Lecture 2: Elliptic, higher-order flow

Brian. A Cole, Columbia University July 23, 2013

Elliptic flow

Collective Motion: Elliptic Flow

•Pressure-driven expansion converts spatial anisotropy to momentum anisotropy.

Hydrodynamics (ideal)

Initial conditions equation of state

E, p conservation

 $\partial_{\mu}T^{\mu\nu} = 0$ $\mathbf{\div}$

T ^µ^ν ≡ (ε + *p*) *u^µu*^ν − *g^µ*^ν*p* **Ideal energy density**

•Hydrodynamics can be viewed as long wave-length effective theory applicable when λMFP << L

Relativistic viscous hydrodynamics

- **• Major theoretical breakthrough in last 5 years – Partially driven by AdS/CFT**
- **•Viscous hydrodynamics can be viewed as an expansion in velocity gradients**
	- $\bm{T}^{\mu\nu}\equiv\left(\varepsilon+p\right)u^{\mu}u^{\nu}+g^{\mu\nu}p+\Pi^{\mu\nu}p$
	- $\bm{\sigma} = \Pi^{\mu\nu} = \eta \sigma^{\mu\nu} + 2^{\text{nd}}$ order terms with $\sigma^{\mu\nu} = \langle \nabla^{\mu} u^{\nu} \rangle^2$
- **•First order expansion violates causality**
	- **– Need to go to second order**
		- ⇒**But, many possible terms at second order**

•Using AdS/CFT to constrain possibilities:

$$
\Pi^{\mu\nu} = -2\eta \sigma^{\mu\nu} + 2\eta \tau_{\pi} u^{\lambda} \mathcal{D}_{\lambda} \sigma^{\mu\nu} \n+4\lambda_1 \sigma^{<\mu}{}_{\lambda} \sigma^{\nu> \lambda} + 2\lambda_2 \sigma^{<\mu}{}_{\lambda} \Omega^{\nu> \lambda} + \lambda_3 \Omega^{<\mu}{}_{\lambda} \Omega^{\nu> \lambda} \n+2\kappa u_{\alpha} C^{\alpha\mu\nu\beta} u_{\beta}
$$

 $C^{\alpha\beta\gamma\delta}...$ Weyl tensor, $\Omega^{\alpha\beta}...$ antisymmetric vorticity tensor, $\mathcal{D}_\lambda...$ Weyl derivative

From an excellent colloquium at the Univ of Frankfurt by R. Baier

Collective Motion: Elliptic Flow

•Characterize the modulation in terms of 2nd Fourier coefficient

$$
\frac{dN}{d\phi}=A\left(1+2v_{\text{\bf 2}}\cos\left[2(\phi-\psi_{\text{evt}})\right]\right)
$$

– v2 measures relative modulation of particle yield or transverse energy as a function of ϕ

Event plane technique (e.g. ATLAS)

• Measure event plane in 2 or more "sub-events"

– ATLAS: two sides of FCal

- **•Evaluate resolution using distribution of** $\Delta\Psi = \Psi_1 - \Psi_2$
- **Calculate correction for v2 measured using combined ψ** *FCal ΣE_T [TeV]*

2-particle correlation method (PHENIX)

PHENIX [Phys. Rev. Lett. 89,](http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000089000021212301000001&idtype=cvips&gifs=yes) [212301 \(2002\)](http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PRLTAO000089000021212301000001&idtype=cvips&gifs=yes)

$$
C(\Delta\phi)=\frac{N_{cor}(\Delta\phi)}{N_{uncor}(\Delta\phi)}
$$

•2-particle correlation function, C(Δϕ), has Fourier coefficient v21 x V22

– Doesn't need event plane, resolution correction

– May be more sensitive to non-flow correlations ⁸

ATLAS: 2-particle correlations

ATLAS: 2-particle correlations

•Jet contributions to 2-particle correlations can be suppressed with Δη cut –But dijets and momentum conservation can

produce long-range non-flow effects 10

v 2(p T) at RHIC

•charged particle v 2 as a function of p T – Characteristic, ~ linear

- dependence at low p_T ⇒**kinematic effect, flow arises from velocity boost to particles**
- **•Good agreement between PHENIX, STAR using event plane method**
	- **– Measure ψ2 event-byevent, determine v₂ with respect to that direction**

