Experimental results on nucleon structure Lecture I

Barbara Badelek University of Warsaw

National Nuclear Physics Summer School 2013

Stony Brook University, July 15 – 26, 2013

 Ω

Outline

[Introduction](#page-3-0)

- [Scales, elementary particles, interactions](#page-4-0)
- [Kinematics, experiments and observables](#page-23-0)

 Ω

4 17 18

同 > ィヨ > ィ

Course literature

- ¹ D. H. Perkins, "Introduction to high energy physics", CUP 2000 (4th edition or later).
- ² B.R. Martin and G. Shaw, "Particle Physics" Wiley 1997 or later.
- ³ A. W. Thomas and W. Weise, "The structure of the nucleon", Wiley-VCH 2001.
- ⁴ B. Povh, et al., "Particles and Nuclei", Springer 2008 (6th edition or later)
- ⁵ R. G. Roberts, "The structure of the proton: Deep inelastic scattering", CUP 1990.
- ⁶ and original papers, e.g. for spin see C. A. Aidala et al., arXiv: 1209.2803 v2 (1 April 2013)

 Ω

イロト イ押ト イヨト イヨト

Outline

[Introduction](#page-3-0)

- [Scales, elementary particles, interactions](#page-4-0)
- [Kinematics, experiments and observables](#page-23-0)

 Ω

重き

4. 17. 18

Outline

[Introduction](#page-3-0)

• [Scales, elementary particles, interactions](#page-4-0)

• [Kinematics, experiments and observables](#page-23-0)

 Ω

 $A \equiv 0.4$

Two limits of research

Barbara Badelek (Univ. of Warsaw) [Experimental results on nucleon structure, I](#page-0-0) NICS 2013 6/32

Reminder: scales (distance, energy, mass,...) and constants

- $r \sim 1$ fm (presently: an object is pointlike if its dimensions ≤ 0.001 fm = 10⁻¹⁸ m) $E \sim 1$ GeV $m\sim$ 1 GeV/ c^2
- Important constants:
	- Planck constant, $h \approx 6 \cdot 10^{-34}$ J \cdot s (quantum physics must be applied),
	- speed of light, $c \approx 3 \cdot 10^8$ m/s (relativistic physics must be applied),
	- fine structure constant, $\alpha = \frac{e^2}{4}$ $\frac{e^2}{4\pi\epsilon_0\hbar c}\approx \frac{1}{13}$ $\frac{1}{137}$.
	- Heaviside Lorentz system: $1 = \hbar = c = \epsilon_0 = \mu_0 \implies \alpha = \frac{e^2}{4\pi}$ 4π will be used
- Very useful quantity: $\hbar c = 1 \approx 0.197$ GeV·fm

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

 Ω

Elementary building blocks of matter

STANDARD MODEL

4 0 8

Do we REALLY understand the structure of matter?

 QQ

Reminder: dimensions of atom and its constituents

Baryons: nucleons & Co.

重

 299

イロメ イ部メ イミメ イモメ

Mesons

重

 299

イロト イ部 トイモト イモト

Types and properties of interactions (forces)

Properties of the Interactions

The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.

化重新分离

 Ω

Unification of interactions at energy of 10^{15} GeV ???

Add supersymmetry: fermions \leq bosons

Barbara Badelek (Univ. of Warsaw) [Experimental results on nucleon structure, I](#page-0-0) NNPSS 2013 15/32

Standard Model of elementary interactions

- Family of elementary objects: at least 36 members of which at least 12 are interaction (or force) carriers.
- In our conditions we see at least 4 interactions; their relative strength changes with energy:
	- \bullet strong \searrow
	- electromagnetic \nearrow

May be that immediately after the Big Bang all interactions had similar strength → Grand Unification Theories (GUT), at E $\geq 10^{15}$ GeV (proton mass: \sim 1 GeV; largest proton energy in an accelerator (LHC) now: 4 TeV, soon: 7 TeV).

• Standard Model: perfectly agrees with experiment but DOES NOT predict several parameters, e.g. particle masses and features of forces (about 20 "free" parameters). Also: gravitation???

