II: Symmetry and Weak Interactions

Barry R. Holstein UMass Amherst

Lessons from yesterday:

- i) Symmetry is omnipresent in physics though usually broken in one of three ways: explicit, spontaneous, anomalous
- ii) Symmetry combined with effective field theory is a powerful tool

Today look at specific examples, but first big picture: Consider weak interaction

$$\mathcal{H}_w \sim \frac{g^2}{M_W^2 - q^2} J^\mu J_\mu^\dagger \stackrel{q^2 << M_W^2}{\longrightarrow} \frac{G}{\sqrt{2}} J^\mu J_\mu^\dagger$$

where $G\simeq 10^{-5}/m_p^2$. Hence can infer size of M_W via $M_W\sim 1/\sqrt{G}\sim 300GeV$ by LOW energy experiments.

Now consider possible BSM weak effects such as possible scalar interaction

$$H_S \sim \frac{g_S^2}{M_S^2 - q^2} J J^{\dagger} \stackrel{q^2 << M_S^2}{\longrightarrow} \frac{K}{\sqrt{2}} J J^{\dagger}$$

If can experimentally limit K<0.01G then conclude that $M_S\geq 10M_W$. Hence LOW energy limits shed light on HIGH energy physics.

Weak beta decay interactions described by standard model:

$$\mathcal{H}_{w}^{semileptonic} \simeq \frac{g_{w}^{2}}{8M_{W}^{2}} V_{ud} \bar{u} \gamma_{\alpha} (1 - \gamma_{5}) d\bar{e} \gamma^{\alpha} (1 - \gamma_{5}) \nu_{e}$$

Here $\frac{g_w^2}{8M_W^2}\equiv G_F/\sqrt{2}$ where $G_F\simeq 10^{-5}~{\rm GeV^{-2}}$ is Fermi constant.

Universality: $\bar{e}\gamma^{\mu}(1-\gamma_5)\nu_e \rightarrow$

$$\bar{e}\gamma^{\mu}(1-\gamma_5)\nu_e + \bar{\mu}\gamma^{\mu}(1-\gamma_5)\nu_{\mu} + \bar{\tau}\gamma^{\mu}(1-\gamma_5)\nu_{\tau}$$

How to measure G_F —Muon Decay. Universality gives

$$\mathcal{H}_w^{leptonic} \simeq G_F/\sqrt{2}\bar{\nu}_{\mu}\gamma_{\alpha}(1-\gamma_5)\mu\bar{e}\gamma^{\alpha}(1-\gamma_5)\nu_e$$

and leads to

$$\Gamma_{\mu} = \frac{G_F^2 m_{\mu}^5}{192\pi^3}$$

Inclusion of radiative and electron mass corrections yields

$$G_F = (1.16639 \pm 0.00001) \times 10^{-5} \text{ GeV}^{-2}$$

How to check universality— $\pi \to e \nu_e/\pi \to \mu \nu_\mu$. Define

$$<0|A_{\mu}^{-}|\pi_{p_{1}}^{+}> \equiv \sqrt{2}F_{\pi}p_{1\mu}$$

Then

$$\Gamma_{\pi} = \frac{G_F^2 F_{\pi}^2 V_{ud}^{2}}{256\pi m_{\pi}^3} m_{\ell}^2 (m_{\pi}^2 - m_{\ell}^2)^2$$

yields $F_{\pi} = (92.4 \pm 0.3) \; \text{MeV}.$

Then

$$R_{\pi} \equiv \left(\frac{\Gamma(\pi^{+} \to e^{+}\nu_{e})}{\Gamma(\pi^{=} \to \mu^{+}\nu_{\mu})}\right)^{theo}$$
$$= \frac{m_{e}^{2}(m_{\pi}^{2} - m_{e}^{2})^{2}}{m_{\mu}^{2}(m_{\pi}^{2} - m_{\mu}^{2})^{2}} = 1.28 \times 10^{-4}$$

Small because of helicity suppression.

