Two Lectures on Quark-Gluon Plasma Lecture 2

Berndt Müller National NP Summer School Santa Fe - July 16-17, 2012

Tomorrow

Lecture 2 Probing the QGP in Relativistic Heavy Ion Collisions

QGP Landscape

Part 1 Formation and Evolution of the QGP

Space-time picture

Gluon saturation

Evolution in x is described by BK or JIMWLK equations. Location of the onset of saturation is determined by fluctuations (lancu, Peschanski,...)

 $rac{\partial^2 \phi}{\partial au^2}$

Absolute number may be questionable (no quarks, no equilibration, no hadrons) but the trend with N_{part} and \sqrt{s} is right.

Transverse sections of the local energy density at $\tau = 0.4$ fm/c

Part 2 Probes of the QGP

Probes of hot QCD matter

Which **properties of hot QCD matter** can we hope to determine from relativistic heavy ion data (RHIC and LHC, maybe FAIR) ?

$$T_{\mu\nu} \iff \mathcal{E}, p, s \quad \text{Equation of state: spectra, coll. flow, fluctuations}$$

$$c_s^2 = \partial p / \partial \mathcal{E} \quad \text{Speed of sound: multiparticle correlations}$$

$$\eta = \frac{1}{T} \int d^4 x \left\langle T_{xy}(x) T_{xy}(0) \right\rangle \quad \text{Shear viscosity: anisotropic collective flow}$$

$$\hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle F^{a+i}(y^-) F_i^{a+}(0) \right\rangle$$

$$\hat{e} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle i\partial^- A^{a+}(y^-) A^{a+}(0) \right\rangle$$

$$\hat{e}_2 = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \left\langle F^{a+-}(y^-) F^{a+-}(0) \right\rangle$$

$$m_D = -\lim_{|x| \to \infty} \frac{1}{|x|} \ln \left\langle E^a(x) E^a(0) \right\rangle \quad \text{Color screening: Quarkonium states}$$

Probes of hot QCD matter

Which properties of hot QCD matter can we hope to determine from relativistic heavy ion data (RHIC and LHC, maybe FAIR) ?

Easy for
LQCD
$$T_{\mu\nu} \iff \mathcal{E}, p, s$$

 $c_s^2 = \partial p / \partial \mathcal{E}$ Equation of state: spectra, coll. flow, fluctuations $\eta = \frac{1}{T} \int d^4x \langle T_{xy}(x) T_{xy}(0) \rangle$ Speed of sound: multiparticle correlations $\eta = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \langle F^{a+i}(y^-) F_i^{a+}(0) \rangle$ Shear viscosity: anisotropic collective flow $\hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \langle F^{a+i}(y^-) F_i^{a+}(0) \rangle$ Momentum/energy diffusion:

 \hat{e}_2

Speed of sound: multiparticle correlations

Shear viscosity: anisotropic collective flow

$$= \frac{4\pi^{2} \alpha_{s} C_{R}}{N_{c}^{2} - 1} \int dy^{-} \left\langle F^{a+i}(y^{-})F_{i}^{a+}(0) \right\rangle$$

$$= \frac{4\pi^{2} \alpha_{s} C_{R}}{N_{c}^{2} - 1} \int dy^{-} \left\langle i\partial^{-}A^{a+}(y^{-})A^{a+}(0) \right\rangle$$

$$= \frac{4\pi^{2} \alpha_{s} C_{R}}{N_{c}^{2} - 1} \int dy^{-} \left\langle F^{a+-}(y^{-})F^{a+-}(0) \right\rangle$$

 $m_D = -\lim_{|x| \to \infty} \frac{1}{|x|} \ln \left\langle E^a(x) E^a(0) \right\rangle$

Momentum/energy diffusion: parton energy loss, jet fragmentation

Color screening: Quarkonium states

Easy for

Probes of hot QCD matter

Which **properties of hot QCD matter** can we hope to determine from relativistic heavy ion data (RHIC and LHC, maybe FAIR) ?

