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Hard Scattering in p-p Collisions

•Factorization: separation of  σ into
– Short-distance physics: 
– Long-distance physics: φ’s

From Collins, Soper, Sterman 
Phys. Lett. B438:184-192, 1998 
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Hard Scattering & parton showers

• Initial and final state parton showers
– Angular ordered (initial and) final state showers 

as by-product  of  virtuality evolution.
3

Virtuality 
evolution:
low → high

Virtuality 
evolution:
high → low



“Baseline”: jets in p-p 
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➡ Leading jet :        pT= 670 GeV, η = 1.9, φ = -0.5
➡ Sub-leading jet: pT = 610 GeV, η = -1.6, φ = 2.8



Jet probes of  the quark gluon plasma
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•Use jets from hard 
scattering processes 
to directly probe the 
quark gluon plasma
(QGP)

•Key experimental question:
⇒How do parton showers in quark gluon 

plasma differ from those in vacuum?

•Use vector bosons -- for which the QGP is 
transparent -- to calibrate hard scattering 
rates in Pb+Pb collisions.



Jet probes of  the quark gluon plasma
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•Use γ-jet pairs   
to directly probe 
the quark gluon 
plasma (QGP)

•Key experimental question:
⇒How do parton showers in quark gluon plasma 

differ from those in vacuum?
» Where the photon provides a reference 

energy scale for the jet.

 



The early days of  jet quenching 
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PHENIX, Phys. Rev. Lett.  91, 241803 (2003)



A-A Hard Scattering Rates
• For “partonic” scattering or 
production processes, rates  
are determined by TAB 

– t-integrated A-A parton luminosity

– Normalized relative to p-p 

• If  factorization holds, then

–Define ratio RAA 

– Note: Ncoll = σNN TAB

TAB b d!r TA !r TB
!b !r
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PHENIX: “jet” quenching @ 130, 200 GeV
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•Limited reach in pT compared to what we 
are used to in the LHC era. 
–Qualitative features of  single hadron 

suppression already established in 2003.
⇒In particular, apparent weak pT variation



Single hadrons, photon

•“State of  the art” in single hadron 
suppression measurements @ RHIC.
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Hadron suppression @ LHC

•At high pT, see factor of  2 suppression in 
charged hadron yield.
– photons, W’s, Z rates show no suppression

•pT dependence matches RHIC 
measurements 
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Heavy quark suppression

•Heavy quarks provide a valuable test of  our 
understanding of  energy loss
– Large mass changes contribution of  collisional 

and radiative energy loss
⇒But RHIC semi-leptonic decay data proved 

challenging to describe theoretically.
12

Radiative

Radiative +
collisional

Hadronic 
dissociation



Heavy quark suppression

• Recent calculations by Aichelin et al are able to 
describe RHIC results
– But only by scaling up the collisional interaction 

rates by a factor of  1.5-2 13



•How to probe geometry of 
the initial state?
– Use spatial asymmetry

of  medium @ non-zero
impact parameter

– Measure orientation
(ψ) event-by event

•Measure  RAA

vs Δφ = φ-ψ

•Characterize by 
amplitude of  Δφ 
modulation:

Jet tomography

14

ψ

“jet” φ-ψ

dN
dφ

C 1 2v2 cos 2∆φ



•Two calculations: weak, strong coupling 
– Npart dependence same for both
– But data prefer strong coupling

Single hadron suppression
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Calculations:

‣Wicks et al., 
NPA784, 426

‣Marquet, Renk, 
PLB685, 270

‣Drees, Feng, 
Jia, PRC71, 
034909

‣Jia, Wei, arXiv:
1005.0645 
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STAR Experiment: “Jet” Observations 
 proton-proton jet event 

 In Au-Au collisions we 
see one “jet” at a time

Strong jet quenching
Enhanced by surface bias 

 
q

q

Analyze by measuring (azimuthal) 
angle between pairs of  particles 
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Two-particle correlations

• Through very detailed measurements from STAR and 
PHENIX we’ve learned that most of  this has little to do 
with high-pT physics, though it is very interesting 17