Electromagnetic corrections change to

$$R_{\pi}^{theo} = (1.2353 \pm 0.0001) \times 10^{-4}$$

Compare to

$$R_{\pi}^{exp} = (1.230 \pm 0.004) \times 10^{-4}$$

- i) Pure $V_{\mu} A_{\mu}$ structure—no scalar, pseudoscalar, or tensor interactions;
- ii) Time reversal invariance;
- iii) G-parity: Defining $G = C \exp(-i\pi I_2)$ the weak currents satisfy

$$G(V_{\mu} - A_{\mu})G^{-1} = V_{\mu} + A_{\mu}$$

This requirement is generally called *no second class currents*;

iv) CVC: The weak vector current is related to the electromagnetic current via a simple isotopic spin rotation

$$V_{\mu}^{\pm} = \mp [I_{\pm}, V_{\mu}^{em}]$$

where $I_{\pm} = I_1 \pm iI_2$ are isospin raising/lowering lowering operators. This condition is termed the "conserved vector current" or CVC hypothesis;

v) PCAC: As we have seen, the axial current would also be conserved were this symmetry not broken spontaneously. However, due to this breaking and because the axial divergence is a pseudoscalar, it can be used as an interpolating field for the pion

$$\partial^{\mu}A_{\mu} = F_{\pi}m_{\pi}^2\phi_{\pi} + \mathcal{O}(\phi_{\pi}^3)$$

This requirement is called the "partially conserved axial vector current" or PCAC hypothesis and is closely tied in to chiral symmetry;

vi) Unitarity: The weak coupling constant $G_F^{\beta}V_{ud}$ responsible for nuclear beta decay is identical to that in nuclear muon capture and is related to that responsible for muon decay— G_F^{μ} —via

$$G_F^{\beta} = G_F^{\mu}$$

where V_{ud} is related by unitarity to other mixing angles via

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

vi)

Use "allowed" decays— $\Delta J=0,\pm 1,~\Delta\Pi=\mathrm{no}.$ Example is neutron decay

$$< p_{p'}|V_{\mu}|n_{p}>$$

$$= \bar{u}_{p}(p') \left(\gamma_{\mu}f_{1}(q^{2}) - i\sigma_{\mu\nu}q^{\nu}\frac{f_{2}(q^{2})}{2M} + q_{\mu}\frac{f_{3}(q^{2})}{2M}\right)u_{n}(p)$$

$$< p_{p'}|A_{\mu}|n_{p}>$$

$$= \bar{u}_{p}(p') \left(\gamma_{\mu}g_{1}(q^{2}) - i\sigma_{\mu\nu}q^{\nu}\frac{g_{2}(q^{2})}{2M} + q_{\mu}\frac{g_{3}(q^{2})}{2M}\right)\gamma_{5}u_{n}(p)$$

 f_1, g_1 : Vector, axial couplings

 f_2, g_2 : Weak magnetism, weak electricity couplings

 f_3, g_3 : Induced scalar, pseudoscalar couplings

Consider arbitrary allowed transition—

$$J^{\pm} \rightarrow J^{\pm}, J \pm 1^{\pm}$$

to NLO in recoil— q/m_N , q^2R^2 .

$$\ell^{\mu} < \beta |V_{\mu}|\alpha > = \left(a(q^{2}) \frac{P \cdot \ell}{2M} + e(q^{2}) \frac{q \cdot \ell}{2M}\right) \delta_{JJ'} \delta_{MM'}$$

$$+ i \frac{b(q^{2})}{2M} C_{J'1;J}^{M'k;M} (\vec{q} \times \vec{\ell})_{k}$$

$$+ C_{J'2;J}^{M'k;M} \left[\frac{f(q^{2})}{2M} C_{11;2}^{nn';k} \ell_{n} q_{n'}\right]$$

$$+ \frac{g(q^{2})}{(2M)^{3}} P \cdot \ell \sqrt{\frac{4\pi}{5}} Y_{2}^{k} (\hat{q}) \vec{q}^{2} + \dots$$