Easy for
LQCD
$$T_{\mu\nu} \iff \mathcal{E}, p, s$$

 $c_s^2 = \partial p / \partial \mathcal{E}$ Equation of state: spectra, coll. flow, fluctuations $g_s^2 = \partial p / \partial \mathcal{E}$ Speed of sound: multiparticle correlations $\eta = \frac{1}{T} \int d^4 x \langle T_{xy}(x) T_{xy}(0) \rangle$ Shear viscosity: anisotropic collective flowHard for
LQCD $\hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \langle F^{a+i}(y^-) F_i^{a+}(0) \rangle$
 $\hat{e} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \langle i\partial^- A^{a+}(y^-) A^{a+}(0) \rangle$
 $\hat{e}_2 = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^- \langle F^{a+-}(y^-) F^{a+-}(0) \rangle$ Momentum/energy diffusion:
parton energy loss, jet fragmentationEasy for
LQCD $m_D = -\lim_{|x| \to \infty} \frac{1}{|x|} \ln \langle E^a(x) E^a(0) \rangle$ Color screening: Quarkonium states

10

Part 2 The Liquid QGP

^ιΠ –

 $d\tau$

2nd order relativistic hydrodynamics

 $d\tau$

$$\eta$$
 = Shear viscosity

Excellent approximation of Boltzmann transport; negligible uncertainties due to:

- Bulk viscosity
- QCD Equation of state

Main input parameters:

- η/s
- Initial energy density profile
- Equilibration time τ_0

Perfect fluid

In gauge theories with a gravity dual, dissipation is dominated by absorption of gravitons on the black brane. This leads to the universal relation

Kovtun, Son & Starinets PRL 94 (2005) 111601

KSS bound is not completely universal, can be violated in dual gravity theories involving higher derivative (non-GR) terms. It is far below η /s of any known material (except QGP and ultra-cold fermionic atoms with unitary interactions).

A similar bound is found in kinetic theory from unitarity limit of cross sections and uncertainty relation [Danielewicz & Gyulassy (1985)]:

$$\eta \approx \frac{1}{3} n \,\overline{p} \,\lambda_f \approx \frac{1}{12} s(\overline{p} \,\lambda_f) \quad \rightarrow \quad \frac{\eta}{s} \approx \frac{\overline{p} \,\lambda_f}{12} \ge \frac{\hbar}{12}$$

Hydro describes spectra @ LHC

Identified particle spectra show clear evidence of thermalization and flow.

Elliptic Flow (v₂)

Hydrodynamics:

Flow is generated by ∇P

 $v_2 = cos(2\phi)$ coefficient of the azimuthal distribution

 $\nabla \mathsf{P}(\leftrightarrow) > \nabla \mathsf{P}(1)$

Event by event

Initial state generated in A+A collision is grainy event plane \neq reaction plane \Rightarrow eccentricities ε_1 , ε_2 , ε_3 , ε_4 , etc. $\neq 0$

 \Rightarrow flows v₁, v₂, v₃, v₄,...

Elliptic flow "measures" η_{QGP}

v₂ & v₃ @ LHC

Shear viscosity

Viscosity of QCD matter

Part 3 The Opaque QGP

Parton energy loss in QCD

pQCD formalism

Example: DGLV

$$x \frac{dN_g^{\text{DGLV}}}{dx} = \frac{2C_R \alpha_s}{\pi^3} \frac{L}{\lambda_f} \int d^2 q \, d^2 k \frac{\mu^2}{\left(q^2 + \mu^2\right)} K_{\text{rad}}\left(k,q\right) \int_0^L dz \, K_{\text{LPM}}\left(k,q;z\right) \rho(z)$$

