Il: Symmetry and Weak
Interactions

Barry R. Holstein
UMass Amherst



Lessons from yesterday:

1) Symmetry is omnipresent in physics though
usually broken in one of three ways: explicit,
spontaneous, anomalous

i) Symmetry combined with effective field theory
Is a powerful tool



Today look at specific examples, but first big picture:
Consider weak interaction
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where G =~ 10_5/?17%. Hence can infer size of

My, via My, ~ 1/v/G ~ 300GeV by LOW energy
experiments.



Now consider possible BSM weak effects such as
possible scalar interaction
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If can experimentally limit K < 0.01G then

conclude that Mg > 10My,. Hence LOW energy
limits shed light on HIGH energy physics.



Weak beta decay interactions described by standard
model:
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Here 4 = Gr/vV2 where Gp ~ 107° GeV~2 is
W
Fermi constant.



Universality: ey*(1 — v5)v, —

ey (1 —s5)ve + iy (1 — v5)vp + TyH(1 — y5) 17

How to measure Gp—Muon Decay. Universality gives
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and leads to
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Inclusion of radiative and electron mass corrections
yields

How to check universality—m — ev,/m — pv,,. Define
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vields F, = (92.4 £0.3) MeV.
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Small because of helicity suppression.
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Electromagnetic corrections change to
Rte0 — (1.2353 4+ 0.0001) x 10~*
Compare to

R¢*P = (1.230 £ 0.004) x 10~ *



i) Pure V,— A‘u_ structure—no scalar, pseudoscalar, or
tensor interactions;

ii) Time reversal invariance;

i) G-parity: Defining G = Cexp(—inly) the weak
currents satisfy

G(Vg - AM)G_I — V.u_ + A.u.

This requirement is generally called no second class
currents;



iv)

CVC: The weak vector current is related to the

electromagnetic current via a simple isotopic spin
rotation

Vi =FL, V™

where I+ = I} + il5 are isospin raising/lowering
lowering operators. This condition is termed the
“conserved vector current” or CVC hypothesis;

PCAC: As we have seen, the axial current would
also be conserved were this symmetry not broken
spontaneously. However, due to this breaking and
because the axial divergence is a pseudoscalar, it
can be used as an interpolating field for the pion

a‘uAp. — Fﬂm’?rqb?r + O(ber)

This requirement is called the “partially conserved
axial vector current” or PCAC hypothesis and is
closely tied in to chiral symmetry;



vi)

Unitarity: The weak coupling constant G?Vud
responsible for nuclear beta decay is identical to
that in nuclear muon capture and is related to that
responsible for muon decay—G.—uvia

Gr = G"

where V.4 I1s related by unitarity to other mixing
angles via

‘Vud‘z + ‘Vus‘g T ‘Vub‘z =1

vi) ...



Use "allowed” decays—AJ = 0,£1, AIl = no.
Example is neutron decay
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f1,g1: Vector, axial couplings
fo, g2: Weak magnetism, weak electricity couplings
f3,g3: Induced scalar, pseudoscalar couplings



Consider arbitrary allowed transition—
JE = JE T+ 17

to NLO in recoil—q/my, ¢* R*.
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a— fi. C— 01
b — fo, d— g0
e — f3, h — g3

No neutron analog for f, g, j2, j3 since AJ = 2.3

Note there are impulse approximation (one-body)
predictions for each form factor. In leading case

a(0) = f1(0)Mp and ¢(0) = g1(0)Mgr

where f1(0) = 1 is the neutron vector coupling and
Mp =< B|| >, 7||a > is Fermi matrix element and
g1(0) = —1.275 is the neutron axial coupling and
Mgt =< B||Y., 756,|||la > is the Gamow-Teller
matrix element. Here Mp vanishes unless |a >, |3 >

are isotopic analogs such as *°C, "B or 1*O, N, etc.
in which case Mp = /2.



For 0T — 0™ transitions such as these Mg = 0 so if
define phase space factor

Eq
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then
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and should be same for all such transitions. Find



Can now measure V4 using ft1" = 3071.8 & 0.8 sec,
2

yielding

E[](KEV)

886
1809
3211
4470
5023
5402
6029
6610
7220

fEt(sec)
3076.7+4.6
3071.5+3.3
3072.4+1.4
3070.6+2.1
3072.5+2.4
3072.44+2.7
3073.3+2.7
3070.9+2.8
3069.9+3.3

Via = 0.97425 + 0.00022



Using V,s = 0.2253 & 0.0009 from K3 decay and
Vap = 0.00339 £+ 0.00044 from PDG unitarity test
gives

Vaudl® + |[Vus|® + [Vus|? = 0.99990 + 0.00060

Another CVC test—Gell-Mann suggested use of A=12isotriplet—
2B 2C(15.11 MeV,17), 2N

Define shape factor S (F) via

dr’
yToh Phase Space - S(E)
where
Phase Space ~ F'(+Z, E)pE(Eo — E)2
Then

4FE b
S(E)=14+ —~ for e’ decay
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CVC prediction for b from 15.11 MeV '“C radiative width

yields

and

Experiment:

b b
~ — ~ 4.7

A C nue lear Cnucleon

dS 4 b
— ~ — ~ +0.5%/MeV
dFE 3myAc o/Me

Exp. %/MeV Thy
Lee et al. 0.48+ 0.10 0.43
Lee et al. -0.52+ 0.06 -0.50



Now look at second class currents. Suppose we

have both currents such as ¢v,75q, gy.q which are

“first cIaSS”—GViG_l — Vj, GA::G_l — —Ai

and BSM “second class curren‘cs”—(;ﬂ/:jf(;?_1 =
I1 IT—1 _ Al

-V.,5, GA G " =A,.

