Lattice QCD at non-zero temperature and density

A. Bazavov

Brookhaven National Laboratory

July 22, 2013

[Introduction](#page-2-0)

[Finite-temperature transition in QCD: restoration of the chiral](#page-9-0) [symmetry and deconfinement](#page-9-0)

[Fluctuations](#page-18-0)

[Freeze-out parameters](#page-24-0)

[Equation of state](#page-29-0)

Introduction: QGP in theory and experiment

A new state of matter – Quark-Gluon Plasma (QGP) – is expected in QCD due to the asymptotic freedom, and has been observed in heavy-ion collision experiments.

Experiment (RHIC, LHC):

- \blacktriangleright Particle spectra.
- \blacktriangleright Heavy-quark bound states.
- \blacktriangleright Thermal photons and dileptons.

Theory (Lattice QCD):

- \blacktriangleright Properties of the transition region.
- \blacktriangleright Fluctuations and correlations of conserved charges.
- \blacktriangleright The QCD equation of state.
- \triangleright Spectral functions, transport properties.

Introduction: conjectured phase diagram

Introduction: Quantum Chromodynamics

The Lagrangian:

$$
\mathcal{L} = -\frac{1}{4} F_{\mu\nu}^c F^{\mu\nu,c} + \sum_{\alpha=1}^{n_f} \bar{\psi}_{\alpha} (i\gamma^{\mu}D_{\mu} - m_{\alpha}) \psi_{\alpha}
$$

- \blacktriangleright α_s is small at large energy scale (asymptotic freedom), and large at low energies (where we live), – perturbation theory breaks down.
- ► Recent lattice QCD determination of α_s , Bazavov et al. PRD86 (2012) 114031, arXiv:1205.6155 [hep-ph].

Introduction: Lattice QCD

 \triangleright Quantum field theory (QCD) in path-integral formulation in Euclidean (imaginary time) formalism:

$$
\langle \mathcal{O} \rangle = \frac{1}{Z} \int D\bar{\psi}D\psi DU \mathcal{O} \exp(-S),
$$

$$
Z = \int D\bar{\psi}D\psi DU \exp(-S), \qquad S = \int d^4x \mathcal{L}_E,
$$

- \blacktriangleright Discrete space-time: 4D hypercubic lattice $N_s^3 \times N_\tau$, lattice spacing a serves as a cutoff (momenta restricted to π/a).
- **F** Temperature is set by compactified temporal dimension: $T = 1/(N_{\tau} a)$, lattice spacing a is varied at fixed N_{τ} , or N_{τ} at fixed a (fixed scale approach).
- \triangleright Evaluate QCD path integrals stochastically, using Monte Carlo techniques. (S needs to be real!)
- \triangleright Physics is recovered in the continuum limit (cutoff effects are the major source of systematic uncertainties).

Introduction: Lattice QCD

 \blacktriangleright Lattice action

$$
S = S_{gauge} + S_{fermion}, \qquad S_{fermion} = \sum_{x,y} \bar{\psi}_x M_{x,y} \psi_y
$$

 $(M_{x,y})$ is the fermion matrix) preserves the gauge symmetry, but there is the infamous fermion doubling problem – 16 species of fermions in 4D.

 \triangleright Quarks live on sites and gluons on links as $SU(3)$ matrices

$$
U_{x,\mu} = \mathcal{P} \exp \left\{ ig \int_x^{x+a\hat{\mu}} dy_{\nu} A_{\nu}(y) \right\}.
$$

 \triangleright Fermions are challenging due to the fermion doubling problem and also due to non-locality of the action when the Grasmann variables are integrated out:

$$
Z = \int DU \det M[U] \exp(-S_{gauge}).
$$

(If det $M[U]$ is neglected, this is called quenched approximation.)