 Ω

 $(0.125 \times 10^{-14} \text{ m}) \times 10^{-14} \text{ m} \times 10^{-14} \text{ m}$

 \overrightarrow{p} , E p' , E'

 $(0.125 \times 10^{-14} \text{ m})$

Interactions; probability amplitude; cross section

- (Electromagnetic) interaction = emission and absorption of a virtual photon, γ^* .
- Momentum transfer: $\vec{k} = (\vec{p} \vec{p}~')$ Energy transfer: $v = (E - E').$
- Define (negative) 4-momentum transfer squared (photon virtuality): $Q^2 = -q^2 = (\vec{p} - \vec{p}^{\,\,\prime})^2 - (E - E^{\prime})^2 = -M_{\gamma^*}^2 \neq 0$!
- Define cross-section, σ : σ \sim probability $=\left|f\right|^{2}$ ۰

This probability amplitude is universal, i.e. describes several processes.

 QQ

Feynman diagrams in Coulomb interactions

• Scattering amplitude:
$$
f \sim \frac{ee}{Q^2} \Longrightarrow \frac{d\sigma}{dQ^2} \sim \frac{e^4}{Q^4} \sim \frac{\alpha^2}{Q^4}
$$

• For
$$
2\gamma^*
$$
 exchange $\sigma \sim \alpha^4$,
i.e. σ is $\alpha^2 \approx \left(\frac{1}{137}\right)^2$ smaller than for $1\gamma^*$ exchange.

• Scattering from an effective charge
$$
eF
$$
:

$$
\frac{d\sigma}{dQ^2}\sim \frac{\alpha^2F^2(Q^2)}{Q^4}
$$

with limiting conditions:

$$
\lim_{Q^2 \to \infty} F(Q^2) = 0 \text{ and } \lim_{Q^2 \to 0} F(Q^2) = 1
$$

where $F(Q^2)$ – elastic nucleon (target) form factor.

 QQ

Electrons in nucleon structure experiments

- \bullet Electron nucleon (nucleus) scattering; electrons point-like, $r \leq 10^{-18}$ m
- \bullet Background of ee scattering easy to separate (except from forward scattering).
- (Electromagnetic) processes which yield information on proton structure:

Rutherford scattering, $e^-p \rightarrow e^-p$ $M_{\gamma^*}^2 < 0, \ \ Q^2 > 0$

Annihilation: $e^+e^-\to p\bar p,$ $M_{\gamma^*}^2 > 0, \ \ Q^2 < 0$

 Ω

Strong interactions (between quarks)

Generally an interaction between 2 particles is an exchange of a boson of mass m .

 Ω

Strong coupling "constant"

Residual strong interaction (in a nucleus)

Final state quarks "dress up" into hadrons \implies fragmentation.

Factorization theorem: physics particles' cross section = (calculable QCD parton cross-section) ⊗ (universal long-distance functions)

Weak interactions

 299

4 0 8

Outline

[Introduction](#page-3-0)

• [Scales, elementary particles, interactions](#page-4-0)

• [Kinematics, experiments and observables](#page-23-0)

 Ω

 $\mathcal{A} \equiv \mathcal{B} \rightarrow \mathcal{A}$

Why high energies?

Searching for elementary components demands using high–energy beams since:

- some elementary particles are heavy (e.g. $m_{Z0} \sim 90 m_{\rm p}$), and energy, $E=mc^2$, is needed to produce them;
- \bullet goal is to investigate small distances, $\Delta x \sim 1$ fm, and since $\Delta x \Delta p \sim \hbar$ then Δp large and \Longrightarrow p large too. Another argument: $\lambda \sim$ small \Longrightarrow p large since $\lambda \sim h/p$.

Example 1: electrons of $\lambda \sim 1$ fm have $E \sim 0.2$ GeV.

Example 2: investigating protons, $\lesssim 1$ fm, demands $Q^2 \gtrsim 1$ GeV².

