Lecture 2: Elliptic, higher-order flow

Brian. A Cole, Columbia University July 23, 2013

Elliptic flow

Collective Motion: Elliptic Flow

 Pressure-driven expansion converts spatial anisotropy to momentum anisotropy.

Hydrodynamics (ideal)

Initial conditions

equation of state

Ideal $T^{\mu\nu} \equiv (\varepsilon + p) u^{\mu} u^{\nu} - g^{\mu\nu} p$ energy density \longrightarrow pressure

 Hydrodynamics can be viewed as long wave-length effective theory applicable when λ_{MFP} << L

Relativistic viscous hydrodynamics

- Major theoretical breakthrough in last 5 years
 - Partially driven by AdS/CFT
- Viscous hydrodynamics can be viewed as an expansion in velocity gradients
 - $T^{\mu\nu} \equiv (\varepsilon + p) \, u^{\mu} u^{\nu} + g^{\mu\nu} p + \Pi^{\mu\nu}$
 - $\Pi^{\mu
 u}=\eta\sigma^{\mu
 u}+2^{
 m nd}~{
 m order~terms}$ with $\sigma^{\mu
 u}=\langle
 abla^{\mu}u^{
 u}
 angle$
- First order expansion violates causality
 - Need to go to second order
 - ⇒But, many possible terms at second order

Using AdS/CFT to constrain possibilities:

$$\Pi^{\mu\nu} = -2\eta\sigma^{\mu\nu} + 2\eta\tau_{\pi}u^{\lambda}\mathcal{D}_{\lambda}\sigma^{\mu\nu} + 4\lambda_{1}\sigma^{<\mu}{}_{\lambda}\sigma^{\nu>\lambda} + 2\lambda_{2}\sigma^{<\mu}{}_{\lambda}\Omega^{\nu>\lambda} + \lambda_{3}\Omega^{<\mu}{}_{\lambda}\Omega^{\nu>\lambda} + 2\kappa u_{\alpha}C^{\alpha\mu\nu\beta}u_{\beta}$$

 $C^{\alpha\beta\gamma\delta}...$ Weyl tensor, $\Omega^{\alpha\beta}...$ antisymmetric vorticity tensor, $\mathcal{D}_{\lambda}...$ Weyl derivative

From an excellent colloquium at the Univ of Frankfurt by R. Baier

Collective Motion: Elliptic Flow

Characterize the modulation in terms of 2nd
 Fourier coefficient

$$rac{dN}{d\phi} = A\left(1+2v_2\cos\left[2(\phi-\psi_{ extbf{evt}})
ight]
ight)$$

- v_2 measures relative modulation of particle yield or transverse energy as a function of ϕ

Event plane technique (e.g. ATLAS)

 Measure event plane in 2 or more "sub-events"

- ATLAS: two sides of FCal

- Evaluate resolution using distribution of $\Delta \psi = \psi_1 \psi_2$
- Calculate correction for v₂ measured using combined ψ

2-particle correlation method (PHENIX)

PHENIX Phys. Rev. Lett. 89, 212301 (2002)

$$C(\Delta \phi) = \frac{N_{cor}(\Delta \phi)}{N_{uncor}(\Delta \phi)}$$

$$rac{dN}{d\Delta\phi} \propto (1 + \sum_{n=1}^{\infty} 2v_n^2 \cos(n\Delta\phi))$$

• 2-particle correlation function, $C(\Delta \phi)$, has Fourier coefficient $v_{21} \times v_{22}$

Doesn't need event plane, resolution correction

May be more sensitive to non-flow correlations

ATLAS: 2-particle correlations

ATLAS: 2-particle correlations

Jet contributions to 2-particle correlations can be suppressed with Δη cut But dijets and momentum conservation can produce long-range non-flow effects

V₂(p_T) at RHIC

charged particle v₂ as a function of p_T Characteristic, ~ linear dependence at low p_T kinematic effect, flow arises from velocity boost to particles Good agreement

between PHENIX, STAR using event plane method

- Measure ψ_2 event-byevent, determine v_2 with respect to that direction

Particle identified v₂ at RHIC (2003)

 Characteristic variation with particle mass
 Successfully described by hydrodynamics for not too high p_T
 ⇒Crucially, reproduced by hydrodynamics

Elliptic flow at RHIC (2005)

PHOBOS, Phys.Rev. C72 (2005) 051901

Rapid variation of (p_T-averaged) v₂ as a function of η

⇒Challenge to theoretical calculations?
 Centrality dependence not completely consistent with theoretical calculation
 ⇒hydrodynamics

Role of hadronic viscosity

•Hirano et al:

- -Hadronic dissipative effects important @ RHIC for non-central collisions and for $\eta \neq 0$.
 - ⇒Explains pseudorapidity and centrality (?) dependence measured by PHOBOS
 - \Rightarrow But, beware, many details.

Non-flow effects (STAR)

 Event plane determination potentially sensitive to non-flow azimuthal correlations.