Introduction: Lattice QCD

- \triangleright Various fermion discretization schemes, at fixed lattice spacing:
	- \triangleright Staggered preserve a part of the chiral symmetry, computationally cheap, require taking 4-th root of the Dirac operator.
	- \triangleright Wilson no chiral symmetry.
	- \triangleright Domain-wall amount of symmetry breaking is controlled by the fifth dimension L_s , exact in $L_s \rightarrow \infty$ limit.
	- \triangleright Overlap exact chiral symmetry.

Introduction: what if S is not real?

- \triangleright "Sign" problem Monte Carlo sampling breaks down, because the integrand loses probabilistic meaning.
- \triangleright This happens at non-zero chemical potential!
- Indirect way to explore the phase diagram at small μ is to Taylor expand in μ/T . Computationally feasable for first few terms.
- \triangleright Attempts to get around the sign problem in various models:
	- \triangleright alter the action find a formulation where there is no sign problem (Grabowska, Kaplan and Nicholson, PRD87 (2013) 014504, arXiv:1208.5760 [hep-lat]; Chandrasekharan and Li, PRD85 (2012) 091502, arXiv:1202.6572 [hep-lat]),
	- \blacktriangleright alter the integral integration on orbits (Bloch, PRD86 (2012) 074505, arXiv:1205.5500 [hep-lat]) or along a certain trajectory in extended phase space (Cristoforetti, Di Renzo, Scorzato, PRD86 (2012) 074506, arXiv:1205.3996 [hep-lat]),
	- In alter the sampling procedure complex Langevin dynamics (Aarts et al., JHEP 1303 (2013) 073, arXiv:1212.5231 [hep-lat]).
- \triangleright No solution for QCD so far...

Finite-temperature transition in QCD: restoration of the chiral symmetry and deconfinement

Chiral condensate and susceptibility

Chiral condensate:

$$
\langle \bar{\psi}\psi \rangle_{q,x} = \frac{1}{4} \frac{1}{N_{\sigma}^3 N_{\tau}} \text{Tr} \langle M_q^{-1} \rangle, \quad q = l, s, \quad x = 0, \tau.
$$

The susceptibility:

$$
\chi_{m,q}(T) = \frac{\partial \langle \bar{\psi}\psi \rangle_I}{\partial m_q} = 2\chi_{q,disc} + \chi_{q,con} ,
$$

$$
\chi_{q,disc} = \frac{1}{16N_{\sigma}^3 N_{\tau}} \left\{ \langle \left(\text{Tr} M_q^{-1} \right)^2 \rangle - \langle \text{Tr} M_q^{-1} \rangle^2 \right\} ,
$$

and

$$
\chi_{q,con} = \frac{1}{4} \text{Tr} \sum_{x} \langle M_q^{-1}(x,0) M_q^{-1}(0,x) \rangle
$$
, $q = l, s$.

The renormalized condensate:

$$
\Delta_{I,s}(T) = \frac{\langle \bar{\psi}\psi \rangle_{I,\tau} - \frac{m_I}{m_s} \langle \bar{\psi}\psi \rangle_{s,\tau}}{\langle \bar{\psi}\psi \rangle_{I,0} - \frac{m_I}{m_s} \langle \bar{\psi}\psi \rangle_{s,0}}
$$

or

$$
\Delta_l^R = d + m_s r_0^4 (\langle \bar{\psi} \psi \rangle_{l,\tau} - \langle \bar{\psi} \psi \rangle_{l,0}).
$$