$$K_{\text{rad}}\left(k,q\right) = \frac{\vec{k} \cdot \vec{q}(k-q)^2 - \beta^2 \vec{q} \cdot (\vec{k} - \vec{q})}{\left[(k-q)^2 + \beta^2\right] \left(k^2 + \beta^2\right)} \quad \text{with} \quad \beta^2 = m_g^2 + x^2 M_q^2$$

$$K_{\text{LPM}}\left(k,q;z\right) = 1 - \cos\left(\frac{(k-q)^2 + \beta^2}{2xE}z\right)$$

$$LPM \text{ coherence effect}$$

Towards measuring \hat{q}

Good fits for light hadrons can be obtained for all energy loss models with 3-D hydro evolution, **but...**

Transport parameter \hat{q} deviates by more than factor 2 between different implementations.

Caused by differences in the cut-offs in collinear approximation used in all implementations of gluon radiation.

MC implementations required to accurately simulate energy loss

24

Jet quenching at LHC

Vitev "nailed it"

Connecting jets with the medium

Hard partons probe the medium via the density of colored scattering centers:

$$\hat{q} = \rho \int q^2 dq^2 \left(d\sigma / dq^2 \right) \sim \int dx^- \left\langle F^{\perp +}(x^-) F^+_{\perp}(0) \right\rangle$$

If kinetic theory applies, thermal gluons are quasi-particles that experience the same medium. Then the shear viscosity is: $1 / p \setminus 1 / p \setminus$

In QCD, small angle scattering dominates:

$$\eta \approx \frac{1}{3} \rho \left\langle p \lambda_f(p) \right\rangle = \frac{1}{3} \left\langle \frac{p}{\sigma_{tr}(p)} \right\rangle$$

 $\sigma_{tr}(p) \approx \frac{2q}{\langle p \rangle^2 \rho}$

With $\langle p \rangle \sim 3T$ and $s \approx 3.6\rho$ (for gluons) one finds:

$$\frac{\eta}{s} \approx 1.25 \frac{T^3}{\hat{q}}$$

A. Majumder, BM, X-N. Wang, PRL 99 (2007) 192301

From RHIC data: $T_0 \approx 335 \text{ MeV}, \hat{q}_0 \approx 2.8 \text{ GeV}^2/\text{fm} \rightarrow (\eta / s)_0 \approx 0.10$

Di-jets

- Dijet selection:
 - | η^{Jet}| < 2
 - Leading jet p_{T,1} > 120GeV/c
 - Subleading jet p_{T,2} > 50GeV/c
 - $\Delta \phi_{1,2} > 2\pi/3$

Quantify dijet energy imbalance by asymmetry ratio:

$$A_{j} = \frac{p_{T,1} - p_{T,2}}{p_{T,1} + p_{T,2}}$$

Removes uncertainties in overall jet energy scale

Di-jet asymmetry

Parton shower in matter

Di-jet asymmetry

CMS data ATLAS data ATLAS Pb-Pb 10-20% CMS Pb-Pb 0-10% CMS Pb-Pb 10-20% ATLAS Pb-Pb 0-10% PYTHIA PYTHIA PYTHIA PYTHIA PYTHIA + medium PYTHIA + medium PYTHIA + medium PYTHIA + medium GY Qin & BM PRL 106 ('11) $P(A_j)$ 0 л<mark>о</mark>ч 0.2 0.2 0.4 0.40.6 0.2 0.6 0.80 0.80.2 0.4 0.8 0.40.8 0.6 0 Õ.6 Α, Α, Α. Α,

ATLAS and CMS data differ in cuts on jet energy, cone angle, etc. ATLAS results depend somewhat on precise cuts and background corrections. Theoretical fits require 20% different parameters.

Part 4 The screened QGP

Plasma screening

- Plasma: An globally neutral state of matter with mobile charges
- Interactions among charges of many particles spread charge over a characteristic (Debye) length is (chromo-) electric screening
- Strongly coupled plasmas: Only few particles in Debye sphere Nearest neighbor correlations Iquid-like properties
- Test QGP screening with heavy quark bound states
 Do they survive? Which ones?
- Ideal system: Upsilon states
- Do residual correlations enhance recombination?

