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Introduction: QGP in theory and experiment

A new state of matter – Quark-Gluon Plasma (QGP) – is expected in QCD
due to the asymptotic freedom, and has been observed in heavy-ion collision
experiments.

Experiment (RHIC, LHC):

I Particle spectra.

I Heavy-quark bound states.

I Thermal photons and dileptons.

Theory (Lattice QCD):

I Properties of the transition region.

I Fluctuations and correlations of conserved charges.

I The QCD equation of state.

I Spectral functions, transport properties.
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Introduction: conjectured phase diagram
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Introduction: Quantum Chromodynamics
The Lagrangian:

L = −1

4
F c
µνF

µν,c +

nf∑
α=1

ψ̄α(iγµDµ −mα)ψα

I αs is small at large energy scale (asymptotic freedom), and large at low
energies (where we live), – perturbation theory breaks down.

I Recent lattice QCD determination of αs , Bazavov et al. PRD86 (2012)
114031, arXiv:1205.6155 [hep-ph].
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Introduction: Lattice QCD

I Quantum field theory (QCD) in path-integral formulation in Euclidean
(imaginary time) formalism:

〈O〉 =
1

Z

∫
Dψ̄DψDU O exp(−S),

Z =

∫
Dψ̄DψDU exp(−S), S =

∫
d4xLE ,

I Discrete space-time: 4D hypercubic lattice N3
s × Nτ , lattice spacing a

serves as a cutoff (momenta restricted to π/a).

I Temperature is set by compactified temporal dimension: T = 1/(Nτa),
lattice spacing a is varied at fixed Nτ , or Nτ at fixed a (fixed scale
approach).

I Evaluate QCD path integrals stochastically, using Monte Carlo
techniques. (S needs to be real!)

I Physics is recovered in the continuum limit (cutoff effects are the major
source of systematic uncertainties).

A. Bazavov (BNL) NNPSS 2013 July 22, 2013 6 / 35



Introduction: Lattice QCD
I Lattice action

S = Sgauge + Sfermion, Sfermion =
∑
x,y

ψ̄xMx,yψy

(Mx,y is the fermion matrix) preserves the gauge symmetry, but there is
the infamous fermion doubling problem – 16 species of fermions in 4D.

I Quarks live on sites and gluons on links as SU(3) matrices

Ux,µ = P exp

{
ig

∫ x+aµ̂

x

dyν Aν(y)

}
.

I Fermions are challenging due to the fermion doubling problem and also
due to non-locality of the action when the Grasmann variables are
integrated out:

Z =

∫
DU det M[U] exp(−Sgauge).

(If det M[U] is neglected, this is called quenched approximation.)
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Introduction: Lattice QCD

I Various fermion discretization schemes, at fixed lattice spacing:
I Staggered – preserve a part of the chiral symmetry, computationally

cheap, require taking 4-th root of the Dirac operator.
I Wilson – no chiral symmetry.
I Domain-wall – amount of symmetry breaking is controlled by the fifth

dimension Ls , exact in Ls →∞ limit.
I Overlap – exact chiral symmetry.
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Introduction: what if S is not real?

I “Sign” problem – Monte Carlo sampling breaks down, because the
integrand loses probabilistic meaning.

I This happens at non-zero chemical potential!

I Indirect way to explore the phase diagram at small µ is to Taylor expand
in µ/T . Computationally feasable for first few terms.

I Attempts to get around the sign problem in various models:
I alter the action – find a formulation where there is no sign problem

(Grabowska, Kaplan and Nicholson, PRD87 (2013) 014504,
arXiv:1208.5760 [hep-lat]; Chandrasekharan and Li, PRD85 (2012)
091502, arXiv:1202.6572 [hep-lat]),

I alter the integral – integration on orbits (Bloch, PRD86 (2012) 074505,
arXiv:1205.5500 [hep-lat]) or along a certain trajectory in extended phase
space (Cristoforetti, Di Renzo, Scorzato, PRD86 (2012) 074506,
arXiv:1205.3996 [hep-lat]),

I alter the sampling procedure – complex Langevin dynamics (Aarts et al.,
JHEP 1303 (2013) 073, arXiv:1212.5231 [hep-lat]).