Chiral condensate and susceptibility

Pseudo-critical temperature, T_c

- \triangleright At the physical values of light quark masses there is no genuine phase transition in QCD, but a crossover.
- \triangleright Define a pseudo-transition temperature associated with restoration of chiral symmetry as a peak position in the disconnected chiral susceptibility. (Which diverges in the chiral limit.)
- \triangleright Agreement on T_c between the groups using staggered fermions, in the continuum limit at the physical light quark masses:
	- ► BW, stout action, $m_\pi = 140$ MeV, $T_c = 147(4) 155(4)$ MeV, JHEP09 (2010) 073, arXiv:1005.3508 [hep-lat]
	- \blacktriangleright HotQCD, HISQ/tree action, $m_\pi = 160$ MeV, extrapolated to $m_{\pi} = 140$ MeV, $T_c = 154(9)$ MeV, PRD85 (2012) 054503, arXiv:1111.1710 [hep-lat]
- \triangleright Crosschecks between staggered and other fermion discretization schemes:
	- ► BW, overlap fermions, $m_{\pi} = 350$ MeV, arXiv:1204.4089 [hep-lat]
	- ► BW, Wilson fermions, $m_\pi = 540$ MeV, arXiv:1205.0440 [hep-lat]
	- ► HotQCD, domain wall fermions, $m_\pi = 200$ MeV, arXiv:1205.3535 [hep-lat]

Chiral symmetry restoration

- Left: Renormalized chiral condensate, staggered vs. Wilson.
- \triangleright Right: Renormalized chiral condensate, staggered vs. overlap.

Chiral symmetry restoration

- \triangleright The disconnected chiral susceptibility, staggered vs. domain wall.
- \triangleright At fixed lattice spacing, but peak location agrees, difference in height presumably finite-volume effect.

Chiral symmetry restoration

- In the chiral limit the critical behavior is governed by the $O(4)$ universality class.
- \triangleright At the physical light quark mass scaling behavior with non-universal corrections still applies.
- Search for the first-order region along $m_l = m_s$ line, staggered fermions, Ding et al., arXiv:1111.0185 [hep-lat].
- ► Current bound on the first-order region $m_{\pi} = 75$ MeV.

Deconfinement

The Polyakov loop:

$$
L_{ren}(T) = z(\beta)^{N_{\tau}} L_{bare}(\beta), \qquad L_{bare}(\beta) = \left\langle \frac{1}{3} \text{Tr} \prod_{x_0=0}^{N_{\tau}-1} U_0(x_0, \vec{x}) \right\rangle
$$

 \triangleright Related to the free energy of a static quark anti-quark pair $L_{ren}(T) = \exp(-F_{\infty}(T)/(2T))$

- \blacktriangleright The increase of $L_{ren}(T)$ (and decrease of $F_{\infty}(T)$) is related to the onset of screening at higher temperatures.
- \blacktriangleright The order parameter in pure gauge theory but not in full QCD, the behavior in $SU(2)$, $SU(3)$ and 2+1 flavor QCD is quite different!

Deconfinement

The renormalized chiral condensate plotted together with the renormalized Polyakov loop (left) and the light and strange quark number susceptibility (defined on next slides) (right) for $N_\tau = 8$ lattice, the HISQ/tree action.

Deconfinement happens gradually, no unique transition temperature can be associated with it in full QCD.

Fluctuations

Deconfinement: fluctuations

 \blacktriangleright Fluctuations and correlations of conserved charges:

$$
\frac{\chi_i(T)}{T^2} = \frac{1}{T^3 V} \frac{\partial^2 \ln Z(T, \mu_i)}{\partial(\mu_i/T)^2} \Big|_{\mu_i=0},
$$
\n
$$
\frac{\chi_{11}^{ij}(T)}{T^2} = \frac{1}{T^3 V} \frac{\partial^2 \ln Z(T, \mu_i, \mu_j)}{\partial(\mu_i/T) \partial(\mu_j/T)} \Big|_{\mu_i=\mu_j=0}
$$

- \triangleright Consider light and strange quark number susceptibility.
- \triangleright At low temperatures they are carried by massive hadrons and their fluctuations are suppressed.
- \triangleright At high temperatures they are carried by quarks and therefore can signal deconfiment.

.

