OBSERVATIONAL ASTROPHYSICS II

JOHN COWAN University of Oklahoma

National Nuclear Physics Summer School: July 23, 2013

Today's Theme

Abundance Clues and Constraints: Outline of the Lectures

- New observations of n-capture elements in lowmetallicity Galactic <u>halo stars</u> providing clues and constraints on:
 - 1. Synthesis mechanisms for heavy elements early in the history of the Galaxy
 - 2. Identities of earliest stellar generations, the progenitors of the halo stars
 - Suggestions on sites, particularly site or sites for the r-process
 - 4. Galactic chemical evolution
 - 5. Ages of the stars and the Galaxy → chronometers

Summary of Nucleosynthetic Processes

This paper suggests that ALL low metallicity stars have neutroncapture elements

upper limits in this figure are maybe just due to spectroscopic detection problems?

Roederer (2013)

But It Is Like Money

Everybody's got some : BUT
there is rich and
there is poor

Abundance Comparisons: rich vs. poor

Looking at a Range of r-Process Richness

Eu/Fe

(r-process

richness)

The ubiquiity of the r-process (Roederer et al. 2010b)

r-Process Rich vs. r-Process Poor

perhaps an easier way: just compare Sr, Ba, Eu & Yb

Have similar atomic structure: can be seen even when n-capture elements have low abundances in lowmetallicity stars

being done with Chris Sneden, Jesse Palmerio, Dick Boyd, Ian Roederer

The Onset of the S-Process

Very New Detections in Halo Stars

Some s-process? ([Fe/H] = -2) Some s-process? ([Fe/H] = -2.5)

Roederer et al. (2012b)

Very New Detections in Halo Stars

[Fe/H] = -2.5

[Fe/H] = -2.7

Note Zn, Ge Some elements(Sr, Zr, Ce & Pb) would fit better with some s-process

r-star but decrease in abundance with Z, no 3rd peak: incomplete r-process?

Roederer et al. (2012b)

Observational Approach

Sr/Ba: assessment of LEPP

Ba/Eu: assessment of r- or s- dominance

Ba/Yb: assessment of r-process truncation

being done with Chris Sneden, Jesse Palmerio, Dick Boyd, Ian Roederer

Galactic Chemical Evolution: Abundance Changes with Metallicity ([Fe/H]) or Time Provides Insights Into the nature of star formation over the history of the Galaxy the earliest generations of stars (``The First Stars") in the Galaxy the earliest synthesis mechanisms in the Galaxy the changing nature of synthesis mechanisms in the Galaxy

Zr (HST) as a Function of Metallicity

Zr independent of [Fe/H], as shown already by Travaglio et al. (2004).

Metallicity Effects on Sr-Zr

Travaglio et al. (2004)

Much more extensive data sets.

Evidence for the LEPP (Lighter Element Primary Process)?

Eu Abundance Scatter in the Galaxy

Early Galaxy chemically inhomogeneous and unmixed for r-process elements.

n-Capture Element Abundance Trends

Os-Pt & Eu correlated and show similar scatter with [Fe/H]

RARE

Ge & Zr Show little Scatter.

COMMON

Abundance Scatter and the Sites for the Formation of the Elements

Galactic

1.5 1.0 [Mg/Fe] • = disk stars 0.5 • = halo stars 0 -0.5Chemical 0 = solar values **Evolution** 1.5 1.0 [Eu/Fe] 0.5 0 -0.5 Sneden, JC & -3 -2 -1 n Gallino (2008) [Fe/H]

Mg produced in different stars (more massive) than for r-process (Eu) elements.

Abundance Trends of n-Capture Elements in the Galaxy

- Os-Pt abundance values show same scatter as [Eu/Fe] at low metallicity
- New La/Eu ratios more reliable than Ba/Eu:
 - 1. N-capture elements show scatter
 - 2. Only most metal-poor stars show r-process only ratio
 - 3. Stresses importance of nuclear measurements
 - Some "dusting" of s-process even at [Fe/H]
 < -2 ?

What About Iron-Peak Elements?