$$\ell^{\mu} < \beta |A_{\mu}| \alpha >$$

$$= C_{J'1;J}^{M'k;M} \epsilon_{ijk} \epsilon_{ij\lambda\eta} \frac{1}{4M} \left[c(q^2) \ell^{\lambda} P^{\eta} - d(q^2) \ell^{\lambda} q^{\eta} \right]$$

$$+ \frac{1}{(2M)^2}h(q^2)q^{\lambda}P^{\eta}q \cdot \ell \bigg]$$

+
$$C_{J'2;J}^{M'k;M}C_{12;2}^{nn';k}\ell_n\sqrt{\frac{4\pi}{5}}Y_2^{n'}(\hat{q})\frac{\vec{q}^2}{(2M)^2}j_2(q^2)$$

+
$$C_{J'3;J}^{M'k;M}C_{12;3}^{nn';k}\ell_n\sqrt{\frac{4\pi}{5}Y_2^{n'}(\hat{q})\frac{\vec{q}^2}{(2M)^2}}j_3(q^2)+\dots$$

$$a \rightarrow f_1, \qquad c \rightarrow g_1$$

 $b \rightarrow f_2, \qquad d \rightarrow g_2$
 $e \rightarrow f_3, \qquad h \rightarrow g_3$

No neutron analog for f, g, j_2, j_3 since $\Delta J = 2, 3$

Note there are impulse approximation (one-body) predictions for each form factor. In leading case

$$a(0) = f_1(0)M_F$$
 and $c(0) = g_1(0)M_{GT}$

where $f_1(0)=1$ is the neutron vector coupling and $M_F=<\beta||\sum_n \tau_n^\pm||\alpha>$ is Fermi matrix element and $g_1(0)=-1.275$ is the neutron axial coupling and $M_{GT}=<\beta||\sum_n \tau_n^\pm \vec{\sigma}_n|||\alpha>$ is the Gamow-Teller matrix element. Here M_F vanishes unless $|\alpha>,|\beta>$ are isotopic analogs such as $^{10}C,^{10}B$ or $^{14}O,^{14}N,$ etc. in which case $M_F=\sqrt{2}$.

For $0^+ - 0^+$ transitions such as these $M_{GT} = 0$ so if define phase space factor

$$f(Z, R, E_0) = \int_{m_e}^{E_0} dE_e F(Z, R, E_e) (E_0 - E_e)^2 E_e p_e$$

then

$$ft_{\frac{1}{2}} = \frac{\pi^3 \log 2}{G_F^2 V_{ud}}|^2$$

and should be same for all such transitions. Find

$$E_0({\sf KeV})$$
 $f^R{\sf t}({\sf sec})$ $10{\sf C}$ 886 3076.7 ± 4.6 $14{\sf O}$ 1809 3071.5 ± 3.3 $26{\sf Al}^m$ 3211 3072.4 ± 1.4 $34{\sf Cl}$ 4470 3070.6 ± 2.1 $38{\sf K}^m$ 5023 3072.5 ± 2.4 $42{\sf Sc}$ 5402 3072.4 ± 2.7 $46{\sf V}$ 6029 3073.3 ± 2.7 $50{\sf Mn}$ 6610 3070.9 ± 2.8 $54{\sf Co}$ 7220 3069.9 ± 3.3

Can now measure V_{ud} using $ft_{\frac{1}{2}}^{av}=3071.8\pm0.8$ sec, yielding

$$V_{ud} = 0.97425 \pm 0.00022$$

Using $V_{us}=0.2253\pm0.0009$ from $K_{\ell 3}$ decay and $V_{ub}=0.00339\pm0.00044$ from PDG unitarity test gives

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.99990 \pm 0.00060$$

Another CVC test—Gell-Mann suggested use of A=12 isotriplet— $^{12}B,\,^{12}C(15.11~{
m MeV},\,1^+),\,^{12}N$

