Experimental results on nucleon structure Lecture I

Barbara Badelek University of Warsaw

National Nuclear Physics Summer School 2013

Stony Brook University, July 15 - 26, 2013

Outline

Introduction

- Scales, elementary particles, interactions
- Kinematics, experiments and observables

• I > • = • •

Course literature

- D. H. Perkins, "Introduction to high energy physics", CUP 2000 (4th edition or later).
- **2** B.R. Martin and G. Shaw, "Particle Physics" Wiley 1997 or later.
- A. W. Thomas and W. Weise, "The structure of the nucleon", Wiley-VCH 2001.
- B. Povh, et al., "Particles and Nuclei", Springer 2008 (6th edition or later)
- R. G. Roberts, "The structure of the proton: Deep inelastic scattering", CUP 1990.
- and original papers, e.g. for spin see C. A. Aidala et al., arXiv: 1209.2803 v2 (1 April 2013)

(a) < (a) < (b) < (b)

Outline

Introduction

- Scales, elementary particles, interactions
- Kinematics, experiments and observables

Outline

Introduction

Scales, elementary particles, interactions

Kinematics, experiments and observables

Two limits of research

Barbara Badelek (Univ. of Warsaw) Experimental results on nucleon structure, I

Reminder: scales (distance, energy, mass,...) and constants

- $r \sim 1$ fm (presently: an object is pointlike if its dimensions $\lesssim 0.001$ fm = 10^{-18} m) $E \sim 1$ GeV $m \sim 1$ GeV/ c^2
- Important constants:
 - Planck constant, $h \approx 6 \cdot 10^{-34}$ J·s (quantum physics must be applied),
 - speed of light, $c \approx 3 \cdot 10^8$ m/s (relativistic physics must be applied),
 - fine structure constant, $\alpha = \frac{e^2}{4\pi\epsilon_0\hbar c} \approx \frac{1}{137}$.
 - Heaviside Lorentz system: $1 = \hbar = c = \epsilon_0 = \mu_0 \implies \alpha = \frac{e^2}{4\pi}$ will be used
- Very useful quantity: $\hbar c = 1 \approx 0.197 \text{ GeV} \cdot \text{fm}$

イロト 不得 トイヨト イヨト 二日

8/32

Elementary building blocks of matter

STANDARD MODEL

Do we REALLY understand the structure of matter?

Barbara Badelek (Univ. of Warsaw) Experimental results on nucleon structure, I

NNPSS 2013 10 / 32

11/32

Reminder: dimensions of atom and its constituents

Baryons: nucleons & Co.

Baryons qqq and Antibaryons $\bar{q}\bar{q}\bar{q}$ Baryons are fermionic hadrons. These are a few of the many types of baryons.						
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin	
р	proton	uud	1	0.938	1/2	
p	antiproton	ūūd	-1	0.938	1/2	
n	neutron	udd	0	0.940	1/2	
Λ	lambda	uds	0	1.116	1/2	
Ω^{-}	omega	SSS	-1	1.672	3/2	

Barbara Badelek (Univ. of Warsaw) Experimental results on nucleon structure, I

イロト イポト イヨト イヨト

Mesons

$Mesons \ q\overline{q}$ $Mesons \ are \ bosonic \ hadrons$ $These \ are \ a \ few \ of \ the \ many \ types \ of \ mesons.$							
Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin		
π+	pion	ud	+1	0.140	0		
K ⁻	kaon	sū	-1	0.494	0		
ρ+	rho	ud	+1	0.776	1		
\mathbf{B}^0	B-zero	db	0	5.279	0		
η _c	eta-c	cī	0	2.980	0		

NNPSS 2013 13 / 32

æ

イロト イヨト イヨト イヨト

Types and properties of interactions (forces)

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.

Property	Gravitational Interaction	Weak Interaction (Electro	Electromagnetic Interaction	Strong Interaction
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons
Strength at $\begin{cases} 10^{-18} \text{ m} \\ 10^{-18} \text{ m} \end{cases}$	10 ⁻⁴¹	0.8	1	25
3×10 ⁻¹⁷ m	10 ⁻⁴¹	10 ⁻⁴	1	60
mass (GeV)	0	80-90	0	0
range (m)	∞	10^{-18}	∞	$\leq 10^{-15}$
coupling constant	10^{-38}	10^{-5}	1/137	1
time (s)	_	$10^{-8} - 10^{-10}$	10 ⁻²⁰	10 ⁻²³ ■►<■► ■
Barbara Badelek (Univ. of Wa	arsaw) Experime	ntal results on nucleon st	tructure, I	NNPSS 2013 1

Unification of interactions at energy of 10¹⁵ GeV ???