- Rare earth abundances (experimental data already obtained) in good shape
- Iron-peak elements (new experimental data):
 - Critical for Supernovae Nucleosynthesis
 - Iron already done
 - Ti I and II done (Lawler et al. 2013; Wood et al. 2013): observed [Ti/Fe] > predicted values, problems with SN models
 Mn, Cu, Ni & V in progress next on the hit list Co?

New Atomic Data to Improve Elemental Abundance Values

т Н																	2 He	9	
з Li	⁴ Be												5 B	6 C	7 N	8 0	9 F	10 Ne	2
11 Na	12 Mg	Fe peak elements									3		13 Al	14 Si	15 P	16 S	17 Cl	18 A I	r
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Ci	25 Mi	26 n Fe	e 27 C	28 0 N	i C) u	30 Zn	31 Ga	32 Ge	33 As	34 Se	Br	36 Ki	r
37 Rb	38 Sr	39 Y	40 Zr	41 Nk	42 MC	6 43 TC	44 Ru	45 J R	⁴⁶ P	d A	g	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 •	54 Xe	9
55 Cs	56 Ba	\setminus	72 Hf	73 Ta	a 74 W	75 Re		s Ir	78 P	t A) u	80 Hg	81 TI	82 Pb	83 Bi	⁸⁴ Pc	At	⁸⁶ Rr	n
87 Fr	⁸⁸ Ra		¹⁰⁴ Rf	105 Dt	5 106 5 SC			3 109 S Mi	2 110 t <u>Uu</u>	0 11 n Uu	1 IU	112 Uub							
57 58 59 60 61 62 63 64 65 66 67 68 69 70									70	71	1								
lanthanides		^{\$} \	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Т	b	Dy	Но	Er	Tm	Yb	Lu	
	actinide	es	89 AC	⁹⁰ Th	⁹¹ Pa	92 U	93 Np	94 Pu	95 Am	⁹⁶ Cm	9 B	7 k	⁹⁸ Cf	99 Es	¹⁰⁰ Fm	¹⁰¹ Md	102 No	103 Lr	

New focus on the Iron-Peak Elements

transition probabilities from Lawler's Wisconsin group

Iron-Peak Element Trends

Note Cr and Co

Henry, JC & Sobeck (2010)

But uncertainty in abundance data due to poor atomic physics data

[Cr/Co] vs. Metallicity

Co and Fe (from complete) and Cr (from incomplete) Si burning in SNe models: Coming from alpha capture not Si-Si

there are good predictions for "zero-Z" models

How are these stars different?

Heger & Woosley 2010

but for others, watch out!

same theory, different observed species of the same element

Kobayashi et al. 2006

A new initiative on Fe-group abundances

(2006)

this work concentrates on increasing accuracy of Fe-group elements the big point: must have better transition probabilities groups at Wisconsin, London, Belgium lead the way HST data at low metallicity end explores more species

Observed Titanium

the big point: Ti I & Ti II give same answer; scatter is very low; Ti is really overabundant compared to SN models (Wood, Lawler, Guzman, Sneden, Cowan 2013)

First Attempt at Isotopes for Fepeak Elements

Radioactive Cosmochronometers

THE RADIOACTIVE AEON GLASSES

Rolfs & Rodney (1988)

THE WALL STREET JOURNAL. dick Double

"If there's anything you need to know about radioactive cosmochronometry, Howard's your man." John's

Th Detections in Four Halo Stars and the Sun

Note the strength of the Th lines independent of metallicity

Observed and Synthetic Spectra of Th Lines in HD 221170

Observations of Uranium Lines in Stars

Frebel et al. (2007)

Much Harder! Weak lines.

R-Process Chronometers

- Use various radioactive abundance ratios: (chronometer pairs both made in the r-process) Th/Eu, Th/U, Th/Pt, etc. to predict initial timezero values (all made in the r-process)
- Compare with observed ratios
- Is independent of chemical evolution models
- Is independent of cosmological models
- A range of values depending upon uncertainties in nuclear physics predictions (i.e., mass formulae) and abundance uncertainties

Theoretical r-Process Predictions: Isotopes

Kratz et al. (2007)

Newer fit to SS isotopic stable abundances allows for chronometric ratios

New values of Th/Pt & Th/U

Theoretical r-Process Predictions: Elements

Calculate radioactive abundance ratios based upon fitting stable elemental & isotopic values (Kratz et al. 2007).