Hadron Resonance Gas model

 \triangleright Following Hagedorn's picture, the Hadron Resonance Gas model approximates the spectrum with currently known states from PDG

$$
p^{HRG}/T^4 = \frac{1}{VT^3} \sum_{i \in mesons} \ln \mathcal{Z}_{m_i}^M(T, V, \mu_{X^a})
$$

$$
+ \frac{1}{VT^3} \sum_{i \in baryons} \ln \mathcal{Z}_{m_i}^B(T, V, \mu_{X^a}),
$$

where

$$
\ln \mathcal{Z}_{m_i}^{M/B} = \mp \frac{V d_i}{2\pi^2} \int_0^\infty dk k^2 \ln(1 \mp z_i e^{-\epsilon_i/T}) ,
$$

with energies $\varepsilon_i = \sqrt{k^2 + m_i^2}$, degeneracy factors d_i and fugacities

$$
\ln z_i = \sum_{a} X_i^a \mu_{X^a} / T.
$$

Fluctuations: strangeness

- Eleft: HotQCD, HISQ/tree action, $m_{\pi} = 160$ MeV, PRD86 (2012) 034509, arXiv:1203.0784 [hep-lat].
- ► Right: BW, stout action, $m_{\pi} = 140$ MeV, JHEP 1201 (2012) 138, arXiv:1112.4416 [hep-lat].

Fluctuations: baryon number

- Eleft: HotQCD, HISQ/tree action, $m_{\pi} = 160$ MeV, PRD86 (2012) 034509, arXiv:1203.0784 [hep-lat].
- ► Right: BW, stout action, $m_\pi = 140$ MeV, JHEP 1201 (2012) 138, arXiv:1112.4416 [hep-lat].

Fluctuations: electric charge

- Eleft: HotQCD, HISQ/tree action, $m_{\pi} = 160$ MeV, PRD86 (2012) 034509, arXiv:1203.0784 [hep-lat].
- ► Right: BW, stout action, $m_{\pi} = 140$ MeV, JHEP 1201 (2012) 138, arXiv:1112.4416 [hep-lat].

- ► Consider¹ mean (M_X) , variance (σ_X^2) and skewness (S_X) of corresponding charge distribution $X = B, Q, S$.
- \triangleright Net strangeness and electric charge can be constrained to

 $M_S = 0$, $M_Q = rM_B$, ($r \approx 0.4$ in gold-gold and lead-lead collisions),

and the chemical potentials related to the baryon chemical potential:

$$
\frac{\mu_Q}{\mathcal{T}} = q_1 \frac{\mu_B}{\mathcal{T}} + q_3 \left(\frac{\mu_B}{\mathcal{T}}\right)^3, \quad \frac{\mu_S}{\mathcal{T}} = s_1 \frac{\mu_B}{\mathcal{T}} + s_3 \left(\frac{\mu_B}{\mathcal{T}}\right)^3,
$$
\n
$$
q_1 = \frac{r \left(\chi_2^B \chi_2^S - \chi_{11}^{BS} \chi_{11}^{BS}\right) - \left(\chi_{11}^{BQ} \chi_2^S - \chi_{11}^{BS} \chi_{11}^{QS}\right)}{\left(\chi_2^Q \chi_2^S - \chi_{11}^{QS} \chi_{11}^{QS}\right) - r \left(\chi_{11}^{BQ} \chi_2^S - \chi_{11}^{BS} \chi_{11}^{QS}\right)},
$$
\n
$$
s_1 = -\frac{\chi_{11}^{BS}}{\chi_2^S} - \frac{\chi_{11}^{QS}}{\chi_2^S} q_1.
$$

¹BNL-Bielefeld (Bazavov et al.), PRL109 (2012) 192302, arXiv:1208.1220 [hep-lat]

- Leading order (top half) and next-to-leading order (bottom half) expressions.
- ► NLO are within 10% in the transition region (up to $T \sim 160$ MeV) and rapidly decrease at higher temperature.