I No solution for QCD so far...
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Finite-temperature transition in QCD: restoration
of the chiral symmetry and deconfinement
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Chiral condensate and susceptibility
Chiral condensate:

〈ψ̄ψ〉q,x =
1

4

1

N3
σNτ

Tr〈M−1
q 〉, q = l , s, x = 0, τ.

The susceptibility:

χm,q(T ) =
∂〈ψ̄ψ〉l
∂mq

= 2χq,disc + χq,con ,

χq,disc =
1

16N3
σNτ

{
〈
(
TrM−1

q

)2〉 − 〈TrM−1
q 〉2

}
,

and

χq,con =
1

4
Tr
∑

x

〈M−1
q (x , 0)M−1

q (0, x) 〉 , q = l , s.

The renormalized condensate:

∆l,s(T ) =
〈ψ̄ψ〉l,τ − ml

ms
〈ψ̄ψ〉s,τ

〈ψ̄ψ〉l,0 − ml

ms
〈ψ̄ψ〉s,0

or
∆R

l = d + ms r
4
0 (〈ψ̄ψ〉l,τ − 〈ψ̄ψ〉l,0).
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Chiral condensate and susceptibility

 0

 0.2

 0.4

 0.6

 0.8

 1

 120  140  160  180  200

T [MeV]

∆l,s
r1 scale

asqtad: Nτ=8
Nτ=12

HISQ/tree: Nτ=6
Nτ=8

Nτ=12
stout, cont.

 0

 0.2

 0.4

 0.6

 0.8

 1

 120  140  160  180  200

T [MeV]

∆l,s
fK scale

asqtad: Nτ=8
Nτ=12

HISQ/tree: Nτ=6
Nτ=8

Nτ=12
Nτ=8, ml=0.037ms

stout cont.

 0

 20

 40

 60

 80

 100

 120

 140

 140  160  180  200  220  240

T [MeV]

χl,disc/T
2

HISQ/tree: Nτ=6
Nτ=8

Nτ=12
asqtad: Nτ=8

Nτ=12

 0

 20

 40

 60

 80

 100

 120

 140

 140  160  180  200  220  240

T [MeV]

χl,disc/T
2

HISQ/tree: Nτ=6
Nτ=8

Nτ=12
asqtad: Nτ=8

Nτ=12

A. Bazavov (BNL) NNPSS 2013 July 22, 2013 12 / 35



Pseudo-critical temperature, Tc

I At the physical values of light quark masses there is no genuine phase
transition in QCD, but a crossover.

I Define a pseudo-transition temperature associated with restoration of
chiral symmetry as a peak position in the disconnected chiral
susceptibility. (Which diverges in the chiral limit.)

I Agreement on Tc between the groups using staggered fermions, in the
continuum limit at the physical light quark masses:

I BW, stout action, mπ = 140 MeV, Tc = 147(4)− 155(4) MeV, JHEP09
(2010) 073, arXiv:1005.3508 [hep-lat]

I HotQCD, HISQ/tree action, mπ = 160 MeV, extrapolated to
mπ = 140 MeV, Tc = 154(9) MeV, PRD85 (2012) 054503,
arXiv:1111.1710 [hep-lat]

I Crosschecks between staggered and other fermion discretization
schemes:

I BW, overlap fermions, mπ = 350 MeV, arXiv:1204.4089 [hep-lat]
I BW, Wilson fermions, mπ = 540 MeV, arXiv:1205.0440 [hep-lat]
I HotQCD, domain wall fermions, mπ = 200 MeV, arXiv:1205.3535

[hep-lat]

A. Bazavov (BNL) NNPSS 2013 July 22, 2013 13 / 35



Chiral symmetry restoration
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I Left: Renormalized chiral condensate, staggered vs. Wilson.