Radioactive-Decay Age Estimates

- The measured abundance of Th in stars such as CS 22892-052 allows for age determinations using the long half-life of ²³²Th (14 Gyr).
- N_{Th(t)} = N_{Th(t0)} exp (-t/T_{Th})
 SS Th/Eu (today) = 0.344
 - SS Th/Eu (at formation) = 0.463
 - Predicted Th/Eu = 0.48 (Cowan et al. 1999), 0.42 (Kratz et al. 2007)
 - Measured Th/Eu in CS 22892-052 = 0.24

Halo Star Abundances vs. SS (Time of Formation)

note difference between radioactive Th, U and solid line

Typical Errors & Uncertainties

- Observational errors
 Theoretical predictions upon variou
- Th/Eu can be done from the ground but widely separated in A
- Th/U desirable but hard to observe
 +/- ~ 1-2 Gyr

Theoretical predictions based upon various chronometers: e.g., Th/Eu, Th/U and depending upon nuclear mass models
 +/- 2-3 Gyr

Errors uncorrelated leading to total uncertainty of ~ 3 Gyr.

The Age of the Milky Way

 From Radioactive Elements in Stars (cosmochronometers) get a range of 11.7 – 14.2 +/- 3 Gyr From Globular Cluster Stars get a range of 13-15 Gyr Can also use White Dwarf Stars (cooling times) to get age of the disk of 10-11 Gyr

Compared to the Age of the Universe

- Cosmological big bang radiation (WMAP)
 = 13.7 +/- 1 Gyr
- Supernovae: expansion of the Universe (dark energy discovery) = 14.2 +/- 2 Gyr

A Few Stars Have Problems

younger than SS! note Pb in CS 31082-001

back

Problems and Uncertainties

 What about CS 31082-001? Th/Eu give unrealistic age (younger than the Sun!) – Th/U give 14.1 – 15.5 +/- ≈ 3 Gyr (from different groups) Abundance distribution Th & U very high: actinide boost? fission recycling? What about low Pb? Are there others with high Th/Eu? Need Pb abundances to confirm, hard without UV

Cosmochronometers: The Future

- We are seeing dramatic improvements in abundance values due to new experimental atomic and nuclear data
- New data are driving down age uncertainties
- Eventually improvements will allow for very accurate chronometric age determinations
- More precise values could constrain cosmological parameters and models

A Possible New Chronometer: Th/

Hf can be observed from the ground. Do not need UV required for Pt

Death of STIS? Other UV spectrographs?

Note how Hf tracks the 3rd process peak elements, e.g., Pt.

Th/Hf might be preferable to Th/Eu but only 2 stars so far.

Kratz et al. (2007)

Some Concluding Thoughts

- r-process elements observed in very metal-poor (old) halo stars
- Implies that r-process sites, earliest stellar generations rapidly evolving: → live and die, eject r-process material into ISM prior to formation of halo stars
- Elements (even s-process ones like Ba) produced in rprocess early in Galaxy: → like solar abundances
- r-process is ubiquitous in the early Galaxy not necessarily same pattern as r-rich stars
- Detections of radioactive elements (Th & U) allow age estimates for oldest stars: putting limits on the age of the Galaxy & Universe

What is needed now?

- More observations of n-capture elements in the very metal-poor stars (particularly [Fe/H] < -4)
- more abundance determinations in r-process poor stars (more like HD 122563)
- More observations of lighter n-capture elements, including Ag, Ge, etc. in metal-poor halo stars
- More theoretical models for light n-capture synthesis
 - better (experimental & theoretical) nuclear data, better SN and NS merger models

With Collaborators at:

- U. of Texas
- Carnegie Obs.
- U. of Wisconsin
- U. of Basel
- U. of Chicago
- U. of Mainz

- MSU
- LLNL
- Obs. de Paris
- Caltech
 - U. di Torino
 - ESO

With generous support from: the National Science Foundation & the Space Telescope Science Institute.