Define shape factor S(E) via

$$\frac{d\Gamma}{dE}$$
 = Phase Space \cdot $S(E)$

where

Phase Space
$$\sim F(\pm Z, E) p E(E_0 - E)^2$$

Then

$$S(E) = 1 \pm \frac{4E}{3M} \frac{b}{c}$$
 for e^{\mp} decay

CVC prediction for b from 15.11 MeV ¹²C radiative width

$$b = \sqrt{\frac{6M^2 \Gamma_{M1}}{\alpha E_0^3}}$$

yields

$$\frac{b}{Ac_{\,\mathrm{nuclear}}} \sim \frac{b}{c_{\,\mathrm{nucleo}\,\mathrm{n}}} \sim 4.7$$

and

$$\frac{dS}{dE} \simeq \pm \frac{4}{3m_N} \frac{b}{Ac} \sim \pm 0.5\%/\text{MeV}$$

Experiment:

Exp.
$$\%/\text{MeV Thy}$$
 $\frac{dS}{dE}^-$ Lee et al. $0.48\pm~0.10$ 0.43 $\frac{dS}{dE}^+$ Lee et al. $-0.52\pm~0.06$ -0.50

Now look at second class currents. Suppose we have both currents such as $\bar{q}\gamma_{\mu}\gamma_{5}q$, $\bar{q}\gamma_{\mu}q$ which are "first class"— $GV_{\mu}^{I}G^{-1}=V_{\mu}^{I},~GA_{\mu}^{I}G^{-1}=-A_{\mu}^{I}$ and BSM "second class currents"— $GV_{\mu}^{II}G^{-1}=-V_{\mu}^{II},~GA_{\mu}^{II}G^{-1}=A_{\mu}^{II}$.

Then

$$\exp(-i\pi I_2)J_{\mu}^{x\pm}\exp(i\pi I_2) = \epsilon_x J_{\mu}^{x\pm}$$

with

$$\epsilon_I = \mp 1 \text{ if } TJ^I_{\mu}T^{-1} = \pm J^{I\mu\dagger}$$
 $\epsilon_{II} = \pm 1 \text{ if } TJ^{II}_{\mu}T^{-1} = \pm J^{II\mu\dagger}$

For transitions within a common isotopic multiplet

$$< I, I_3 \pm 1; \vec{p}', J, M' | J^x_\mu | I, I_3; \vec{p}, J, M>$$

$$= -\epsilon_x < I, -I_3; \vec{p}, J, M | J^x_\mu | I, -I_3 \pm 1; \vec{p}', J, M'>^*$$
 so
$$0 = a^{II}(q^2) = b^{II}(q^2) = c^{II}(q^2)$$

$$= g^{II}(q^2) = h^{II}(q^2) = j_3^{II}(q^2)$$

$$0 = d^{I}(q^{2}) = e^{I}(q^{2}) = f^{I}(q^{2}) = j_{2}^{I}(q^{2})$$

and no second class currents says $d, e, f, j_2 = 0$ for analog transitions.

For transitions not within a common isotopic multiplet

$$\langle I', I_3 \pm 1; \vec{p}', J', M' | J_{\mu}^{x\pm} | I, I_3; \vec{p}, J, M \rangle$$

$$= (-)^{I-I'+1} \epsilon_x \langle I', -I_3 \pm 1; \vec{p}', J', M' | J_{\mu}^{x\mp} | I, -I_3 \pm 1; \vec{p}, J, M \rangle^*$$

Thus for first class

$$F_I(q^2; I_3 \to I_3 \pm 1) = (-)^{I-I'} F_I^*(q^2; -I_3 \to -I_3 \mp 1)$$

while for second class

$$F_{II}(q^2; I_3 \to I_3 \pm 1) = -(-)^{I-I'} F_{II}^*(q^2; -I_3 \to -I_3 \mp 1)$$

How to check? Consider A=12 system and produce alignment

$$\Lambda = 1 - \frac{3}{2} \langle J_z^2 \rangle$$

and measure

$$\frac{d^5\Gamma}{dE_e d\Omega_e} \propto 12\Lambda\delta(E) \left(\left(\frac{\vec{p}_e \cdot \hat{n}}{E_e} \right)^2 - \frac{1}{3} \frac{p_e^2}{E_e^2} \right)$$

for both ^{12}N , ^{12}B decays. Since

$$\delta^{\pm}(E) = \frac{E}{2M} \left(\pm \frac{b + d^{II}}{c} + \frac{d^{I}}{c} \right)$$

find

$$\delta^{-}(E) - \delta^{+}(E) = -\frac{E}{M} \frac{b + d^{II}}{c}$$

Subtraction of CVC weak magnetism value yields d^{II} .

