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Caveat emptor: 
• I am a member of  both PHENIX and ATLAS 

collaborations.
• I make no pretension that my coverage will 

be complete, but I will try to be balanced. 



Pb+Pb collision in ATLAS
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The Big Picture
• We know that strong interactions are well 
described by the QCD Lagrangian:

⇒Perturbative limit well studied 

• Nuclear collisions provide a laboratory for 
studying QCD outside the large Q2 regime:
–  Deconfined matter (quark gluon plasma)
⇒“Emergent” physics not manifest in LQCD

⇒ Strong coupling ⇒ AdS/QCD (?)

– High gluon field strength, saturation
⇒ Unitarity in fundamental field theory

• QCD is the only non-Abelian FT whose thermal 
& multi-particle behavior we can  study in lab.
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Heavy ion “concordance model”

• Initial particle production from strong gluon fields 
(saturated) in the incident nuclei.

• Created particles rapidly (τ  < 0.5-1 fm/c!) 
thermalize into a strongly coupled QGP.

• QGP evolves hydrodynamically with an η/s ratio 
close to conjectured lower bound.

Initial gluon emission
from saturated nuclei

Rapid
Thermalization

Hydrodynamic 
Evolution

Hadronization
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QCD Thermodynamics on Lattice

• Cross-over transition from hadron gas to 
quark gluon plasma at T ~ 170-190 MeV
– RHIC data: overwhelming evidence for QGP creation 
⇒For conditions at RHIC, QGP is strongly coupled

• As suggested by QCD trace anomaly (ε - 3p)/T4

–  “interaction measure” (what kind?)

Energy Density or pressure QCD trace anomaly
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Viscosity in Hydrodynamics

•Viscosity naturally scales with the 
density of  particles (entropy density, s) 
in the system 
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Strong coupling, η/s
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• Asymptotic freedom ⇒ QGP is weakly coupled at 
very high temperatures (how high?)

• But data from RHIC and LHC (shown below) 
indicate that QGP at 1-2 Tc is strongly coupled 
– Very close to conjectured AdS/CFT lower limit
⇒Why? How is high Tc limit approached? 

Csernai, Kapusta, and McLerran 
and KSS

Arnold, Moore, and Yaffe

AdS/CFT Bound

Water (100 MPa)
Nitrogen (3.4 MPa)
Helium (0.1 MPa)

pQCD

Inferred from data



Big questions
• Why (how) is the QGP 

strongly coupled?

• How are the dynamics in 
the QGP changing with 
increasing T?
– Weaker coupling? Or 

“simply” approaching 
conformal limit?

• (How) does the answer 
depend on ω?

• Are there particle-like 
(quasi-particle) modes in 
the QGP near Tc?
– if  so what is their nature?

Answer by studying QGP on soft 
and hard momentum scales 8

pQCD

Inferred from data



Lecture schedule
• Monday

–Basics, Soft physics
⇒Particle multiplicities
⇒Elliptic flow

•Tuesday
–Soft physics (finish)
⇒Higher order flow
⇒event-by-event flow

–Energy scan and critical point search (brief)
–p+A measurements @ LHC
⇒“Ridges”
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Lecture schedule (2)
•Wednesday

–High-pT physics
⇒RHIC single, di-hadron suppression
⇒LHC reference boson measurements
⇒LHC jet quenching 
⇒Heavy flavor suppression

–Quarkonium suppression
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Relativistic Heavy Ion Collider

•Most versatile collider ever operated
–Collisions between many different ions
–At center of  mass energies from 7 to 200 GeV
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RHIC experiments (current)

•STAR: 
–TPC-based, with extensive particle identification

•PHENIX
–Multi-faceted detector w/ high rate capabilities
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PHENIX STAR



Large Hadron Collider

• In addition to high-energy physics:
–p-p, Pb+Pb @ 2.76 TeV, p+Pb @ 5.02 TeV
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CMS

ATLAS

LHCb

ALICE



LHC experiments

•ALICE: 
– TPC based w/ silicon 

inner tracking, particle 
identification, forward μ

•ATLAS, CMS
–Traditional particle 

physics experiments 14

ALICE ATLAS

CMS



STAR and ALICE

•STAR and ALICE measure 100’s or 1000’s 
of  particles with many samples along 
particle trajectories (TPC)
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ATLAS and CMS