STAR

STAR STAR, 
Phys. Rev. C82 
(2010) 024912 

Indirect dijet 
measurement via 
dihadron correlations



First step towards jets: γ-hadron

•Measure jet fragmentation using γ-jet events 
but measuring “jet” via single hadrons
– Compare to measurements from TASSO
⇒Good agreement 18

200 GeV p+p

γ
hadrons

PHENIX,
Phys. Rev. D82 
(2010) 072001  



First step towards jets: γ-hadron (2)

•Observe suppression in yield of  large z 
(small ξ) fragments in (central) Au+Au 
collisions

19



Jet measurements at the LHC



Jet probes of  the quark gluon plasma (2)
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•QGP can modify jets in multiple ways:
1. Collisional energy loss (analog of  Bethe-Bloch) 
2. Radiative energy loss (enhanced splitting)
3. Broadening of  parton shower
⇒ 2 & 3 will depend on jet radius

Jet - QGP 
interactions 
schematically 

From Quark 
Matter 2011
talk by B. Muller



Successive recombination algorithms
•Start with “proto-jets”

–  Particles, towers, clusters, ...

• Define angular distance measure:

–                                                        , p = -1, 0, 1.

–  

•Also, define single-jet “cutoff”,
•From all pairs select minimum of  

– If  Di is minimum, jet i is final 
–Otherwise combine i and j (below)

•Iterate until all jets are final
22

Dij = min
(
pT

2p
i , pT

2p
j

) ∆R2
ij

R2

Di = pT
2p
i

{Dij, Di}

∆R2
ij = (ηi − ηj)2 + (φi − φj)2



kT algorithm

•kT algorithm, p = 1
–kT of  pair measured with respect to the higher 

energy parton
⇒ 

⇒  

•designed to 
reverse pQCD 
splitting
–tends to make 

large, lumpy jets

23

Dij = min
(
pT

2p
i , pT

2p
j

) ∆R2
ij

R2
→ min(k2

T )

kT ≈ pT ∆R

From 2009 talk by P.A. Delsart



anti-kT algorithm

•kT algorithm, p = -1
–High pT proto-jets provide minimum 1/pT

2 
⇒define stable points around which Dij is 

measured
⇒Proto-jets get clustered to the local 

maximum proto-jet out to a radius R.

•anti-kT algorithm 
behaves like an 
IR and collinear 
safe cone 
algorithm.
⇒Most commonly

used algorithm
24From 2009 talk by P.A. Delsart



Cambridge-Aachen, SIScone

•Cambridge-Aachen algorithm, p = 0
–Clusters proto-jets that are closest in angle

⇒ 
–Similar in behavior to kT algorithm

•SISCone
–Seedless, infrared safe cone algorithm by Soyez

25
From 2009 talk 
by P.A. Delsart

Dij →
∆R2

ij

R2



Comparison of  jet algorithms

•Four algorithms, one event.
–kt, anti-kt, and SIScone are collinear, IR safe 26

anti-kt ATLAS cone

kt SIScone



Jet reconstruction: reality

•Details that matter for all calorimeters:
–Technology
–Longitudinal, transverse segmentation
–Hadronic vs electromagnetic response
–Electronic noise
–Dead material 27

EM Longitudinal 
Segmentation





The starting point

•Reconstruct (unsubtracted) Pb+Pb event 
–Here, for demonstration, with kt algorithm
⇒But the kt algorithm is problematic because 

the background jets “eat” edges of  real jets 29



The underlying event

30



The underlying event (ATLAS)

31



The underlying event (ATLAS)
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ATLAS jet performance
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An example Pb+Pb jet event

34
Even more central collision, more asymmetric dijet



AJ = ET 1−ET 2

ET 1+ET 2

ET 1 > 100 GeV

ET 2 > 25 GeV

ATLAS dijet asymmetry measurement

351st indication of  medium modifications of  jets @ LHC



Dijets: CMS 2011 data

•Clear demonstration that the effects of  
differential quenching extend to high pT