 \triangleright Once μ_Q and μ_S satisfying the constraints are fixed, consider ratios of cumulants, for instance:

$$
R_{12}^X \equiv \frac{M_X}{\sigma_X^2} = \frac{\mu_B}{\mathcal{T}} \left(R_{12}^{X,1} + R_{12}^{X,3} \left(\frac{\mu_B}{\mathcal{T}} \right)^2 + \mathcal{O}\left((\mu_B/\mathcal{T})^4 \right) \right) ,
$$

\n
$$
R_{31}^X \equiv \frac{S_X \sigma_X^3}{M_X} = R_{31}^{X,0} + R_{31}^{X,2} \left(\frac{\mu_B}{\mathcal{T}} \right)^2 + \mathcal{O}\left((\mu_B/\mathcal{T})^4 \right) .
$$

- If R_{31}^Q is determined from experiment, this determines the freeze-out temperature T_f (left).
- ► R_{12}^Q and T_f determine the freeze-out chemical potential μ_B^f (right).

Equation of state

Trace anomaly

 \blacktriangleright The trace anomaly

$$
\varepsilon - 3p = -\frac{T}{V}\frac{d\ln Z}{d\ln a} \quad \Rightarrow \quad \frac{p}{T^4} - \frac{p_0}{T_0^4} = \int_{T_0}^{T} dT' \frac{\varepsilon - 3p}{T'^5}
$$

▶ Requires subtraction of UV divergencies (take difference of zero- and finite-temperature quantities evaluated at the same values of the gauge coupling):

$$
\frac{\varepsilon - 3p}{\tau^4} = R_{\beta}[\langle S_g \rangle_0 - \langle S_g \rangle_7]
$$

- $R_{\beta}R_m[2m_I(\langle \overline{I}I \rangle_0 - \langle \overline{I}I \rangle_7) + m_s(\langle \overline{s}s \rangle_0 - \langle \overline{s}s \rangle_7)]$
 $R_{\beta}(\beta) = -a\frac{d\beta}{da}, \quad R_m(\beta) = \frac{1}{m}\frac{dm}{d\beta}, \quad \beta = \frac{10}{g^2}$

Trace anomaly

- ► HotQCD, HISQ/tree action, $m_{\pi} = 160$ MeV, at fixed N_{τ} , QM2012, preliminary.
- ► BW, stout action, $m_{\pi} = 140$ MeV, JHEP 1011:077,2010, arXiv:1007.2580v2 [hep-lat].
- Need better control over the continuum limit.

Equation of state

► BW, stout action, $m_{\pi} = 140$ MeV, JHEP 1011:077,2010, arXiv:1007.2580v2 [hep-lat].

 \triangleright Pressure (left) and the energy density (right).

Equation of state at $\mu \neq 0$

- \blacktriangleright BW, stout action, $m_{\pi} = 140$ MeV, arXiv:1204.6710
	- Isentropic EoS (bottom).

400 MeV, lattice

400

 μ =400 MeV, HRG

 μ = 300 MeV, HRG

 $\frac{1}{4}$ μ = 200 MeV, lattice $- u = 200$ MeV. HRG

300

 μ = 300 MeV, lottice

Conclusion

- \triangleright Lattice QCD provides means to study QCD at finite temperature and (to a limited extent) finite density.
- \triangleright Pseudo-transition temperature associated with the chiral symmetry restoration is established in the continuum limit at the physical light quark mass. Agreement between staggered studies, crosschecks with Wilson, domain-wall and overlap, but at higher pion mass.
- \triangleright Deconfinement is a gradual phenomenon, no unique transition temperature can be associated with it in full QCD.
- \blacktriangleright Fluctuations are useful tools in studying deconfinement, some continuum results are available, agreement between staggered calculations.
- \triangleright (Under extra assumptions) fluctuations of conserved charges can provide the freeze-out parameters from first principles.
- \blacktriangleright Equation of state: work towards the continuum limit, need to study higher temperatures to connect to perturbative regime.