•ATLAS and CMS track 1000’s of  particles 
using high-granularity silicon pixel and 
silicon strip detectors
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PHENIX

•PHENIX tracks 100’s of  particles using 
drift and pad wire chambers
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Kinematics
•For studying ultra-relativistic heavy ion 
collisions, prefer to use boost-invariant 
(in beam direction) distributions:
–Transverse momentum:
⇒Sometimes when using calorimeters we 

have E instead of  p, so use 

–Rapidity: 

⇒Rapidity adds under LT: 

•Since rapidity depends on particle 
energy, need particle identification (m)
–But if  p >> m, neglect mass, 
⇒ 
⇒pseudorapidity 18

pT “ p sin θ

y1 “ y ` yB

y “ tanh´1pβzq “ 1
2
ln

´
E`pz

E´pZ

¯ET “ E sin θ

y Ñ η “ 1
2
ln

´
1`cos θ
1´cos θ

¯
“ ´ ln ptan θ{2q



Pseudorapidity
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•Pseudorapidity of  a particle can be easily 
measured since it only requires the angle.

!
0 0.5 1 1.5 2 2.5 3

"

-8

-6

-4

-2

0

2

4

6

8



20

ATLAS Acceptance

J/ψ, ψ’, Υ (1S, 2S, …)

γ, π0,  isolated γ

Jets 

Bulk observables



Nucleus-Nucleus collision geometry

•Cannot measure impact 
parameter directly
– But, particle or energy emission 

indirectly measures geometry
⇒Energy in emitted particles 

increases monotonically with b

b

Pb+Pb “Bulk”
dynamics
controlled by
classical impact
parameter (b)
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ET E sin θ pT

Pb+Pb (transverse) energy measurement
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Model

“Centrality”
• Characterize collision “centrality” by ET in forward 

calorimeters

Forward calorimeter ET (TeV)
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•Simple Monte Carlo model for characterizing 
nuclear collision geometry:
– Distribute nucleons according to Wood Saxon ρ(r)
– Nucleons that pass each other within distance

                            scatter or collide (participate)
– Calculate number of  scatterings and number of  

participants.

rK ă
a
σNN {π

Glauber Monte Carlo model
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Glauber Monte Carlo 
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Glauber MC for Pb+Pb collisions @ LHC

Glauber MC Npart 
distributions for different 
collisions @ RHIC, LHC



Glauber “Bootstrap”
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Model

•Use similarity between (e.g.) ATLAS FCal 
ΣET distribution and Npart distribution to 
infer a relationship
–  In fact, use “two-component” model

–Can reproduce Pb+Pb data with x ~ 0.1

ΣEPb−Pb
T = ΣEp−p

T

(
x
Npart

2
+ (1 − x)Ncoll

)



Background: p+A collisions
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•Why should the number of  participants be the 
primary variable, not the number of  collisions?
– Known for ~ 3 decades from p+A measurements
⇒Multiplicity of  produced particles increases 

proportional to number of  participants 

De Marzo et al., 
Phys. Rev. D29 
(1984) 2476-2482 



Particle multiplicities, dN/dη



RHIC: charged particle multiplicities

•Au+Au charged particle dN/dη and 
centrality dependence
– With two-component fit, HIJING, and saturation 

model comparison
⇒ Strongest variation for peripheral collisions 29

PHOBOS, Phys.Rev. C70 (2004) 021902



LHC: charged particle multiplicities

•Rapid increase in particle multiplicity with 
nucleon-nucleon center of  mass energy 
above 0.2-1 TeV
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LHC: charged particle multiplicities

•Good agreement between 3 LHC 
experiments and between RHIC & LHC

⇒After rescaling by factor of  2.15
31



LHC: charged particle multiplicities

•Comparison of  ALICE dn/dη to various 
theoretical/model calculations

⇒Best described by saturation models?!
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Multiplicity, IP-Glasma

•Comparison between RHIC, LHC data and 
IP-Glasma calculation by Schenke et al
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Au+Au Longitudinal Scaling

•Measurements over wide range of  energies 
show “limiting fragmentation”
–  agree when measured relative to beam rapidity 
⇒over restricted range of  η’ 34



ALICE Pb+Pb dn/dη

•Using ALICE forward multiplicity detector 
– η range large enough to match onto RHIC in η’
⇒Observe breaking of  limiting fragmentation 

for η’< -2.5
35