Has also been done for A=8 and A=20 systems using $\beta-\alpha$ and $\beta-\gamma$ correlations to eliminate higher order form factors. Results are

Now look at right-handed currents. Standard model based on $SU(2)_L\otimes U(1)$. Why not $SU(2)_L\otimes SU(2)_R\otimes U(1)$? Would then be two sets of gauge bosons— $W^\pm_{L\mu}$ and $W^\pm_{R\mu}$ —with $M_{W_R}>>M_{W_L}$ so that $G_{FL}>>G_{FR}=G_{FL}\frac{M_{WL}^2}{M_{WR}^2}$. Since mass W_1,W_2 and chiral W_L,W_R eigenstates need not be the same define

$$W_1 = \cos \chi W_L - \sin \chi W_R$$
$$W_2 = \sin \chi W_L - \cos \chi W_R$$

and $\sigma = M_1^2/M_2^2$. Then standard model is $\sigma \chi = 0$.

But in more general case

$$\mathcal{H}_w \sim \frac{G}{\sqrt{2}} \left[\gamma_\mu (1 - \gamma_5) \otimes \gamma^\mu (1 + \epsilon \gamma_5) \right]$$

$$+\gamma_{\mu}(1+\gamma_{5})\times(\gamma^{\mu}(x-y\epsilon\gamma_{5})]$$

with

$$x \approx \sigma - \chi, \quad y = \sigma + \chi, \quad \epsilon = \frac{1 - x}{1 - y}$$

How to detect x,y? Can compare positron helicities for Fermi vs. Gamow-Teller decays—

$$\frac{P_L^F}{P_L^{GT}} \simeq 1 - 2x^2 + 2y^2 = 1 + 8\sigma\chi$$

Experimentally

$$\frac{P_L^F}{P_L^{GT}} = 1.003 \pm 0.004$$

Compare ft and asymmetries for ^{19}Ne —

$$\frac{ft^{\text{Fermi}}}{ft^{Ne}} = \frac{a^2 + c^2 + x^2a^2 + y^2c^2 + T_3}{a_F^2(1+x^2)}$$

and

$$A = \frac{\frac{2}{\sqrt{3}}c(a + \frac{c}{\sqrt{3}}) - 2y\frac{c}{\sqrt{3}}(xa + y\frac{c}{\sqrt{3}}) + T_1}{a^2 + c^2 + x^2a^2 + y^2c^2 + T_2}$$

where

$$rac{d\Gamma_{eta}}{d\Omega_{e}} \sim 1 + AP\hat{J} \cdot \vec{p}_{eta}/E_{eta} + \dots$$

Why ^{19}Ne ? Value

$$\left(\frac{c}{a}\right)^{19_{Ne}} \simeq \sqrt{\frac{2ft^{\text{Fermi}}}{ft^{19_{Ne}}} - 1} \simeq -1.60$$

is very near the value $c/a=-\sqrt{3}$ at which pure left-handed asymmetry would vanish, so very sensitive to RH effects.

