

Rare Isotope Experiments with n-rich nuclei

Motivation: the origin of the heavy elements

<image>

Find more such stars ?

- Only 1:1.2 Mio halo stars r-process element enhanced
- Ongoing Surveys (e.g. SEGUE at Apache Point) might find 1000s of stars in relevant metallicity range
 → Will obtain a fossil record of chemical evolution

Compare calculated results with abundance observations ?

→ Masses, half-lives, n-capture rates of very unstable, exotic nuclei need to be known

 \rightarrow Need experiments and nuclear theory

→ Breakthrough: Find robust r-process with no parameter tuning!
 → Have astronomical data that demonstrate robustness!
 → Wish we had the nuclear data to really test the model ...

 \rightarrow With experimental nuclear masses we could test r-process models

The Joint Institute for Nuclear Astrophysics

Coupled Cyclotron Facility since 2001

A1900 Fragment Separator

JINA

Event by event particle identification

Particle Identification

Search for new isotopes – an example

³⁶ Ca	³⁷ Ca	³⁸ Ca	³⁹ Ca	⁴⁰ Ca	⁴¹ Ca	⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁴⁵ Ca	⁴⁶ Ca	⁴⁷ Ca	⁴⁸ C	Ca	
³⁵ K	³⁶ K	³⁷ K	³⁸ K	³⁹ K	⁴⁰ K	⁴¹ K	⁴² K	⁴³ K	⁴⁴ K	⁴⁵ K	⁴⁶ K	47	к	
³⁴ Ar	³⁵ Ar	³⁶ Ar	³⁷ Ar	³⁸ Ar	³⁹ Ar	⁴⁰ Ar	⁴¹ Ar	⁴² Ar	⁴³ Ar	⁴⁴ Ar	⁴⁵ Ar	46 /	٩r	
³³ Cl	³⁴ Cl	³⁵ Cl	³⁶ Cl	³⁷ Cl	³⁸ Cl	³⁹ Cl	⁴⁰ Cl	⁴¹ Cl	⁴² Cl	⁴³ Cl	⁴⁴ Cl	45 (CI	
³² S	³³ S	³⁴ S	³⁵ S	³⁶ S	³⁷ S	³⁸ S	³⁹ S	⁴⁰ S	⁴¹ S	⁴² S	⁴³ S	44 9	S	
³¹ P	³² P	³³ P	³⁴ P	³⁵ P	³⁶ P	³⁷ P	³⁸ P	³⁹ P	⁴⁰ P	⁴¹ P	⁴² P	43	Ρ	
³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si	³⁵ Si	³⁶ Si	³⁷ Si	³⁸ Si	³⁹ Si	⁴⁰ Si	⁴¹ Si	42 9	Si	
²⁹ AI	³⁰ AI	³¹ AI	³² AI	³³ AI	³⁴ Al	³⁵ AI	³⁶ AI	³⁷ Al	³⁸ AI	³⁹ AI	⁴⁰ AI	41	4 1	
²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg	³³ Mg	³⁴ Mg	³⁵ Mg	³⁶ Mg	³⁷ Mg	³⁸ Mg		⁴⁰ N	٨g	
²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na	³² Na	³³ Na	³⁴ Na	³⁵ Na		³⁷ Na	2002			
²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne	³¹ Ne	³² Ne		³⁴ Ne	200	2002				
²⁵ F	²⁶ F	²⁷ F		²⁹ F		³¹ F	1999 1990 :Gu						Gui	
²⁴ O	260 1990 280 1997									1997:Tara 1999:Sak				

nature T. Baumann *et al.*, Nature 449, 1022 (2007)

• Flight time of the order of 100s of ns. This requires neutron bound!

Observation -> n-bound

Non-observation -> nunbound (if production sufficient)

- The dripline is a benchmark that all nuclear models can be measured against
- Sensitive to aspects of the nuclear force

1990:Guillemaud-Mueller et al., Z. Phys. A 332, 189
1997:Tarasov et al., Phys. Lett. B 409, 64
1999:Sakurai et al., Phys. Lett. B 448, 180
2002:Notani et al., Phys. Lett. B 542, 49 Lukyanov et al., J. Phys. G 28, L41

nature T. Baumann *et al.*, Nature 449, 1022 (2007)

3 events of ⁴⁰Mg

23 events of ⁴²Al

event ⁴³Al

Data taking: 7.6 days at 5 x10¹¹ particles/second

The existence of ^{42,43}Al indicates that the neutron dripline might be much further out than predicted by most of the present theoretical models, certainly out of reach at present generation facilities