–what is role of  jet flavor (quark, gluon, heavy)?
⇒In particular, gg vs qg. 36



Dijet asymmetry: Theory comparisons

• AMY energy loss with 1 free parameter (αs)
– Good description of  modified asymmetry distribution
⇒Decisive test of  energy loss calculations
⇒1st step towards quantitative probe of  jet + sQGP 

interactions using jets 37

Young et al, 
arXiv 1103.5769 
[nucl-th]

AMY energy loss 
formalism



Hard scattering rate control: Z

38

Z→μ+μ- event displayZ→e+e- event display



Hard scattering rate control: Z

•Compare Pb+Pb Z rapidity distributions 
(minimum-bias) and pT spectra to PYTHIA 
scaled to NNLO calculations
– Pb+Pb Z production rates consistent with MC
⇒hard scattering rates under control 39

Phys. Rev. Lett. 110, 022301 (2013)



Pb+Pb Jet Spectra

•For these results, no absolute 
normalization
–awaiting absolute jet energy scale uncertainty40

Unfolded 
(SVD) and 
efficiency 
corrected

R=0.2 R=0.4
  



•If  factorization holds 
jet yields should vary 
with centrality ∝ Ncoll

•Compare yields 
between centrality 
bins using “Rcp”

–Overall jet energy scale 
divides out in ratio
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Centrality dependence of  jet Rcp

•Study centrality evolution for fixed jet pT

–Rcp vs Npart

⇒Smooth turn on of  jet suppression between 
peripheral and central collisions.
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Jet radius dependence of  Rcp

•Evaluate jet radius dependence of  Rcp 
–Modest but significant variation of  Rcp 
–Less suppression for larger R
⇒An indication of  jet broadening? 43
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ALICE: jet suppression

44



CMS jet RAA

• First results on jet RAA @ LHC
⇒ Consistent behavior with ATLAS Rcp

45



Differential jet suppression

• Measure jet yields in 8 bins of  Δϕ with 
respect to the elliptic event plane
– Here for R = 0.2 jets, 60 < pT < 80 GeV
⇒UE subtraction corrected for elliptic 

flow modulation in calorimeter
46
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Differential jet suppression

•Observe non-zero jet v2 for (R = 0.2) pT 
values > 100 GeV

⇒jet quenching clearly sensitive to initial 
geometry out to very high pT

47



Jet v2(pT)

• Do rough comparison 
of  jet, charged v2 at 
high pT

–plot 0.02 for 0/5-10%
–plot 0.03 for > 10%
⇒As good as could 

be expected 48
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Inclusive jet fragmentation

We are well 
along or 
started on 
all of  these 
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Unfolded 
for jet and 
charged 
particle 
resolution



Inclusive jet fragmentation (2)

• First observation of  modified parton shower in 
inclusive jets

⇒Not only seeing “left over” unquenched jets.
50

R = 0.4



Inclusive jet fragmentation

• First direct handle on the pT dependence of  
modifications of  the parton shower. 

⇒Important to determine whether modification 
is pT or z dependent.

⇒How to determine whether low-pT 
enhancement is from PS or from medium?

51



Inclusive jet fragmentation (3)

•Check that the modification is not due to 
the measurement of  jet pT ⇒ D(pT)

⇒D(pT) shows similar modifications 52
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CMS gamma-jet
•Analogous to dijet 
measurement but 
with “clean” photon 
–  See clear shift in 

fraction of  photon 
energy carried by jet

⇒But beware, photon 
is not proxy for 
unquenched jet (p-p)
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Heavy flavor @ moderate pT
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Summary
•Extensive set of  measurements at RHIC and 
the LHC showing that high-pT quarks and 
gluons lose energy in the quark gluon plasma.

•Non-trivial theoretical problem

–Controlling approximations

–Role of  collisional and radiative energy loss

–Parton shower not single quark

–Description of  the time-evolving medium

•Data prior to start of  the LHC program was not 
sufficiently discriminating to sufficiently 
constrain theory

– More rapid progress with jet measurements
⇒Stay tuned 55