Look at Muon decay spectrum

$$\frac{d^2\Gamma_{\mu}}{s^2 ds d(\cos \theta)} \sim 3 - 2s + \left(\frac{4}{3}\rho - 1\right) (4s - 3) + 12 \frac{m_e}{s m_{\mu}} (1 - s)\eta$$

$$+\xi P_{\mu}\cos\theta\left[\left(\frac{4}{3}\delta-1\right)(4s-3)+2s-1\right]$$

with $s=E_e/E_{\rm max}$ and Michel parameters

$$\rho \simeq \frac{3}{4} \left(1 - \frac{1}{2} (x - y)^2 \right)$$
$$\xi \simeq 1 - x^2 - y^2$$
$$\delta \approx \frac{3}{4}$$
$$\eta \approx 0$$

Results from TRIUMF

$$\frac{\xi P_{\mu} \delta}{\rho} > 0.9959$$
 at 90% C.L.

yields

$$\frac{\xi P_\mu \delta}{\rho} \simeq 1 - 2(\sigma + \chi)^2 - 2\sigma^2$$
 and yield the constraints shown. From PSI

$$P_{\mu}\xi = 1.0027 \pm 0.0084$$

Testing PCAC—two direct predictions in weak interactions.

One is Goldberger-Treiman relation

$$\frac{1}{2}(m_p + m_n)g_A(0) = F_{\pi}g_{\pi NN}(0)$$

Here $\frac{1}{2}(m_p+m_n)=939$ MeV, $F_\pi=92.4$ MeV, and $g_A(0)=1.275$ are well determined, but not so $g_{\pi NN}(0)$. Karlsruhe dispersive analysis gives $g_{\pi NN}(m_\pi^2)=13.45$ but VPI gives 13.1. Basically works well to per cent level.

Second prediction is for induced pseudoscalar form factor— $g_P(q^2)$. Expect

$$g_P(q^2) = \frac{4MF_\pi}{m_\pi^2 - q^2} g_{\pi NN}(q^2) \simeq \frac{4MF_\pi}{m_\pi^2 - q^2} g_{\pi NN}(q^2) - \frac{2M^2}{3} g_A(0) r_A^2$$

Use combination

$$r_P = \frac{m_\mu}{2Mg_A(0)}g_P(q^2 = -0.9m_\mu^2) = 6.7$$

relevant for muon capture. Need muon capture since in beta decay effects are $\mathcal{O}(r_P m_e^2/(2Mm_\mu)) \sim 10^{-5}$ but in muon capture $\mathcal{O}(r_P m_\mu/2M) \sim 0.35$.

However, capture rate is one number, so must assume CVC, no second class currents, q^2 -dependence of form factors is known. Then can determine r_P . Current results are

$$r_P = \begin{cases} 7.3 \pm 1.1 & H \\ 6.9 \pm 0.2 & {}^{3}He \\ 9.0 \pm 1.7 & {}^{12}C \end{cases}$$

$$\begin{split} \frac{d^3\Gamma}{dE_e d\Omega_e d\Omega_v} &\propto F(Z, E_e) p_e E_e (E_0 - E_e)^2 \\ &\times \left(f_1(E_e) + a_{\beta \nu} (E_e) \frac{\vec{p}_e \cdot \vec{p}_{\nu}}{E_e E_{\nu}} + b_{\text{Fierz}} (E_e) \frac{m_e}{E_e} \right) \end{split}$$

$$a_{\beta\nu} = \left(|M_F|^2 (|C_V|^2 + |C_V'|^2 - |C_S|^2 - |C_S'|^2) - \frac{1}{3} |M_{GT}|^2 (|C_A|^2 + |C_A'|^2 - |C_T|^2 - |C_T'|^2) \right) \xi^{-1}, \quad (2)$$

where

$$\xi = |M_F|^2 (|C_V|^2 + |C_V'|^2 + |C_S|^2 + |C_S'|^2) + |M_{GT}|^2 (|C_A|^2 + |C_A'|^2 + |C_T'|^2)$$
(3)

$$b_{\text{Fierz}} = \pm 2\sqrt{1 - (Z\alpha)^2} \text{Re}[|M_F|^2 (C_S C_V^* + C_S' C_V'^*) + |M_{\text{GT}}|^2 (C_T C_A^* + C_T' C_A'^*)] \xi^{-1}.$$

Recent ²¹Na trapping measurements, yielded

$$a^{exp} = 0.5502(60)$$
 vs. $a^{the-SM} = 0.553(2)$

puts limits on possible tensor, scalar couplings.