I Right: Renormalized chiral condensate, staggered vs. overlap.
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Chiral symmetry restoration
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I The disconnected chiral susceptibility, staggered vs. domain wall.

I At fixed lattice spacing, but peak location agrees, difference in height –
presumably finite-volume effect.
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Chiral symmetry restoration
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I In the chiral limit the critical behavior is governed by the O(4)
universality class.

I At the physical light quark mass scaling behavior with non-universal
corrections still applies.

I Search for the first-order region along ml = ms line, staggered fermions,
Ding et al., arXiv:1111.0185 [hep-lat].

I Current bound on the first-order region mπ = 75 MeV.
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Deconfinement
The Polyakov loop:

Lren(T ) = z(β)Nτ Lbare(β), Lbare(β) =

〈
1

3
Tr

Nτ−1∏
x0=0

U0(x0,~x)

〉

I Related to the free energy of a static quark anti-quark pair
Lren(T ) = exp(−F∞(T )/(2T ))
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I The increase of Lren(T ) (and
decrease of F∞(T )) is related to
the onset of screening at higher
temperatures.

I The order parameter in pure
gauge theory but not in full QCD,
the behavior in SU(2), SU(3) and
2+1 flavor QCD is quite different!
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Deconfinement
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The renormalized chiral condensate plotted together with the renormalized
Polyakov loop (left) and the light and strange quark number susceptibility
(defined on next slides) (right) for Nτ = 8 lattice, the HISQ/tree action.

Deconfinement happens gradually, no unique transition temperature can be
associated with it in full QCD.
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Fluctuations
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Deconfinement: fluctuations

I Fluctuations and correlations of conserved charges:

χi (T )

T 2
=

1

T 3V

∂2 ln Z (T , µi )

∂(µi/T )2

∣∣∣∣
µi=0

,

χij
11(T )

T 2
=

1

T 3V

∂2 ln Z (T , µi , µj)

∂(µi/T )∂(µj/T )

∣∣∣∣
µi=µj=0

.

I Consider light and strange quark number susceptibility.

I At low temperatures they are carried by massive hadrons and their
fluctuations are suppressed.

I At high temperatures they are carried by quarks and therefore can signal
deconfiment.
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Hadron Resonance Gas model

I Following Hagedorn’s picture, the Hadron Resonance Gas model
approximates the spectrum with currently known states from PDG

pHRG/T 4 =
1

VT 3

∑
i∈ mesons

lnZM
mi

(T ,V , µX a )

+
1

VT 3

∑
i∈ baryons

lnZB
mi

(T ,V , µX a ),

where

lnZM/B
mi

= ∓Vdi

2π2

∫ ∞
0

dkk2 ln(1∓ zie
−εi/T ) ,

with energies εi =
√

k2 + m2
i , degeneracy factors di and fugacities

ln zi =
∑

a

X a
i µX a/T .

A. Bazavov (BNL) NNPSS 2013 July 22, 2013 21 / 35



Fluctuations: strangeness
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I Left: HotQCD, HISQ/tree action, mπ = 160 MeV, PRD86 (2012)
034509, arXiv:1203.0784 [hep-lat].

I Right: BW, stout action, mπ = 140 MeV, JHEP 1201 (2012) 138,
arXiv:1112.4416 [hep-lat].
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Fluctuations: baryon number
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I Right: BW, stout action, mπ = 140 MeV, JHEP 1201 (2012) 138,
arXiv:1112.4416 [hep-lat].
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Fluctuations: electric charge
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Freeze-out parameters
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Freeze-out parameters

I Consider1 mean (MX ), variance (σ2
X ) and skewness (SX ) of

corresponding charge distribution X = B,Q,S .