Add supersymmetry: fermions \leftrightarrows bosons

Barbara Badelek (Univ. of Warsaw) Experimental results on nucleon structure, I

NNPSS 2013 15 / 32

A D A D A D

Standard Model of elementary interactions

- Family of elementary objects: at least 36 members of which at least 12 are interaction (or force) carriers.
- In our conditions we see at least 4 interactions; their relative strength changes with energy:
 - strong
 - electromagnetic

May be that immediately after the Big Bang all interactions had similar strength \rightarrow Grand Unification Theories (GUT), at E $\gtrsim 10^{15}$ GeV (proton mass: ~ 1 GeV; largest proton energy in an accelerator (LHC) now: 4 TeV, soon: 7 TeV).

 Standard Model: perfectly agrees with experiment but DOES NOT predict several parameters, e.g. particle masses and features of forces (about 20 "free" parameters). Also: gravitation???

・ロト ・ 四ト ・ ヨト ・ ヨト …

Interactions; probability amplitude; cross section

- (Electromagnetic) interaction = emission and absorption of a virtual photon, γ^{*}.
- Momentum transfer: $\vec{k} = (\vec{p} \vec{p}')$ Energy transfer: $\nu = (E - E')$.
- Define (negative) 4-momentum transfer squared (photon virtuality): $Q^2 = -q^2 = (\vec{p} - \vec{p}')^2 - (E - E')^2 = -M_{\gamma^*}^2 \neq 0 !$

This probability amplitude is universal, i.e. describes several processes.

イロト イポト イヨト イヨト

Feynman diagrams in Coulomb interactions

• Scattering amplitude:
$$f \sim \frac{ee}{Q^2} \Longrightarrow \frac{d\sigma}{dQ^2} \sim \frac{e^4}{Q^4} \sim \frac{\alpha^2}{Q^4}$$

• For
$$2\gamma^*$$
 exchange $\sigma \sim \alpha^4$,
i.e. σ is $\alpha^2 \approx \left(\frac{1}{137}\right)^2$ smaller than for $1\gamma^*$ exchange

• Scattering from an effective charge *eF*:

$$\frac{d\sigma}{dQ^2} \sim \frac{\alpha^2 F^2(Q^2)}{Q^4}$$

(

with limiting conditions:

$$\lim_{Q^2 \to \infty} F(Q^2) = 0 \quad \text{and} \quad \lim_{Q^2 \to 0} F(Q^2) = 1$$

where $F(Q^2)$ – elastic nucleon (target) form factor.

Electrons in nucleon structure experiments

- Electron nucleon (nucleus) scattering; electrons point-like, $r \lesssim 10^{-18}$ m
- Background of *ee* scattering easy to separate (except from forward scattering).
- (Electromagnetic) processes which yield information on proton structure:

Rutherford scattering, $e^-p \rightarrow e^-p$ $M_{\gamma^*}^2 < 0, \ Q^2 > 0$

Annihilation: $e^+e^- \rightarrow p\bar{p}$, $M^2_{\gamma^*} > 0$, $Q^2 < 0$

Strong interactions (between quarks)

• Generally an interaction between 2 particles is an exchange of a boson of mass *m*.

Barbara Badelek (Univ. of Warsaw) Experimental

Experimental results on nucleon structure, I

NNPSS 2013 20 / 32

Strong coupling "constant"

Barbara Badelek (Univ. of Warsaw)

Residual strong interaction (in a nucleus)

Final state quarks "dress up" into hadrons \implies fragmentation.

Factorization theorem: physics particles' cross section = (calculable QCD parton cross-section) \otimes (universal long-distance functions)

Weak interactions

Outline

Introduction

- Scales, elementary particles, interactions
- Kinematics, experiments and observables

Why high energies?

Searching for elementary components demands using high-energy beams since:

- some elementary particles are heavy (e.g. $m_{Z^0} \sim 90m_p$), and energy, $E = mc^2$, is needed to produce them;
- goal is to investigate small distances, Δx ~ 1 fm, and since ΔxΔp ~ ħ then Δp large and ⇒ p large too. Another argument: λ ~ small ⇒ p large since λ ~ h/p.

Example 1: electrons of $\lambda \sim 1$ fm have $E \sim 0.2$ GeV.

Example 2: investigating protons, \leq 1 fm, demands $Q^2 \gtrsim$ 1 GeV².