- Particularly when EP measured near mid-rapidity

4 or multi-particle (LYZ) correlations less sensitive
 ⇒Clearly seen in STAR comparison to event-plane v₂

Eccentricity Fluctuations

 1st results from PHOBOS on Cu+Cu v₂ yielded v₂/ε values > v₂/ε in Au+Au

 But, use of eccentricity calculated using Glauber eccentricity more sensible

⇒v₂ inpretation must account for fluctuations

Hydro comparisons to RHIC data

Saturation initial conditions

Non-saturation initial conditions

 Unfortunately, extraction of η/s from data very sensitive to initial conditions (ε)

⇒Factor of 2.5 difference between saturation $(\eta/s = 0.2)$ and non-saturation $(\eta/s = 0.08)$

LHC v₂ ALICE

ALICE 2, 4, many (LYZ) particle correlations

⇒Good agreement between 4 and many particle methods

 Center of mass energy dependence shows little growth in integrated v₂
 ⇒But many details ...

18

CMS v2, method comparison

CMS ε calculation

$$\begin{split} \epsilon_{\text{part}} &\equiv \frac{\sigma_{y'}^2 - \sigma_{x'}^2}{\sigma_{y'}^2 + \sigma_{x'}^2} = \frac{\sqrt{\left(\sigma_y^2 - \sigma_x^2\right)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2}, \\ & \epsilon \{2\}^2 \equiv \langle \epsilon_{\text{part}}^2 \rangle, \\ & \epsilon \{4\}^4 \equiv 2\langle \epsilon_{\text{part}}^2 \rangle^2 - \langle \epsilon_{\text{part}}^4 \rangle, \text{ and} \end{split}$$

 Different v₂ measurement techniques have different sensitivity to the event-to-event fluctuations

- ⇒Use corresponding statistic when calculating the eccentricity.
- ⇒Here, based on Glauber model

CMS v2/ε, role of fluctuations

 Better agreement between v2/ε values for different v2 methods when using corresponding statistic on ε

– But, in central collisions $\varepsilon{4}$ is small

– Non-flow for v2{2}, v2{EP} in peripheral ?

LHC CMS, ATLAS v₂(p_T)

See non-zero v₂ over a wide range of p_T

 But at high p_T (how high?), not due to collective expansion of quark gluon plasma
 ⇒ Due to jet quenching (tomorrow)
 ⇒ 5 < p_T < 10 GeV range complicated

(Viscous) hydrodynamics applied

Viscous hydro + hadronic cascade (VISHNU)

- Compare to RHIC and LHC dN_{chg}/dη, v₂(p_T), v₂(cent)
- Specific choice of initial conditions (CGC)
 - **⇒η/s ~ 1-3 x 1/4**π
 - \Rightarrow possibly larger at LHC than RHIC
 - » But beware use of constant η/s

Higher-order flow

Triangularity

• Big surprise:

 Initial-state fluctuations can generate odd and higher-order harmonics

⇒e.g. ε₃

 v₃ demonstrated in a Monte Carlo cascade model (AMPT)

Experimental archaeology

"Mach cone" "Ridge" AuAu 0.4 dAu 470 #entries 0.3 $(\overline{\phi \nabla})$ 450 440 Ntrig 430 420 0.1 410 -1.5⁻¹-0.5 1.5 0

 The understanding that initial-state fluctuations can generate triangular and higher-order flow solved two long-standing (2005-2010) experimental puzzles in two-particle correlations
 ⇒ hypothesized mach shock from jets
 ⇒ long-range (in η) near-side correlation

Fluctuations, higher-order flow

 Initial state of Pb+Pb (or Au+Au) collision is not necessarily smooth

Fluctuations in transverse plane (hot spots) will generate higher frequency (in φ) flow components
 Higher frequencies more sensitive to η/s

Higher Flow Harmonics

Major paradigm shift in the field in last 3 years

 Higher flow harmonics arising from initial-state fluctuations in transverse positions of participants

$$rac{dN}{d\phi dp_T d\eta} = rac{dN}{2\pi dp_T d\eta} \left(1 + \sum_{m{n}} 2 m{v_n} \cos\left[n(\phi - \psi_{m{n}})
ight]
ight)$$

Frequently measured using pairs of particles

Fluctuations, Fourier amplitudes

Increasing momenta

Event plane vn measurements

 Different v_n's have similar p_T distribution
 – understood to result from interplay of soft and hard contributions

Event plane vn measurements

- n = 2 has a natural geometric variation with centrality
- for n > 2, a weak centrality dependence due to the dominance of fluctuations
- in very central collisions, n = 3, 4 larger than n = 2.
 - ⇒partly because fluctuations tend not to respect symmetry
 - ⇒requires minimal dispersion during system evolution

Hydrodynamic model comparisons

- Viscous hydrodynamic calculation with IP-sat saturation in initial state, with GQP and hadron gas EOS
 - Bottom: constant (0.2) and temperature dependent η/s
 - ⇒Not yet able to test T dependence in LHC data alone
- But, good description of vn's
 - detailed evaluation of η/s not attempted here

MUSIC: Gale et al, arXiv:1209.6330

Fits to (ATLAS) data

 Most rigorous attempt so far to extract η/s from LHC (ATLAS) vn data

 Saturation vs non-saturation differences substantially reduced by including higher harmonics.