Then
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For transitions within a common isotopic multiplet
< I,Ig ﬂ:lﬁiJ,ﬂ’f”Jj‘I,IsﬁJ?ﬂ{ >

=—E$<I,—I;.;;}iJjﬂ/ﬂJﬂI,—Igj:l;ﬁ’,J,ﬂf>*

SO
0 =a'(¢®) = b"(¢") = ()

= g""(¢*) = " (¢*) = j5' (&%)
0=d"(¢°) = €¢'(¢*) = ' (¢*) = 73(¢%)

and no second class currents says d.e, f, 72 = 0 for
analog transitions.

For transitions not within a common isotopic multiplet
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Thus for first class
2, - I-1I" %y 2
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while for second class
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How to check? Consider A=12 system and produce alignment
3
A=1-5< J?>

and measure
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for both '2N, *B decays. Since
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find
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Subtraction of CVC weak magnetism value yields d’’.
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Has also been done for A=8 and A=20 systems using 3 — « and

(3 — ~ correlations to eliminate higher order form factors. Results
are

d'/Ac d' /b
A=8 —0.244+0.31 —0.03 £ 0.04
A=12 —0.154+0.17 —0.04+0.04
A=20  0.18 £ 0.48 0.02 £ 0.06



Now look at right-handed currents. Standard model based on

SU((2)r ® U(1). Why not SU(2)rL ® SU(2)r ® U(1)?

Would then be two sets of gauge bDSDI’IS—WEi and Wﬁi—with
2

M'WR >> M'WL so that Gpr >> Gpgr = GFLE_W#. Since

WR
mass Wi, W5 and chiral Wy, W eigenstates need not be the
same define

Wi = cos xWp — sin xWg
Wo = sin xWp — cosxyWkg
and o = M;/M_;. Then standard model is oy = 0.

But in more general case

G ,
H-u: - ﬁ [FTJ.L(]' — Tﬁ) & F}'J (1 + ET&)
+9u(1 +75) X (7" (xz — yevs)]
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How to detect =, y? Can compare positron helicities for Fermi
vs. Gamow- Teller decays—
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Experimentally
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Compare ft and asymmetries for 'Y Ne—
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Why ' Ne? Value

1! "
c Ne 2 f tF{}rrm
a ft “Ne

is very near the value ¢c/a = —+/3 at which pure left-handed

asymmetry would vanish, so very sensitive to RH effects.
Look at Muon decay spectrum
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with s = E_/E .. and Michel parameters



Results from TRIUMF

P.é
i > 0.9959 at 90% C.L.
P
yields b
o 1 —2(0 4 x)° — 207
P

and yield the constraints shown. From PSI

P,¢ = 1.0027 + 0.0084



Testing PCAC—two direct predictions in weak interactions.

One is Goldberger-Treiman relation

1
E(WLP + mp)ga(0) = Frgznn(0)

Here %(mp + my,) = 939 MeV, F.=92.4 MeV, and ga(0) =
1.275 are well determined, but not so g.nn(0). Karlsruhe

dispersive analysis gives gWNN(m?T) = 13.45 but VPI gives
13.1. Basically works well to per cent level.

Second prediction is for induced pseudoscalar form factor—
gr(q?). Expect

2M?
3

, AMPF., AMF.
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Use combination

my

T 2Mga(0)

rp gr(g”=—0.9m,) = 6.7

relevant for muon capture. Need muon capture since in beta
decay effects are O(rpm?>/(2Mm,)) ~ 107> but in muon
capture O(rpm,/2M) ~ 0.35.

However, capture rate is one number, so must assume CVC, no
second class currents, g?-dependence of form factors is known.
Then can determine rp. Current results are

( 73+1.1 H
rp=1<{ 6.9+0.2 °He
9.0+ 1.7 '?*C
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where

£ = |Mp|*(ICv]* + |Cy1* + |Cs|* + |Cs1P) + |Mar|*(ICal?
+C* +|Cr > + |1Cp ) (3)

beier: = £2v/1 — (Za)?Re[|Mp|*(CsCl + C5CY)
+ |Mgr|X(CrCh + CrCHE



Recent ?'Na trapping measurements, yielded

a®”? = 0.5502(60) vs. a'"*°M =(.553(2)

puts limits on possible tensor,scalar couplings.
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