpha}$

(ii) $gC_{abc}k'_{\alpha}$

(iii)
$$-gC_{a_1a_2a_3}[g^{v_1v_2}(p_1-p_2)^{v_3}+g^{v_2v_3}(p_2-p_3)^{v_1}+g^{v_3v_1}(p_3-p_1)^{v_2}]$$

 $\begin{array}{rcl} -ig^2 [& C_{cu_1 c_2} C_{cu_3 c_4} (g^{r_1 r_3} g^{r_2 r_4} - g^{r_1 r_4} g^{r_2 r_3}) \\ (iv) & + & C_{cu_1 c_3} C_{cu_1 c_2} (g^{r_1 r_4} g^{r_1 r_2} - g^{r_1 r_2} g^{r_3 r_4}) \\ & + & C_{cu_1 c_4} C_{cu_1 c_4} (g^{r_1 r_2} g^{r_4 r_3} - g^{r_1 r_3} g^{r_1 r_2}) \end{array}$

Figure 1: Perturbation theory rules for QCD. 19

•
$$G_{ba}^{\mu\nu} = \frac{i\delta_{ba}}{k^2 + i\epsilon} \left(-g^{\mu\nu} + (1 - 1/\lambda) \frac{k^{\mu}k^{\nu}}{k^2 + i\epsilon} \right)$$

• $S_{ij}^{\beta\alpha} = i \frac{\delta_{ij}}{k^2 - m^2 + i\epsilon} (k_{\mu}\gamma^{\mu} + m)_{\beta\alpha}$
• $-ig[T_c^{(F)}]_{\beta}[\gamma_{\mu}]_{\beta\alpha}$
• $-gf_{a_1a_2a_3} (g^{\nu_1\nu_2}(p_1 - p_2)^{\nu_3} + \text{perm.})$

•
$$-ig^2(f_{ea_1a_2}f_{ea_3a_4}(g^{\nu_1\nu_3}g^{\nu_2\nu_4}-g^{\nu_1\nu_4}g^{\nu_2\nu_3})$$

+perm. on 234)

イロト イ理ト イヨト イヨト

Review of some basic concepts

• Basic unit:

 $\hbar c = 197.3 \, \text{MeV} \cdot \text{fm} pprox 0.2 \, \text{GeV} \cdot \text{fm}$

- With $\hbar = c = 1$
- Units Mass: GeV/c² Momentum: GeV/c Energy: GeV Length: ħc/GeV
- 200 MeV \leftrightarrow 1/fm
- 1 fm \leftrightarrow 1/(200 MeV)

• Thermal energy $k_B = 8.617 \times 10^{-5} \text{eVK}^{-1}$ With $k_B = 1$, 1 eV = 11,605 K or $290 \text{ K} \approx \frac{1}{40} \text{ eV}$

Review of some basic concepts

• Spatial resolution: $\Delta x \Delta p \ge 1/2$

Shorter the wavelength (larger the momentum) sees spatial details up to Δ*x* ≈ λ.

Jeon (McGill)

Stony Brook 2013 15 / 33

Review of some basic concepts

Energy-Time uncertainty: $|\Delta E|\Delta t \ge 1/2$

•
$$\Delta E = p^0 - \sqrt{\mathbf{p}^2 + m^2}$$
.

• If
$$\Delta E = 0$$
, then $p^{\mu}p_{\mu} = m^2$: On-shell

• If
$$\Delta E
eq 0$$
, the $p^{\mu}p_{\mu}
eq m^2$: Off-shell

Interpretation

• An off-shell state can exist only for $\Delta t \sim 1/|\Delta E|$.

This interaction lasts $\Delta t \sim 1/|(|\mathbf{p}| + |\mathbf{k}| - \sqrt{(\mathbf{p} + \mathbf{k})^2})|$

Hard Probe time scale

Off-shell scale with k' = k + Q

 $Q^2 = (k - k')_{\mu} (k - k')^{\mu} = (|\mathbf{k}| - |\mathbf{k}|)^2 - (|\mathbf{k}| - 0)^2 - (0 - |\mathbf{k}|)^2 \propto \sqrt{s}$

Time scale:

$$\Delta au \sim 1/\sqrt{|(k-k')^2|} \sim 1/\sqrt{s}$$

< A >

Perturbative QCD

э

A B F A B F

QCD – Interaction of quarks and gluons

- N_f flavors of quarks
- $N_c^2 1$ gluons

Perturbation Theory when g << 1

- Calculate physical quantities as an expansion in the small coupling constant g
- Corrections to vertices
- Corrections to propagators