Particle identified v2 at RHIC (2003)

•Characteristic variation with particle mass –Successfully described by hydrodynamics for not too high p_T ⇒**Crucially, reproduced by hydrodynamics ¹²**

Elliptic flow at RHIC (2005)

PHOBOS, Phys.Rev. C72 (2005) 051901

• Rapid variation of (pT-averaged) v2 as a function of η

⇒**Challenge to theoretical calculations? •Centrality dependence not completely consistent with theoretical calculation** ⇒**hydrodynamics ¹³**

Role of hadronic viscosity

•Hirano *et al***:**

- **–Hadronic dissipative effects important @ RHIC for non-central collisions and for** $\eta \neq 0$ **.**
	- ⇒**Explains pseudorapidity and centrality (?) dependence measured by PHOBOS**
	- ⇒ **But, beware, many details. ¹⁴**

Non-flow effects (STAR)

•Event plane determination potentially sensitive to non-flow azimuthal correlations.

– Particularly when EP measured near mid-rapidity

– 4 or multi-particle (LYZ) correlations less sensitive [⇒]**Clearly seen in STAR comparison to event-plane v2 ¹⁵**

Eccentricity Fluctuations

•1st results from PHOBOS on Cu+Cu v2 yielded v2/ε values > v2/ε in Au+Au

– But, use of eccentricity calculated using Glauber eccentricity more sensible

⇒**v2 inpretation must account for fluctuations**

Hydro comparisons to RHIC data

Saturation initial conditions

Non-saturation initial conditions

•Unfortunately, extraction of η/s from data very sensitive to initial conditions (ε)

⇒**Factor of 2.5 difference between saturation (η/s = 0.2) and non-saturation (η/s = 0.08)**

LHC v2 ALICE

•ALICE 2, 4, many (LYZ) particle correlations

⇒**Good agreement between 4 and many particle methods**

•Center of mass energy dependence shows little growth in integrated v2 ⇒**But many details ... ¹⁸**

CMS v2, method comparison

CMS ε calculation

$$
\epsilon_{\text{part}} \equiv \frac{\sigma_{y'}^2 - \sigma_{x'}^2}{\sigma_{y'}^2 + \sigma_{x'}^2} = \frac{\sqrt{\left(\sigma_y^2 - \sigma_x^2\right)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2},
$$
\n
$$
\epsilon \{2\}^2 \equiv \langle \epsilon_{\text{part}}^2 \rangle,
$$
\n
$$
\epsilon \{4\}^4 \equiv 2\langle \epsilon_{\text{part}}^2 \rangle^2 - \langle \epsilon_{\text{part}}^4 \rangle, \text{ and}
$$

•Different v₂ measurement techniques have different sensitivity to the event-to-event fluctuations

- ⇒**Use corresponding statistic when calculating the eccentricity.**
- ⇒**Here, based on Glauber model 20**

CMS v2/ε, role of fluctuations

•Better agreement between v2/ε values for different v2 methods when using corresponding statistic on ε

– But, in central collisions $\varepsilon\{4\}$ is small

- Non-flow for v2{2}, v2{EP} in peripheral ?

LHC CMS, ATLAS $v_2(p_T)$

•See non-zero v₂ over a wide range of p_T $-But$ at high p_T (how high?), not due to **collective expansion of quark gluon plasma** ⇒**Due to jet quenching (tomorrow)** ⇒**5 < pT < 10 GeV range complicated ²²**

(Viscous) hydrodynamics applied

•Viscous hydro + hadronic cascade (VISHNU)

- **– Compare to RHIC and LHC dNchg/dη, v2(pT), v2(cent)**
- **– Specific choice of initial conditions (CGC)**
	- ⇒**η/s ~ 1-3 x 1/4π**
	- ⇒**possibly larger at LHC than RHIC**
		- **» But beware use of constant η/s**

Higher-order flow

Triangularity

•Big surprise:

– Initial-state fluctuations can generate odd and higher-order harmonics

⇒**e.g. ε³**

• v3 demonstrated in a Monte Carlo cascade model (AMPT)

Experimental archaeology

"Mach cone" "Ridge" AuAu 0.4 dAu 470 #entries 0.3 $\frac{d\mathbf{V}}{d\mathbf{V}}$ 450 440 ۔
ح 430 420 0.7 410 1.5 $\begin{array}{c} \begin{array}{c} \hline \text{0.5} \end{array} \end{array}$ -1 -0.5 N $\mathbf{0}$ -1.5

•The understanding that initial-state fluctuations can generate triangular and higher-order flow solved two long-standing (2005-2010) experimental puzzles in two-particle correlations ⇒ **hypothesized mach shock from jets** ⇒**long-range (in η) near-side correlation**

Fluctuations, higher-order flow

•Initial state of Pb+Pb (or Au+Au) collision is not necessarily smooth

– Fluctuations in transverse plane (hot spots) will generate higher frequency (in φ) flow components ⇒**Higher frequencies more sensitive to η/s**

Higher Flow Harmonics

• Major paradigm shift in the field in last 3 years

– Higher flow harmonics arising from initial-state fluctuations in transverse positions of participants

$$
\frac{dN}{d\phi dp_T d\eta} = \frac{dN}{2\pi dp_T d\eta} \left(1 + \sum_n 2v_n \cos\left[n(\phi-\psi_n)\right] \right)
$$

•Frequently measured using pairs of particles

Fluctuations, Fourier amplitudes

Increasing momenta

Event plane v_n measurements

•Different v_n's have similar p_T distribution – understood to result from interplay of soft and hard contributions

Event plane v_n measurements

- **• n = 2 has a natural geometric variation with centrality**
- **• for n > 2, a weak centrality dependence due to the dominance of fluctuations**
- **• in very central collisions, n = 3, 4 larger than n = 2.**
	- ⇒**partly because fluctuations tend not to respect symmetry**
	- ⇒**requires minimal dispersion during system evolution**

Hydrodynamic model comparisons

- **•Viscous hydrodynamic calculation with IP-sat saturation in initial state, with GQP and hadron gas EOS**
	- **– Bottom: constant (0.2) and temperature dependent η/s**
		- ⇒**Not yet able to test T dependence in LHC data alone**
- **• But, good description of vn's**
	- **– detailed evaluation of η/s not attempted here**

MUSIC: Gale et al, [arXiv:1209.6330](http://arXiv.org/abs/arXiv:1209.6330)

32

Fits to (ATLAS) data

• Most rigorous attempt so far to extract η/s from LHC (ATLAS) v_n data

– Saturation vs non-saturation differences substantially reduced by including higher harmonics.

Event-by-event vn

•Experimental breakthrough by ATLAS ⇒**event-by-event vn measurement**

Event-by-event vn

•Probability density distributions for obtaining v2, v3, v4 in a given event

- ⇒**Distributions sensitive to both initial-state fluctuations and hydrodynamic evolution**
- ⇒**Allow detailed tests of theoretical calculations**

Event-by-event: hydro comparisons

MUSIC: Gale et al, [arXiv:](http://arXiv.org/abs/arXiv:1209.6330) [1210.5144](http://arXiv.org/abs/arXiv:1209.6330)

[Saturated initial](http://arXiv.org/abs/arXiv:1209.6330) [conditions +](http://arXiv.org/abs/arXiv:1209.6330) [viscous](http://arXiv.org/abs/arXiv:1209.6330) [hydrodynamics](http://arXiv.org/abs/arXiv:1209.6330) [lattice + hadron](http://arXiv.org/abs/arXiv:1209.6330) [gas equation of](http://arXiv.org/abs/arXiv:1209.6330) [state](http://arXiv.org/abs/arXiv:1209.6330)

