Lecture 3: Results of jet measurements in p-p and heavy ion collisions

> **Brian. A Cole, Columbia University June 14, 2013**

Hard Scattering in p-p Collisions

From **Collins, Soper, Sterman Phys. Lett. B438:184-192, 1998**

$$
\sigma_{AB} = \sum_{ab} \int dx_a dx_b \, \phi_{a/A}(x_a, \mu^2) \, \phi_{b/B}(x_b, \mu^2) \, \hat{\sigma}_{ab} \bigg(\frac{Q^2}{x_a x_b s}, \frac{Q}{\mu}, \alpha_s(\mu) \bigg) \, \left(1 + \mathcal{O} \left(\frac{1}{Q^P} \right) \right)
$$

•Factorization: separation of σ into – Short-distance physics: σ*ab***– Long-distance physics: φ's**

Hard Scattering & parton showers

•Initial and final state parton showers

– Angular ordered (initial and) final state showers as by-product of virtuality evolution.

"Baseline": jets in p-p

 \rightarrow Leading jet : p_T= 670 GeV, η = 1.9, ϕ = -0.5 \rightarrow Sub-leading jet: $p_T = 610$ GeV, $\eta = -1.6$, $\phi = 2.8$

Jet probes of the quark gluon plasma

•Use jets from hard scattering processes to directly probe the quark gluon plasma (QGP)

•Key experimental question:

⇒**How do parton showers in quark gluon plasma differ from those in vacuum?**

•Use vector bosons -- for which the QGP is transparent -- to calibrate hard scattering rates in Pb+Pb collisions.

Jet probes of the quark gluon plasma

•Use γ-jet pairs to directly probe the quark gluon plasma (QGP)

•Key experimental question:

- ⇒**How do parton showers in quark gluon plasma differ from those in vacuum?**
	- **» Where the photon provides a reference energy scale for the jet.**

The early days of jet quenching

PHENIX, Phys. Rev. Lett. 91, 241803 (2003)

A-A Hard Scattering Rates

•For "partonic" scattering or production processes, rates are determined by TAB

$$
T_{AB}(b)=\int d\vec{r}~T_A(|\vec{r}|)~T_B(|\vec{b}-\vec{r}|)
$$

– t-integrated A-A parton luminosity

– Normalized relative to p-p

•If factorization holds, then

 $\frac{dn_{hard}^{AB}}{dp_{\perp}^2} = \frac{d\sigma_{hard}^{NN}}{dp_{\perp}^2}T_{AB}(b)$

– Define ratio R_{AA} $R_{AA} = \frac{dn_{hard}^{AB}}{dn^2} / \frac{d\sigma_{hard}^{NN}}{dn^2} T_{AB}(b)$

– Note: Ncoll = σNN TAB

 $T(r_t) = \int dz \rho_A^{nucleon}(z, r_t)$

PHENIX: "jet" quenching @ 130, 200 GeV

•Limited reach in pT compared to what we are used to in the LHC era.

–Qualitative features of single hadron suppression already established in 2003. \Rightarrow In particular, apparent weak p_T variation

Single hadrons, photon

•"State of the art" in single hadron suppression measurements @ RHIC.

Hadron suppression @ LHC

•At high p_T, see factor of 2 suppression in charged hadron yield. – photons, W's, Z rates show no suppression • PT dependence matches RHIC measurements

Heavy quark suppression

•Heavy quarks provide a valuable test of our understanding of energy loss

– Large mass changes contribution of collisional and radiative energy loss

⇒**But RHIC semi-leptonic decay data proved challenging to describe theoretically.**

Heavy quark suppression

• Recent calculations by Aichelin et al are able to describe RHIC results

– But only by scaling up the collisional interaction rates by a factor of 1.5-2 **13**

Jet tomography

•How to probe geometry of the initial state?