NSCL BCS – Beta Counting System

- 4 cm x 4 cm active area
- 1 mm thick
- 40-strip pitch in x and y dimensions ->1600 pixels

NERO – Neutron Emission Ratio Observer

Specifications:

shielding

Polyethylene Moderator

Boron Carbide Shielding

The Joint Institute for Nuclear Astrophysics

NERO Assembly

Result for half-life: 110 ⁺¹⁰⁰-60 ms

Compare to theoretical estimate used:470 ms

^{67,69}Cu: B. Zeidman et al. (1978). ⁷¹Cu: R. Grzywacz et al. (1998) ^{69,71,73}Cu: S. Franchoo et al., (1998, 2001).

Nuclear masses in the r-process

In equilibrium abundance ratios in isotopic chain:

$$\frac{Y(Z,A+1)}{Y(Z,A)} = n_n \frac{G(Z,A+1)}{2G(Z,A)} \left[\frac{A+1}{A} \frac{2\pi\hbar^2}{m_u kT} \right]^{3/2} \exp(S_n / kT)$$

Exponential dependence on neutron separation energy $S_n = m(Z,A) + m_n - m(Z,A+1)$

→ Need masses to precision of kT ~ 100 keV for ~1-2 GK → For A=100 this is 10^{-6}

Contains information about:

- n-density, T, time (fission signatures)
- freezeout
- neutrino presence
- which model is correct

But convoluted with nuclear physics:

- masses (set path)
- T_{1/2}, Pn (Y ~ T_{1/2(prog)}, key waiting points set timescale)
- n-capture rates
- fission barriers and fragments

From isotopic Sn difference: need mass uncertainty << 200 keV For identification of "humps" << 1 MeV (10⁻⁵ precision)

INA

Measurement of Nuclear Masses: Precision need

 $m_{\rm p}, m_{\rm n} \sim 940 \, {\rm MeV}$ $B < 9 \, {\rm MeV/u}$ \rightarrow Just counting Protons and Neutrons gives mass to 1%

→ Need 4 orders of magnitude more Precision !

The Joint Institute for Nuclear Astrophysics

What about mass models?

Penning Trap Mass Meausrements (stopped beams)

Example: TRIGA Penning Trap (Mainz)

neutron number

JYFLTRAP (Hakala et al. 2008) Time of Flight (µs) ⁸³Ga⁺ $T_{1/2} = 300 \text{ ms}$ ISOLTRAP (Baruah et al. 2008) neutron sep. energy (MeV) Frequency (Hz) **FRDM HFB-14 ETFSI-Q** Zn masses out to ⁸¹Zn Error: 2-5 keV $(\sim 10^{-7} \text{ to } 10^{-8} \text{ precision})$ (and accuracy!)

Network calculation: when is ⁸⁰Zn a waiting point?

Baruah et al. 2008

Conditions for >90% β -branch (⁸⁰Zn is waiting point)

BUT: might probe different parts of wave function at different energies

Neutron transfer reaction measurements at HRIBF at ORNL (K. Jones, J. Ciezcewski, et al.)

NATURE | LETTER

previous article next article >

The magic nature of 132 Sn explored through the single-particle states of 133 Sn

K. L. Jones, A. S. Adekola, D. W. Bardayan, J. C. Blackmon, K. Y. Chae, K. A. Chipps, J. A. Cizewski, L. Erikson, C. Harlin, R. Hatarik, R. Kapler, R. L. Kozub, J. F. Liang, R. Livesay, Z. Ma, B. H. Moazen, C. D. Nesaraja, F. M. Nunes, S. D. Pain, N. P. Patterson, D. Shapira, J. F. Shriner Jr, M. S. Smith, T. P. Swan & J. S. Thomas

<image>

Find more such stars ?

- Only 1:1.2 Mio halo stars r-process element enhanced
- Ongoing Surveys (e.g. SEGUE at Apache Point) might find 1000s of stars in relevant metallicity range
 → Will obtain a fossil record of chemical evolution

Contains information about:

- n-density, T, time (fission signatures)
- freezeout
- neutrino presence
- which model is correct

But convoluted with nuclear physics:

- masses (set path)
- T_{1/2}, Pn (Y ~ T_{1/2(prog)}, key waiting points set timescale)
- n-capture rates
- fission barriers and fragments