- Calculate physical quantities as an expansion in the small coupling constant g
- Corrections to vertices
- Corrections to propagators

S. Bethke, arXiv:1210.0325.

 Perturbative expansion possible because of asymptotic freedom

•
$$Q^2 \frac{\partial \alpha_S}{\partial Q^2} = -\beta_0 \alpha_S^2 - \beta_1 \alpha_S^3 + \cdots$$

•
$$\alpha_{\mathcal{S}}(Q^2) \approx$$

 $\overline{((33-2n_f)/12\pi)\ln(Q^2/\Lambda_{
m QCD}^2)}$

• pQCD reliable for $Q \gtrsim 1 \text{ GeV}$

Intuitive understanding of asymptotic freedom

- QED: Surrounded by virtual *ee* cloud
- Virtual −e cloud drawn closer to q > 0 ⇒ Screening
- Larger Q ⇒ smaller distance ⇒ Sees less of the cloud ⇒ Closer to bare charge
- Possible because the original *q* never changes and photons do not carry charges

Intuitive understanding of asymptotic freedom

- QCD: Can resolve more soft virtual gluons at larger *Q*
- The color of the real particle can change whenever a gluon is emitted.
- Larger Q
 —> More frequent changes
 —> Less average color charge
 —> Asymptotic freedom

• As $Q \rightarrow \Lambda_{QCD}$,

$$lpha_{\mathcal{S}}(\boldsymbol{Q}^2) pprox rac{1}{((33-2n_f)/12\pi)\ln(\boldsymbol{Q}^2/\Lambda_{
m QCD}^2)}
ightarrow \infty$$

- Hadrons are $O(\Lambda_{QCD})$ objects.
- Anything that has to do with hadron properties such as color confinement and hadronization is *non-perturbative*.
- In the IR limit, perturbation theory does not work —> Factorize what can be calculated with pQCD (UV) and what cannot be calculated (IR)

Factorization Theorem

Hadron-Hadron Jet production scheme:

$$\sigma = \int_{abcd} f_{a/A}(x_a, Q_f) f_{b/B}(x_b, Q_f) \\ \times \sigma_{ab \rightarrow cd} D_{C/c}(z_C, Q)$$

2

Factorization Theorem

How realistic pQCD calculations are done

 $\sigma_{hh'\to C+X} = \int_{abcd} dx_1 dx_2 f_{a/h}(x_1, Q_f) f_{b/h'}(x_2, Q_f) \sigma_{ab\to cd}(Q_R) D_{C/c}(z_C, Q_f')$

- *f_{a/h}(x*₁, *Q_f)*: Parton distribution function. Probability to have a parton type *a* with the momentum fraction *x*₁ in a hadron *h*. Depends on the factorization scale *Q_f*.
- D_{C/c}(z_C, Q'_f): Fragmentation function. Probability to create a hadron type C our of parton type c carrying the momentum fraction z_c.
- $\sigma_{ab \rightarrow cd}(Q_R)$: Parton-parton scattering cross-section.

Factorization Theorem

How realistic pQCD calculations are done

 $\sigma_{hh'\to C+X} = \int_{abcd} dx_1 dx_2 f_{a/h}(x_1, Q_f) f_{b/h'}(x_2, Q_f) \sigma_{ab\to cd}(Q_R) D_{C/c}(z_C, Q_f')$

- pQCD controls the *evolutions* of $f_{a/h}(x_1, Q_f)$ and $D_{C/c}(z_C, Q'_f)$. But pQCD cannot determine the initial data because this is dominated by IR processes.
- pQCD *can* calculate $\sigma_{ab\to cd}(Q_R)$ when the renormalization scale Q_R can be set high (that is, when \sqrt{s} is large)

- Weizsäcker-Williams field Highly contracted in the *z* direction
- Coulomb potential in the rest frame of the charge

$$\varphi = \mathbf{Q}/|\mathbf{r}|$$

In the moving frame

$$A^{\mu}(x') = \Lambda^{\mu}_{\nu} A^{\nu}(x(x'))$$

• The coordinate in the moving frame x' = (t, x, y, z). This corresponds to the rest frame position

$$\mathbf{x} = (t\gamma - z\gamma \mathbf{v}, \mathbf{x}, \mathbf{y}, z\gamma - t\gamma \mathbf{v}).$$