Event-by-event vn

Experimental breakthrough by ATLAS
 ⇒event-by-event vn measurement

Event-by-event vn

 Probability density distributions for obtaining v₂, v₃, v₄ in a given event

- Distributions sensitive to both initial-state fluctuations and hydrodynamic evolution
- ⇒Allow detailed tests of theoretical calculations

Event-by-event: hydro comparisons

MUSIC: Gale et al, arXiv: 1210.5144

Saturated initial conditions + viscous hydrodynamics lattice + hadron gas equation of state

(Implausibly?) good agreement with data
 ⇒Event-by-event v_n probing both initial state and hydrodynamic evolution (here η/s = 0.2 ≈ 2.5/4π)

Pb+Pb Flow: summary

- Collective expansion of the quark gluon plasma provides experimentally accessible signatures
 - Probe transport properties of the plasma
 - ⇒e.g. η/s
- Measurements at RHIC and the LHC together with viscous hydrodynamics calculations yield η/s <~ 2.5 x 1/4π
 - ⇒Very close to conjectured lower bound
- Dominant systematic uncertainty is due to uncertainty over initial-state eccentricities
 - But, higher order flow results, including event-byevent measurements provide constraints

 \Rightarrow And provide better sensitivity to η/s

• We may soon be able to start testing models of temperature dependence of η/s .

37

particle identified v₂

Au+Au minimum-bias @ η=0 (important)

 Mass splitting at low p_T due to "wrong" choice of kinematic variable

 plotting vs KE_T = m_T - m removes mass dependence

v₂, n quark scaling @ RHIC ?

 Departure from mass independent v₂(KE_T) from recombination? -Hadrons formed at hadronization by combining n quarks from QGP $\Rightarrow v_2 \propto n_a$ $\Rightarrow K E_T \propto n_a$ KE_T • Plot: $\frac{v_2}{n_q}$ VS n_{a} ⇒Observe universal curve!

p/d-A collisions

CMS: ridge in p+Pb collisions

Low multiplicity

High multiplicity

 Observe long-range near-side correlation in high-multiplicity p+Pb collisions (ridge)
 ⇒Also seen by CMS in high mult. p-p collisions

CMS: background on p+Pb collisions

p+Pb collisions @ 5.02 TeV
LHC design: beams must have same q/p
⇒ 4 TeV p on 1.58 TeV/nucleon Pb
⇒Center of mass has rapidity 0.47 wrt lab
Multiplicity distribution of reconstructed charge particles in |η| < 2.5 extends to > 200

CMS: ridge in p+Pb collisions

Dirty little secret:

- Two-particle correlation contains 'signal' on top of a pedestal of uncorrelated pairs.
 - No way to, a priori, determine how much pedestal
- Prescription used by all experiments
 - "Zero Yield (in correlation) At the Minimum"
 - \Rightarrow Subtract constant to make it so
 - (e.g.) calculate conditional yield over $|\Delta \phi| < 1.2$ 43

ATLAS p+Pb collisions

Characterize "multiplicity" or event activity using forward calorimeter on Pb-going side

ATLAS 2-particle correlations (3)

- Associated yields, $Y(\Delta \phi)$, integrated over η peripheral and central
 - ⇒"Ridge" clearly present in central
 - ⇒Similar increase in the away side yield between peripheral, and central collisions

ATLAS 2-particle correlations (5)

- Study variation of integrated pertrigger yields with trigger p_T
 - For associated
 0.5 < p_T < 4 GeV
- Evaluate difference between peripheral and central
 - difference ≈ same on near and away sides, and similar p⊤ dependence

Beware different vertical scales on top panels

ATLAS 2-particle correlations (6)

- Motivated by above observations subtract peripheral $Y(\Delta \phi)$ from central $Y(\Delta \phi)$
 - -With associated 0.5 < p_T < 4 GeV</p>
 - In different trigger p_T bins
 - ⇒Observe an approximately symmetric modulation in all bins

Explained by saturation?

 Theoretical calculations of the effects of saturation can reproduce the ATLAS (e.g.) data.

ATLAS 2-particle correlations (7)

 Central correlation function before and after subtraction of peripheral per-trigger yields, and converting back to C(Δφ,Δη)
 ⇒Long-range modulation

Fourier decomposition

 Extract Fourier coefficients for the pair distributions (c₂, c₃)

analog of 2-particle v_{2,2}, v_{3,3}

•Assume factorization $c_2(p_T^a, p_T^b) = s_2(p_T^a) s_2(p_T^b)$

- checked

 \Rightarrow To obtain s₂, s₃ \rightarrow if flow, v₂, v₃