- **– Use spatial asymmetry of medium @ non-zero impact parameter**
- **– Measure orientation (ψ) event-by event**
- **•Measure RAA vs Δφ = φ-ψ**
- **•Characterize by amplitude of Δφ modulation:**

 $\bm{d}\bm{N}$ $\bm{C}\left[1+2v_{\bm 2}\cos\left(2\bm\Delta\bm\phi\right)\right]$

Single hadron suppression

‣**Wicks** *et al.***, NPA784, 426** ‣**Marquet, Renk, PLB685, 270**

Calculations:

‣**Drees, Feng, Jia, PRC71, 034909**

‣**Jia, Wei, arXiv: 1005.0645**

•Two calculations: weak, strong coupling –Npart dependence same for both –But data prefer strong coupling

STAR Experiment: "Jet" Observations

proton-proton jet event

Analyze by measuring (azimuthal) angle between pairs of particles

 In Au-Au collisions we see one "jet" at a time Strong jet quenching Enhanced by surface bias

Two-particle correlations

Indirect dijet measurement via dihadron correlations

Phys. Rev. C82 (2010) 024912

• Through very detailed measurements from STAR and PHENIX we've learned that most of this has little to do with high-p_T physics, though it is very interesting 17

First step towards jets: γ-hadron

•Measure jet fragmentation using γ-jet events but measuring "jet" via single hadrons – Compare to measurements from TASSO ⇒**Good agreement 18**

First step towards jets: γ-hadron (2)

•Observe suppression in yield of large z (small ξ) fragments in (central) Au+Au collisions

Jet measurements at the LHC

ATLAS Run 168875, Event 1577540 Time 2010-11-10 01:27:38 CET **EXPERIMENT Calorimeter** E_T [GeV] **Towers** -2 $-3.5 - 4 - 3 - 2 - 1$ ⁰ 1 2 3 4

Heavy Ion Collision Event with 2 Jets'

Jet probes of the quark gluon plasma (2)

Jet - QGP interactions schematically

From Quark Matter 2011 talk by B. Muller

A partonic jet shower in medium

Leading parton: Transfers energy to medium by elastic collisions Radiates gluons due to scatterings in the medium (*inside* and *outside* jet cone)

Radiated gluons (vacuum & medium-induced): Transfer energy to medium by elastic collisions Be kicked out of the jet cone by multiple scatterings after emission

•QGP can modify jets in multiple ways:

- **1. Collisional energy loss (analog of Bethe-Bloch)**
- **2. Radiative energy loss (enhanced splitting)**
- **3. Broadening of parton shower**
	- ⇒ **2 & 3 will depend on jet radius**

Successive recombination algorithms

- **•Start with "proto-jets" – Particles, towers, clusters, ...**
- **Define angular distance measure:**
	- $-\ D_{ij} = \min\left(p_T^{-2p}_i, p_T^{-2p}_j\right)\frac{\Delta R^z_{ij}}{\Delta R^2}$, p = -1, 0, 1. *j* $\bigwedge {\Delta R_{ij}^2}$ *R*²

$$
-\Delta R_{ij}^2=(\eta_i-\eta_j)^2+(\phi_i-\phi_j)^2
$$

 \bullet Also, define single-jet "cutoff", $D_i = p_T^{2p}_i$ **•From all pairs select minimum of** *{Dij , Di}* **–If** *Di* **is minimum, jet** *i* **is final –Otherwise combine** *i* **and** *j* **(below) •Iterate until all jets are final ²²** *i*

k_T algorithm

\cdot k_T algorithm, $p = 1$

 $-k_T$ of pair measured with respect to the higher **energy parton**

$$
\Rightarrow D_{ij}=\min\left(p_{T\,i}^{~~2p},p_{T\,j}^{~~2p}\right)\frac{\Delta R_{ij}^{2}}{R^{2}}\rightarrow min(k_{T}^{2})
$$

 $\Rightarrow k_{T}\approx p_{T}\,\Delta R$

•designed to reverse pQCD splitting –tends to make large, lumpy jets

From 2009 talk by P.A. Delsart

23

anti-k_T algorithm

\cdot k_T algorithm, $p = -1$

 $-$ High p_T proto-jets provide minimum $1/p_T^2$

- ⇒**define stable points around which** *Dij* **is measured**
- ⇒**Proto-jets get clustered to the local maximum proto-jet out to a radius R.**