•(Implausibly?) good agreement with data ⇒**Event-by-event vn probing both initial state and**

hydrodynamic evolution (here η **/s = 0.2** \approx **2.5/4** π **)**

Pb+Pb Flow: summary

- **•Collective expansion of the quark gluon plasma provides experimentally accessible signatures** ⇒**Probe transport properties of the plasma**
	- ⇒**e.g. η/s**
- **• Measurements at RHIC and the LHC together with viscous hydrodynamics calculations yield η/s <~ 2.5 x 1/4π**
	- ⇒**Very close to conjectured lower bound**
- **•Dominant systematic uncertainty is due to uncertainty over initial-state eccentricities**
	- **– But, higher order flow results, including event-byevent measurements provide constraints**

⇒**And provide better sensitivity to η/s •We may soon be able to start testing models of temperature dependence of η/s. 37**

particle identified v2

Au+Au minimum-bias @ η=0 (important)

•Mass splitting at low pT due to "wrong" choice of kinematic variable –plotting vs KET ≡**mT - m removes mass dependence**

v2, n quark scaling @ RHIC ?

•Departure from mass independent v₂(KE_T) from recombination? –Hadrons formed at hadronization by combining n quarks from QGP $\Rightarrow v_2 \propto n_q$ \Rightarrow $\boldsymbol{K}\boldsymbol{E_T}\propto n_{\boldsymbol{q}}$ **•Plot:** ⇒**Observe universal curve!** $\boldsymbol{v_{2}}$ $\bm{n}_{\bm{q}}$ $\boldsymbol{KE_{T}}$ n_q

p/d-A collisions

CMS: ridge in p+Pb collisions

Low multiplicity and the contract of the High multiplicity

•Observe long-range near-side correlation in high-multiplicity p+Pb collisions (ridge) ⇒**Also seen by CMS in high mult. p-p collisions**

CMS: background on p+Pb collisions

• p+Pb collisions @ 5.02 TeV – LHC design: beams must have same q/p ⇒ **4 TeV p on 1.58 TeV/nucleon Pb** ⇒**Center of mass has rapidity 0.47** *wrt* **lab – Multiplicity distribution of reconstructed charge particles in** $|\eta| < 2.5$ **extends to > 200**

CMS: ridge in p+Pb collisions

Dirty little secret:

- **• Two-particle correlation contains 'signal' on top of a pedestal of uncorrelated pairs.**
	- **– No way to,** *a priori***, determine how much pedestal**
- **• Prescription used by all experiments**
	- **– "Zero Yield (in correlation) At the Minimum"**
		- ⇒**Subtract constant to make it so**
	- **– (e.g.) calculate conditional yield over |Δϕ| < 1.2 43**

ATLAS p+Pb collisions

Characterize "multiplicity" or event activity using forward calorimeter on Pb-going side

ATLAS 2-particle correlations (3)

- **•Associated yields, Y(Δφ), integrated over η – peripheral and central**
	- ⇒**"Ridge" clearly present in central**
	- ⇒**Similar increase in the away side yield between peripheral, and central collisions**

ATLAS 2-particle correlations (5)

- **•Study variation of integrated pertrigger yields with trigger pT**
	- **– For associated 0.5 < pT < 4 GeV**
- **•Evaluate difference between peripheral and central**
	- **– difference ≈ same on near and away sides, and similar pT** dependence

Beware different vertical scales on top panels

ATLAS 2-particle correlations (6)

- **•Motivated by above observations subtract peripheral Y(Δφ) from central Y(Δφ)**
	- **– With associated 0.5 < pT < 4 GeV**
	- **– In different trigger p_T bins**
		- ⇒**Observe an approximately symmetric modulation in all bins**

Explained by saturation?

•Theoretical calculations of the effects of saturation can reproduce the ATLAS (e.g.) data.

ATLAS 2-particle correlations (7)

•Central correlation function before and after subtraction of peripheral per-trigger yields, and converting back to C(Δφ,Δη) ⇒**Long-range modulation ⁴⁹**

Fourier decomposition

•Extract Fourier coefficients for the pair distributions (c2, c3)

– analog of 2-particle v2,2, v3,3

 \bullet Assume factorization $c_2(p_T^a, p_T^b) = s_2(p_T^a) \, s_2(p_T^b)$

– checked

 \Rightarrow To obtain s₂, s₃ → if flow, v₂, v₃ $\qquad \qquad$ 50