

Facility For Rare Isotope Beams

Hendrik Schatz

National Superconducting Cyclotron Laboratory

Department of Physics and Astronomy

Joint Institute for Nuclear Astrophysics

Michigan State University

This lecture

- Motivation for FRIB: Why are rare isotopes important to study?
- How can one produce rare isotopes?
- How does FRIB do it?
- Some project details and status

Next lectures:

- Experiments with neutron rich isotopes
- Experiments with "proton rich" isotopes

(Mostly motivated by astrophysics questions)

Why Rare Isotopes: The Science Drivers for FRIB

- Nuclear Astrophysics: Understand the nuclear processes
 that occur in nature
 - Make the same nuclei that nature makes to understand
 - » The origin of the heavy elements and of radioactive nuclei in space
 - » Stellar explosions powered by rare isotopes
 - » Composition of neutron star crusts

Understand the atomic nucleus

- Find new phenomena (shapes, collective behavior, skins)
- Explore the limits of existence
- What makes matter stable?
 - » Towards a predictive theory for nuclei need isospin dependence
- Fundamental Symmetries: Use rare isotopes as optimized laboratories
 - Effects of symmetry violations are amplified in certain nuclei

Other Scientific Applications

- Stockpile stewardship, materials, medical, reactors

Nuclear processes in the cosmos

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Neutron stars – wrapped in rare isotopes

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Drip line and shell structure

Finding the drip line

- Fundamental question: which nuclei can exist?
- Neutron star crust models
- Sensitive probe of mass models and nuclear force furthest from stability

Identifying shell structure

- Defines "chemistry" of nuclei (therefore affects astrophysical processes)
- Sensitive probe of nuclear forces

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

New Insight and Physics from Extreme Halos and Skins

<u>Science:</u> Pairing in low-density material, new tests of nuclear models, Interaction with continuum states - Reactions

Step 1: Understand light nuclei in terms of NN interactions and connect to QCD

- Neutron rich nuclei were key in determining the isospin dependence of 3-body forces
- New data on exotic nuclei continues to lead to refinements in the interactions
- EFT developments are providing insight for *ab initio* theories, but they need grounding in data

Rare isotopes guiding theory role of 3 body forces

Ground state energies relative to ⁴⁰Ca from Theory and experiment

(Holt et al. 2012)

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Tests of Nature's Fundamental Symmetries

- Angular correlations in β-decay and search for scalar currents
 - Mass scale for new particle comparable with LHC
 - $_{\circ}~^{6}\text{He}$ and ^{18}Ne at 10^{12}/s
- Electric Dipole Moments
 - ²²⁵Ac, ²²³Rn, ²²⁹Pa (30,000 more sensitive than ¹⁹⁹Hg; > 10⁹/s)
- Parity Non-Conservation in atoms
 - weak charge in the nucleus (francium isotopes; 10⁹/s)
- Unitarity of CKM matrix
 - $_{\circ}~~V_{ud}$ by super allowed Fermi decay
 - Probe the validity of nuclear corrections

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Rare Isotopes For Society

- Isotopes for medical research
 - Examples: ⁴⁷Sc, ⁶²Zn, ⁶⁴Cu, ⁶⁷Cu, ⁶⁸Ge, ¹⁴⁹Tb, ¹⁵³Gd, ¹⁶⁸Ho, ¹⁷⁷Lu, ¹⁸⁸Re, ²¹¹At, ²¹²Bi, ²¹³Bi, ²²³Ra (DOE Isotope Workshop)
 - α -emitters ¹⁴⁹Tb, ²¹¹At: potential treatment of metastatic cancer
- Reaction rates important for stockpile stewardship non-classified research
 - Determination of extremely high neutron fluxes by activation analysis
 - Rare isotope samples for (n, γ), (n,n'), (n,2n), (n,f) e.g. ^{88,89}Zr
 - » Same technique important for astrophysics
 - More difficult cases studied via surrogate reactions (d,p), (³He, α xn) ...
- Tracers for Geology, Condensed Matter (⁸Li), material studies, ...

Isotope harvesting is included in the FRIB scope

Example: Targeted Cancer Therapy

- Modern targeted therapies in medicine take advantage of knowledge of the biology of cancer and the specific biomolecules that are important in causing or maintaining the abnormal proliferation of cells
- These radionuclides have been relatively difficult to get in sufficient quantities¹. The short-lived alpha emitters are particularly in demand, especially ²²⁵Ac, ²¹³Bi, and ²¹¹At.
- Pairs, e.g., ⁶⁷Cu (treatment) and ⁶⁴Cu (dosimetry) are particularly interesting
- FRIB can parasitically supply demand for many isotopes

¹Isotopes for the Nation's Future: A Long Range Plan, NSACIS 2009

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Sherrill NN2012 , Slide

How can one produce rare isotopes?