•anti-kt algorithm behaves like an IR and collinear safe cone algorithm. ⇒**Most commonly**

used algorithm

From 2009 talk by P.A. Delsart 24

Cambridge-Aachen, SIScone

•Cambridge-Aachen algorithm, p = 0 –Clusters proto-jets that are closest in angle

 $\implies D_{ij} \to$ **–Similar in behavior to kT algorithm •SISCone** ΔR_{ij}^2 *R*2

–Seedless, infrared safe cone algorithm by Soyez

From 2009 talk by P.A. Delsart

Comparison of jet algorithms

•Four algorithms, one event. –kt, anti-kt, and SIScone are collinear, IR safe ²⁶

Jet reconstruction: reality

•Details that matter for all calorimeters:

- **–Technology**
- **–Longitudinal, transverse segmentation**
- **–Hadronic vs electromagnetic response**
- **–Electronic noise**
- **–Dead material 27**

The starting point

•Reconstruct (unsubtracted) Pb+Pb event –Here, for demonstration, with kt algorithm ⇒**But the kt algorithm is problematic because the background jets "eat" edges of real jets ²⁹**

The underlying event

- \bullet ~ universal starting point for UE subtraction
	- $E_{\rm T}^{\rm subtr} = E_{\rm T}^{\rm unsubtr} \rho A$

But the details are critical

- Important considerations:
	- What kind of objects is subtraction applied to? Towers, topoclusters, cells, ...
	- How to estimate UE energy density, ρ ?
	- With what granularity?
	- Event -by-event or event-averaged?
		- \blacktriangleright But if averaged, need separate measure of μ
	- How to exclude jets, photons, ... from ρ ?

The underlying event (ATLAS)

$$
\rho(\eta)=\Big\langle \frac{E_{\mathrm{T}}^{i}}{\Delta\eta^{i}\Delta\phi^{i}} \Big\rangle_{i\notin\mathrm{jet},\,|\eta^{i}-\eta|<0.05}\Bigg]
$$

- For each Pb+Pb event:
	- For each calorimeter layer:

 \blacktriangleright Calculate an AVERAGE (not median!) cell E_T density in $\Delta \eta = 0.1$ intervals

 \Rightarrow Excluding cells that lie within Δ R = 0.4 of seeds

• Then, apply $E_{\rm T}^{\rm subtr} = E_{\rm T}^{\rm unsubtr} - \rho A$ to each cell within tower constituents of reconstructed jets

The underlying event (ATLAS)

- Pb+Pb collisions present additional complications
	- collective flow in the UE
		- \Rightarrow as large as \pm 20%

• fluctuates event to event

- Accounted for in subtraction $\rho^{\rm Pb+Pb}(\eta,\phi) = \rho(\eta)(1+2v_2^{\rm UE}\cos[2(\phi-\Psi_2)])$
- With amplitude of modulation $(v₂)$ determined event-by-event

$$
v_2^{\text{UE}} = \langle E_{\text{T}}^i \cos[2(\phi^i - \Psi_2)] \rangle_{i \not \in \text{jet}}
$$

 \blacktriangleright excluding any η interval containing a seed

ATLAS jet performance

An example Pb+Pb jet event

³⁴ Even more central collision, more asymmetric dijet

ATLAS dijet asymmetry measurement

$A_J = \frac{E_{T\,1} - E_{T\,2}}{E_{T\,1} + E_{T\,2}}$ $E_{T\,1}\!+\!E_{T\,2}$ $E_{T1} > 100 \text{ GeV}$ $E_{T2} > 25 \text{ GeV}$

1 35 st indication of medium modifications of jets @ LHC

Dijets: CMS 2011 data

•Clear demonstration that the effects of differential quenching extend to high pT –what is role of jet flavor (quark, gluon, heavy)? ⇒**In particular, gg vs qg. ³⁶**

Dijet asymmetry: Theory comparisons

•AMY energy loss with 1 free parameter (αs) – Good description of modified asymmetry distribution ⇒**Decisive test of energy loss calculations** ⇒**1st step towards quantitative probe of jet + sQGP interactions using jets 1988 and 1997 and 1997 and 1997 and 1997** and 1997