Reminder: centre-of-mass vs laboratory systems

• A beam particle A hits a target particle B:

$$p^{2} = (\vec{p}_{A} + \vec{p}_{B})^{2} - (E_{A} + E_{B})^{2} = -m_{A}^{2} - m_{B}^{2} + 2(\vec{p}_{A}\vec{p}_{B} - E_{A}E_{B}) = -(E^{cms})^{2}$$

• Consider a fixed target experiment, i.e. $\vec{p}_B = 0$ ($E_B = m_B$); here

$$p^2 = -(E^{cms})^2 = -m_A^2 - m_B^2 - 2 E_A m_B$$

or, if particles masses are negligible with respect to their energies (momenta):

$$E_A = \frac{(E^{cms})^2}{2m_B}$$

• Consider a collider experiment, i.e. $\vec{p}_A \uparrow \downarrow \vec{p}_B$ (or: $\triangleleft(\vec{p}_A, \vec{p}_B) = \pi$):

$$p^{2} = -(E^{cms})^{2} = -m_{A}^{2} - m_{B}^{2} + 2(-|\vec{p}_{A}| |\vec{p}_{B}| - E_{A}E_{B})$$

or, if particle masses are negligible with respect to their energies (momenta):

$$p^2 = -(E^{cms})^2 \approx -4E_A E_B$$

• Important example: LHC operating at 7 TeV per proton beam: $E^{cms} = 2 \cdot 7$ TeV = 14 TeV If such E^{cms} were to achieve in a fixed-target experiment then a beam of $E_A \approx 100\ 000$ TeV had to be prepared !!!! Not possible... (Compare: highest observed energy of cosmic rays: $\sim 10^9$ TeV)

Types of high energy experiments

How many variables needed to describe a reaction?

Consider elastic $(ep \rightarrow ep)$ and inelastic $(ep \rightarrow eX)$ interactions where the initial state (i.e. masses and energies) is known.

	$ep \rightarrow ep$	$ep \to eX$
initial state final state	known	known
2 particles x 4 variables -4 eqs (enmom. conservation) -1 (azimuthal angle, φ) known masses in the final state	8 variables 4 3 1 variable	8 variables 4 3 2 variables

Thus for elastic scattering: 1 variable is enough, e.g. Q^2 ; here also: W = M (W - effective mass of the X system, M - proton mass).

Inelastic electron-proton scattering

For the inelastic scattering 2 variables needed, e.g. Q^2 and ν . Try to find a relation $W \longleftrightarrow Q^2, \nu$. In the bottom vertex:

Energy conservation: $\nu + M = E_X$ Momentum conservation: $Q^2 = \vec{k}^2 - \nu^2 = p_X^2 - \nu^2$

Result:

$$W^2 = 2M\nu + M^2 - Q^2$$
 (1)

 $Q^{2} = (\vec{p} - \vec{p}')^{2} - (E - E')^{2} = -2m^{2} - 2pp'\cos\vartheta + 2EE' \approx 4EE'\sin^{2}\frac{\vartheta}{2}$ (2)

so that for elastic: x = 1 or W = M and for inelastic: x < 1 or W > M

Nucleon structure main research centres

In red - running experiments, in green -future ones.

- SLAC (closed): several experiments, $E_e \lesssim 50$ GeV, also polarised.
- CERN: μ , E_{μ} : 90 300 GeV, naturally polarised; proton and deuteron targets.
 - BCDMS (completed)
 - EMC (completed)
 - NMC (completed)
 - SMC (spin, completed)
 - COMPASS (spin)
- FNAL: exp. E665, μ, E_μ = 470 GeV.
- HERA (closed): e-p collider, 28 GeV + 300 GeV
 - H1 (being analysed)
 - ZEUS (being analysed)
 - HERMES, electrons, *E_e* = 27 GeV on fixed-target (spin, being analysed)
- RHIC: p-p, 250 GeV + 250 GeV, polarised
 - STAR (also spin)
 - PHENIX (also spin)
- JLAB: several experiments, $E_e \lesssim 6$ GeV (also spin); soon $E_e \lesssim 12$ GeV.
- LHC (CMS, ATLAS): p-p, 4 TeV + 4 TeV; soon: 7 TeV + 7 TeV.
- Large Hadron-electron Collider, LHeC and/or Electron Ion Collider, EIC: e-p and e-A

イロト イポト イヨト イヨト

Examples of detectors

NNPSS 2013 31 / 32

Acceptance of nucleon structure experiments

Electron beams: high statistics, high systematics (radiative processes), "cheap" Muon beams: low statistics, low systematics, "expensive"

Proton beams: complicated analysis.

Barbara Badelek (Univ. of Warsaw)

Experimental results on nucleon structure, I