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Rare Isotope Production Techniques: Uniqueness of FRIB

Target spallation and fragmentation by light ions (ISOLDE/HRIBF/TRIUMF)

Comparison of different methods

ISOL: light beam into thick target

- Xxx
- Xxx

n/gamma induced fission

- Xxx
- Xxx

Fragmentation fast and reaccelerated beams

- Xxx
- Xxx

Photo fission yields

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Rare Isotope Facilities Around the World

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Timelines for major facilities

Rare Isotope Assessment Committee, NRC/NAS study 2006

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Overview of the FRIB Facility

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB

Rendered Perspective Southeast View

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Sherrill NN2012 , Slide

The Reach of FRIB

- FRIB is estimated to produce more than 1000 NEW isotopes at useful rates (4500 available for study; compared to 1900 now)
- Exciting prospects for study of nuclei along the drip line to A=120(compared to A=24)
- Production of most of the key nuclei for astrophysical modeling
- Theory is key to making the right measurements and interpreting them

Rates are available at http://groups.nscl.msu.edu/frib/ rates/

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Sherrill NN2012 , Slide 22

Fast, Stopped, and Reaccelerated Beams for Broad Science Opportunities

- Fast beams (>100 MeV/u)
 - Farthest reach from stability, knockout, Coulomb exictation, nuclear structure, limits of existence, EOS of nuclear matter
- Stopped beams (0-100 keV)
 - Precision experiments masses, moments, atomic structure, symmetries
- Reaccelerated beams (0.2-20 MeV/u)
 - Detailed nuclear structure studies, high-spin studies
 - -Astrophysical reaction rates

FR

Sherrill NN2012

, Slide

23

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

The Reach of FRIB

Estimated Possible: Erler, Birge, Kortelainen, Nazarewicz, Olsen, Stoitsov, to be published

Based on a study of EDF parameters

Known – isotopes with at least one excited state known

Up to Z=90 FRIB will be able to make >80% of all possible isotopes

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Sherrill NN2012 , Slide

24

Driver Linear Accelerator

Isotope Production Area Target and Fragment Separator

FRIB Preseparator 400 kW Beam Power Requirement

SC Dipoles **Beamline** SC Quadrupoles from Linac <u>....</u> SC Quadrupoles **RT** Multipole Target Beam Dump Œ and Fragment đ 4 **-** $\left(\cdot \right)$ 30 Momentum Catchers compression Beam Dump wedge 5*m* #2 Location **RT** Multipole

• Challenges: beam power densities, radiation damage, activation, ...

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

G. Bollenl, May 2012, EuroRib '12

G Bollen

Isotope harvesting points

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

FRIB

Gas Stopper

- R&D Program lead by ANL and MSU
- Technical Specifications
 - 3 complementary stopping stations and 2 momentum compression lines specifically optimized
 - -Two Linear gas stoppers (ANL, MSU) » L = 1.5 m, p < 300 mbar » I < $10^8/s$, T^{1/2} > 100ms
 - Cyclotron gas stopper for light and medium heavy isotopes (NSF Funded)
 » B_{max} = 2.3T, r_{inj} = 0.95, p_{He} = 50-250 mbar

» I > 10⁸/s, T_{1/2} < 50ms

 Solid stopper for special elements and high beam rates

» Example: ¹⁵O, I >10¹⁰/s

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University Cyclotron gas stopper

Cryogenic

Overview FRIB Reaccelerators, and Experimental Stations

Science-driven Upgrade Opportunities

- Space available for various upgrade options
 - Higher energy
 - ISOL targets

FRIE

- Light ion injector (17 or 200 MeV/u)
- Multi-user simultaneous operation
- Tunnel penetration locations identified in facility design

Sherrill NN2012 , Slide

31

FRIB On Track, Moving Toward Construction

 Conceptual design 	completed 9/2010 (CD-1)
 Preliminary design CD-2/3A (civil) review in April 2012 	2010-2012
 Civil construction begins Pending DOE approval 	2012
 Final design CD-3B (technical) review in 2013 	2012-2013
 Technical construction begins 	2013
 Early project completion 	2019
 Project completion 	2021
 Total project cost 	\$680M (\$585 Federal)

FRIB Site Ready for Civil Construction to Begin

- Utility relocation and site preparation continue on schedule; substantially completed in April, final completion in December 2012
- Pictured above, installation of underground electrical and communication concrete-encased duct bank including new vaults (left), and installation of class II sand backfill at new steam tunnel (right)

FRIB Users Organization

- Users are organized as part of the independent FRIB Users Organization
 - FRIBUO has 1227 members (92 US Colleges and Universities, 10 National Laboratories, 53 countries) as of 16 April 2012
 - Chartered organization with an elected executive committee (Chair is Michael Smith, ORNL)
 - FRIBUO has 20 working groups on experimental equipment
- Science Advisory Committee
 - Review of equipment initiatives (Feb. 2011)
 - Review of FRIB Integrated Design (March 2012)
- Low-Energy Community Meeting with NS2012 at ANL 17-18 Aug.

Join at fribusers.org (and fribastro.org)

August 2011 Joint Users Meeting 284 participants

fribusers.org

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Why is it called FRIB ???

1. frib 17 up, 6 down

birf spelled backwards

2. frib 4 up, 12 down

A word that can be used to describe happiness, joy etc. Commonly replaces 'wow', 'cool' or 'great'.

Summary

- FRIB will allow production of a wide range of isotopes
 - Extend our searches for the limits to nuclear stability
 - Answer key questions on the nature of the universe (chemical history, mechanisms of stellar explosions)
 - Opportunities for the tests of fundamental symmetries
 - Potential for important societal applications
- The unique features of FRIB
 - High power linear accelerator 400 kW
 - In-flight production and separation providing stopped and reaccelerated beams of elements difficulty to get from ISOL techniques