Hard scattering rate control: Z

Z→e⁺e⁻ event display

Z→μ⁺μ- Z→e event display +e-

Hard scattering rate control: Z

•Compare Pb+Pb Z rapidity distributions (minimum-bias) and pT spectra to PYTHIA scaled to NNLO calculations

– Pb+Pb Z production rates consistent with MC ⇒**hard scattering rates under control ³⁹**

Pb+Pb Jet Spectra

•For these results, no absolute normalization $-$ awaiting absolute jet energy scale uncertainty₄₀

Jet yields: centrality dependence

- **•If factorization holds jet yields should vary** with centrality \propto N_{coll}
- **•Compare yields between centrality bins using "Rcp"**

$$
R_{\mathrm{CP}} = \tfrac{\frac{1}{N_{\mathrm{coll}}} \frac{1}{N_{\mathrm{evt}}} \frac{dN}{dp_{\mathrm{T}}}}{\frac{1}{N_{\mathrm{coll}}} \frac{1}{N_{\mathrm{evt}}} \frac{dN}{dp_{\mathrm{T}}}}\Big|_{60=80}
$$

–Overall jet energy scale divides out in ratio

Centrality dependence of jet Rcp

•Study centrality evolution for fixed jet pt –Rcp vs Npart ⇒**Smooth turn on of jet suppression between**

peripheral and central collisions. ⁴²

Jet radius dependence of Rcp

Significant cancellation of correlated errors

•Evaluate jet radius dependence of Rcp –Modest but significant variation of Rcp –Less suppression for larger R ⇒**An indication of jet broadening? 43**

ALICE: jet suppression

44

CMS jet RAA

• First results on jet RAA @ LHC [⇒] **Consistent behavior with ATLAS Rcp ⁴⁵**

Differential jet suppression

• Measure jet yields in 8 bins of Δϕ with respect to the elliptic event plane $-$ Here for R = 0.2 jets, 60 < p_T < 80 GeV ⇒**UE subtraction corrected for elliptic flow modulation in calorimeter**

Differential jet suppression

\cdot Observe non-zero jet v_2 for (R = 0.2) p_T **values > 100 GeV**

⇒**jet quenching clearly sensitive to initial geometry out to very high pt**

Jet v2(pT)

Inclusive jet fragmentation

Unfolded for jet and charged particle resolution

 $\bm{D}(\bm{z}) =$ *Njet* dN_{chg} $\frac{\partial f_{\bm{i}}\bm{g}}{\partial \bm{z}}$, $\bm{z} = \vec{\bm{p}}_{\bm{chg}}\cdot\vec{\bm{p}_{\bm{jet}}}/\left| \vec{\bm{p}_{\bm{jet}}}\right|$ $\boldsymbol{D}(\boldsymbol{p_T}) = \frac{1}{\boldsymbol{N}_{\cdot}}$ N_{jet} dN_{chg} $\boldsymbol{dp_{T}}$

Inclusive jet fragmentation (2)

• First observation of modified parton shower in inclusive jets ⇒**Not only seeing "left over" unquenched jets.**

Inclusive jet fragmentation

• First direct handle on the p_T dependence of modifications of the parton shower.

⇒**Important to determine whether modification is p_T** or z dependent.

⇒**How to determine whether low-pT enhancement is from PS or from medium?**

Inclusive jet fragmentation (3)

•Check that the modification is not due to the measurement of jet $p_T \Rightarrow D(p_T)$ ⇒**D(pT) shows similar modifications ⁵²**

CMS gamma-jet

- **•Analogous to dijet measurement but with "clean" photon**
	- **See clear shift in fraction of photon energy carried by jet** ⇒**But beware, photon is not proxy for unquenched jet (p-p)**

Heavy flavor @ moderate pT

Summary

- **•Extensive set of measurements at RHIC and the LHC showing that high-pT quarks and gluons lose energy in the quark gluon plasma.**
- **•Non-trivial theoretical problem**
	- **–Controlling approximations**
	- **–Role of collisional and radiative energy loss**
	- **–Parton shower not single quark**
	- **–Description of the time-evolving medium**
- **•Data prior to start of the LHC program was not sufficiently discriminating to sufficiently constrain theory**
	- **More rapid progress with jet measurements** ⇒**Stay tuned ⁵⁵**