KEL KALLARIN (RINGEN DE VOOR

Reminder: centre-of-mass vs laboratory systems

A beam particle A hits a target particle B:

$$
p^{2} = (\vec{p}_{A} + \vec{p}_{B})^{2} - (E_{A} + E_{B})^{2} = -m_{A}^{2} - m_{B}^{2} + 2(\vec{p}_{A}\vec{p}_{B} - E_{A}E_{B}) = -(E^{cms})^{2}
$$

 \bullet Consider a fixed target experiment, i.e. $\vec{p}_B = 0$ ($E_B = m_B$); here

$$
p^2 = -(E^{cms})^2 = -m_A^2 - m_B^2 - 2 E_A m_B
$$

or, if particles masses are negligible with respect to their energies (momenta):

$$
E_A = \frac{(E^{cms})^2}{2m_B}
$$

Consider a collider experiment, i.e. $\vec{p}_A \uparrow \downarrow \vec{p}_B$ (or: $\triangleleft(\vec{p}_A, \vec{p}_B) = \pi$): О.

$$
p^2 = -(E^{cms})^2 = -m_A^2 - m_B^2 + 2(-|\vec{p}_A| |\vec{p}_B| - E_A E_B)
$$

or, if particle masses are negligible with respect to their energies (momenta):

$$
p^2 = -(E^{cms})^2 \approx -4E_A E_B
$$

Important example: LHC operating at 7 TeV per proton beam: $E^{cms} = 2 \cdot 7$ TeV = 14 TeV If such E^{cms} were to achieve in a fixed-target experiment then a beam of $E_A \approx 100000$ TeV had to be prepared !!!! Not possible... (Compare: highest observed energy of cosmic rays: $\sim 10^9$ $\sim 10^9$ $\sim 10^9$ [TeV](#page-26-0)[\)](#page-24-0) QQ

Types of high energy experiments

How many variables needed to describe a reaction?

Consider elastic ($ep \rightarrow ep$) and inelastic ($ep \rightarrow eX$) interactions where the initial state (i.e. masses and energies) is known.

Thus for elastic scattering: 1 variable is enough, e.g. $Q^2;$

here also: $W = M (W -$ effective mass of the X system, M - proton mass).

 Ω

Inelastic electron–proton scattering

For the inelastic scattering 2 variables needed, e.g. Q^2 and $\nu.$ Try to find a relation $W \longleftrightarrow Q^2, \nu.$ In the bottom vertex: Energy conservation: $\nu + M = E_X$

Momentum conservation: $Q^2 = \vec{k}^2 - \nu^2 = p_X^2 - \nu^2$

Result:
$$
W^2 = 2M\nu + M^2 - Q^2
$$
 (1)

 $Q^2 = (\vec{p} - \vec{p}')^2 - (E - E')^2 = -2m^2 - 2pp' \cos \vartheta + 2EE' \approx 4EE' \sin^2 \frac{\vartheta}{2}$ (2)

Barbara Badelek (Univ. of Warsaw) [Experimental results on nucleon structure, I](#page-0-0) NNPSS 2013 29/32

Nucleon structure main research centres

In red – running experiments, in green –future ones.

- O SLAC (closed): several experiments, $E_e \leq 50$ GeV, also polarised.
- CERN: μ , E_{μ} : 90 300 GeV, naturally polarised; proton and deuteron targets.
	- **•** BCDMS (completed)
	- **•** EMC (completed)
	- NMC (completed)
	- SMC (spin, completed)
	- **COMPASS (spin)**
- FNAL: exp. E665, μ , E_{μ} = 470 GeV.
- HERA (closed): e–p collider, 28 GeV + 300 GeV
	- H1 (being analysed)
	- ZEUS (being analysed)
	- \bullet HERMES, electrons, $E_e = 27$ GeV on fixed-target (spin, being analysed)
- RHIC: p-p, 250 GeV + 250 GeV, polarised
	- **STAR (also spin)**
	- PHENIX (also spin)
- JLAB: several experiments, $E_e \lesssim 6$ GeV (also spin); soon $E_e \lesssim 12$ GeV.
- \bullet LHC (CMS, ATLAS): p-p, 4 TeV + 4 TeV; soon: 7 TeV + 7 TeV.
- Large Hadron-electron Collider, LHeC and/or Electron Ion Collider, EIC: e–p and e–A

 QQ

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Examples of detectors

 Ω

Acceptance of nucleon structure experiments

Electron beams: high statistics, high systematics (radiative processes), "cheap" Muon beams: low statistics, low systematics, "expensive"

Proton beams: complicated analysis.

Barbara Badelek (Univ. of Warsaw) [Experimental results on nucleon structure, I](#page-0-0) NNPSS 2013 32 / 32