In the good old days...

... life seemed so simple:

The real story...

... is more complicated that just $m_{\rm D}$.

Q-Qbar bound state interacts with medium elastically and inelastically!

$$i\hbar\frac{\partial}{\partial t}\Psi_{Q\bar{Q}} = \left[\frac{p_Q^2 + p_{\bar{Q}}^2}{2M} + V_{Q\bar{Q}} - \frac{i}{2}\Gamma_{Q\bar{Q}} + \eta\right]\Psi_{Q\bar{Q}}$$

Strickland, arXiv:1106.2571, 1112.2761; Akamatsu & Rothkopf, arXiv:1110.1203

heavy-Q energy loss and Q-Qbar suppression cannot be separated

Y melting revisited

Decreasing QQ binding due to screening and increasing width due to thermal gluon absorption lead to gradual melting of quarkonium states [here Y(1s)]. See M. Laine, arXiv:1108.5965. Similar to ρ^0 melting at SPS?

State of art

Tour de force calculation of Y suppression by M. Strickland, PRL 107, 132301 (2011):

- Re(V), Im(V) in anisotropic HTL / NRQCD + T-dep. confining pot.
- Schrödinger equation for Υ states → EQQ, ΓQQ
- Anisotropic (viscous) hydrodynamics for medium evolution
- Time integrated suppression factor: $R_{AA} = \exp\left(-\int_{0}^{\tau_{f}} \Gamma_{QQ}(\tau, x_{\perp}, \xi) d\tau\right)$

Borghini & Gombeaud, arXiv - 1109.4271:

Treat dipole transitions between QQ states induced by thermal gluons dynamically.

J/ψ suppression

Bewildering observations:

RHIC - more suppression at forward rapidity

LHC - more suppression at central rapidity

Same suppression at SPS and RHIC at midrapidity

Differential suppression of Y states clearly observed

Epilogue Hadronization of the QGP

$v_2(p_T)$ vs. hydrodynamics

$v_2(p_T)$ vs. hydrodynamics

$v_2(p_T)$ vs. hydrodynamics

Bulk hadronization

Fast hadrons experience a rapid transition from medium to vacuum for fast hadrons

Sudden recombination

$$\mathbf{v}_{2}^{M}(p_{t}) = 2\mathbf{v}_{2}^{Q}\left(\frac{p_{t}}{2}\right)$$
$$\mathbf{v}_{2}^{B}(p_{t}) = 3\mathbf{v}_{2}^{Q}\left(\frac{p_{t}}{3}\right)$$

Quark number scaling of v₂

$$\frac{1}{2}\mathbf{v}_2^M(p_t) = \mathbf{v}_2^Q\left(\frac{p_t}{2}\right) \qquad \frac{1}{3}\mathbf{v}_2^B(p_t) = \mathbf{v}_2^Q\left(\frac{p_t}{3}\right)$$

Quark number scaling of v₂

$$\left|\frac{1}{2}\mathbf{v}_2^M(p_t) = \mathbf{v}_2^Q\left(\frac{p_t}{2}\right) \qquad \frac{1}{3}\mathbf{v}_2^B(p_t) = \mathbf{v}_2^Q\left(\frac{p_t}{3}\right)\right|$$

Emitting medium is composed of unconfined, flowing quarks.

Quark number scaling of v₂

$$\left|\frac{1}{2}\mathbf{v}_2^M(p_t) = \mathbf{v}_2^Q\left(\frac{p_t}{2}\right) \qquad \frac{1}{3}\mathbf{v}_2^B(p_t) = \mathbf{v}_2^Q\left(\frac{p_t}{3}\right)\right|$$

Hadron production at the LHC

Recombination at LHC?

Lattice QCD - 2010

Below T_c - the HRG