I Net strangeness and electric charge can be constrained to

MS = 0, MQ = rMB , (r ' 0.4 in gold-gold and lead-lead collisions),

and the chemical potentials related to the baryon chemical potential:

µQ

T
= q1

µB

T
+ q3

(µB

T

)3

,
µS

T
= s1

µB

T
+ s3

(µB

T

)3

,

q1 =
r
(
χB

2 χ
S
2 − χBS

11 χ
BS
11

)
−
(
χBQ

11 χ
S
2 − χBS

11 χ
QS
11

)
(
χQ

2 χ
S
2 − χ

QS
11 χ

QS
11

)
− r

(
χBQ

11 χ
S
2 − χBS

11 χ
QS
11

) ,
s1 = −χ

BS
11

χS
2

− χQS
11

χS
2

q1 .

1BNL-Bielefeld (Bazavov et al.), PRL109 (2012) 192302, arXiv:1208.1220 [hep-lat]
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Freeze-out parameters
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I Leading order (top half) and next-to-leading order (bottom half)
expressions.

I NLO are within 10% in the transition region (up to T ∼ 160 MeV) and
rapidly decrease at higher temperature.
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Freeze-out parameters

I Once µQ and µS satisfying the constraints are fixed, consider ratios of
cumulants, for instance:

RX
12 ≡ MX

σ2
X

=
µB

T

(
RX ,1

12 + RX ,3
12

(µB

T

)2

+O((µB/T )4)

)
,

RX
31 ≡ SXσ

3
X

MX
= RX ,0

31 + RX ,2
31

(µB

T

)2

+O((µB/T )4) .
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Freeze-out parameters
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I If RQ
31 is determined from experiment, this determines the freeze-out

temperature Tf (left).

I RQ
12 and Tf determine the freeze-out chemical potential µf

B (right).
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Equation of state
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Trace anomaly

I The trace anomaly

ε− 3p = −T

V

d ln Z

d ln a
⇒ p

T 4
− p0

T 4
0

=

∫ T

T0

dT ′
ε− 3p

T ′5

I Requires subtraction of UV divergencies (take difference of zero- and
finite-temperature quantities evaluated at the same values of the gauge
coupling):

ε− 3p

T 4
= Rβ[〈Sg 〉0 − 〈Sg 〉T ]

− RβRm[2ml(〈̄l l〉0 − 〈̄l l〉T ) + ms(〈s̄s〉0 − 〈s̄s〉T )]

Rβ(β) = −a
dβ

da
, Rm(β) =

1

m

dm

dβ
, β =

10

g2
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Trace anomaly
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I HotQCD, HISQ/tree action, mπ = 160 MeV, at fixed Nτ , QM2012,
preliminary.

I BW, stout action, mπ = 140 MeV, JHEP 1011:077,2010,
arXiv:1007.2580v2 [hep-lat].

I Need better control over the continuum limit.
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Equation of state

I BW, stout action, mπ = 140 MeV, JHEP 1011:077,2010,
arXiv:1007.2580v2 [hep-lat].

I Pressure (left) and the energy density (right).
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Equation of state at µ 6= 0

I BW, stout action,
mπ = 140 MeV, arXiv:1204.6710
[hep-lat].

I Pressure (left) and difference
from µ = 0 (right).

I Isentropic EoS (bottom).
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Conclusion

I Lattice QCD provides means to study QCD at finite temperature and (to
a limited extent) finite density.

I Pseudo-transition temperature associated with the chiral symmetry
restoration is established in the continuum limit at the physical light
quark mass. Agreement between staggered studies, crosschecks with
Wilson, domain-wall and overlap, but at higher pion mass.

I Deconfinement is a gradual phenomenon, no unique transition
temperature can be associated with it in full QCD.

I Fluctuations are useful tools in studying deconfinement, some continuum
results are available, agreement between staggered calculations.

I (Under extra assumptions) fluctuations of conserved charges can provide
the freeze-out parameters from first principles.

I Equation of state: work towards the continuum limit, need to study
higher temperatures to connect to perturbative regime.
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