- Weizsäcker-Williams field Highly contracted in the z direction
- Coulomb potential in the rest frame of the charge

$$arphi = \mathbf{Q}/|\mathbf{r}|$$

In the moving frame

$$\mathcal{A}^{\mu} = rac{Q(\gamma, \mathbf{0}, \mathbf{0}, \gamma \mathbf{v})}{\sqrt{(z - vt)^2 \gamma^2 + \Delta \mathbf{x}_{\perp}^2}}$$

• Pure gauge in the $v \rightarrow 1$ limit

$$A^{\mu} \approx \frac{Q(1,0,0,1)}{|z-vt|} = Q\partial_{\mu} \ln |z-vt|$$

Hard Probes

- Weizsäcker-Williams field Highly contracted in the *z* direction
 F^{µν} ≈ 0 unless *z* ≈ *vt*
- In the rest frame: Coulomb field is made up of space-like virtual photons q^μq_μ = -q² with q₀ = 0.
- In the Lab frame: $q'^{\mu} = (q^z \sinh \eta, \mathbf{q}_{\perp}, q^z \cosh \eta)$
- For large η , $|\Delta E| = |q^- - |\mathbf{q}|| \sim e^{-\eta} \mathbf{q}^2/q_z$ $\implies \Delta t \sim 1/|\Delta E| \sim e^{\eta} q_z/\mathbf{q}^2 \implies$ virtual photons look almost like real photons.

- Weizsäcker-Williams field Highly contracted in the *z* direction $F^{\mu\nu} \approx 0$ unless $z \approx vt$
- To a first approximation, the approaching particles *do not* know about each other until they are on top of each other.
- Initial photon momentum distribution factorizes: $F(x_1, x_2) = f(x_1)f(x_2)$ but this is not exact.
- In QCD, color neutrality of hadrons help.

• $f(x, Q_f)$: Probability density of partons with the virtuality *less than* Q_f .

 Q_0 : Coarse grained. You see one almost on-shell parton.

Jeon	(McGill)
	(

• $f(x, Q_f)$: Probability density of partons with the virtuality *less than* Q_f .

$Q_0 < Q_1$: Start to resolve another parton

글 🕨 🖌 글

A D M A A A M M

f(x, Q_f): Probability density of partons with the virtuality less than Q_f.

$Q_0 < Q_1 < Q_2$: And another

글 🕨 🖌 글

A D M A A A M M

f(x, Q_f): Probability density of partons with the virtuality less than Q_f.

$Q_0 < Q_1 < Q_2 < Q_3$: And another

글 🕨 🖌 글

< 47 ▶

f(x, Q_f): Probability density of partons with the virtuality less than Q_f.

You get the idea

∃ ▶ ∢ ∃

A D M A A A M M

• $f(x, Q_f)$: Probability density of partons with the virtuality *less than* Q_f .

$$Q^2 rac{\partial}{\partial Q^2} \left(egin{array}{c} q^S \ g \end{array}
ight) = rac{lpha_{\mathcal{S}}(Q^2)}{2\pi} \left(egin{array}{c} P_{qq} & 2n_f P_{qg} \ P_{gg} & P_{gg} \end{array}
ight) \otimes \left(egin{array}{c} q^S \ g \end{array}
ight)$$

where P_{ij} : Splitting function \sim Probability to end up with *ij* in the final state.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- p is on-shell: $p^2 = 0$
- Diverges when either k or l is on-shell
- This happens either *k* is very soft so that

$$l^2 = (p-k)^2 \approx p^2$$

• or p and k are almost collinear

$$l^2 = (p-k)^2 = p^2 + k^2 - 2pk$$

$$\approx 0$$

Splitting can cause IR divergence

- g
 ightarrow q ar q and g
 ightarrow q ar q g
- Only the *sum* is IR finite because soft and collinear divergences
- Splitting functions know about this

- Observables must be IR safe.

- Fragmentation function similarly runs
- 3 different scales: Q_f for the pdf, Q_R for σ(Q_R) and Q'_f for the fragmentation function
- In principle, physical observables should not depend on these scales. However, factorization theorem is only *approximate*.
- Lots of freedom to choose the scales. Usually something like

$$Q_f = Q_R = Q'_f = \# p_T$$

works OK where p_T is the momentum of the *final* state particle.

pQCD & Factorization at work

Stony Brook 2013 31 / 33

イロト イヨト イヨト イヨト

Hard Probes

pQCD & Factorization at work

CTEQ 06 Proton PDF's

• Larger $Q \implies$ More soft partons

Jeon (McGill)

Stony Brook 2013 32 / 33

pQCD & Factorization at work

• Gluon distributions for $Q^2 = 10 \text{ GeV}^2$ and $Q^2 = 100 \text{ GeV}^2$.

< 6 b