Two Lectures on Quark-Gluon Plasma Lecture 2

Berndt Müller *National NP Summer School* Santa Fe - July 16-17, 2012

Tomorrow

Lecture 2 Probing the QGP in Relativistic Heavy Ion Collisions

QGP Landscape

Part 1 Formation and Evolution of the QGP

Space-time picture

Gluon saturation

x

Evolution in *x* is described by BK or JIMWLK equations*.* Location of the onset of saturation is determined by fluctuations (Iancu, Peschanski,…)

longitudinal color-magnetic field

(Itakura & Fujii, Iwazaki)

 $\partial^2\phi$

 $\frac{\partial \psi}{\partial \tau^2}$

Absolute number may be questionable (no quarks, no equilibration, no hadrons) but the trend with N_{part} and \sqrt{s} is right.

Transverse sections of the local energy density at $\tau = 0.4$ fm/c

Part 2 Probes of the QGP

Probes of hot QCD matter

Which **properties of hot QCD matter** can we hope to determine from relativistic heavy ion data (RHIC and LHC, maybe FAIR) ?

$$
T_{\mu\nu} \Leftrightarrow \mathcal{E}, p, s
$$
 Equation of state: spectra, coll. flow, fluctuations
\n
$$
c_s^2 = \frac{\partial p}{\partial \varepsilon} \qquad \text{Speed of sound: multiparticle correlations}
$$
\n
$$
\eta = \frac{1}{T} \int d^4x \langle T_{xy}(x) T_{xy}(0) \rangle
$$
Shear viscosity: anisotropic collective flow
\n
$$
\hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^{-} \langle F^{a+i}(y^{-}) F^{a+}(0) \rangle
$$
\n
$$
\hat{e} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^{-} \langle i\partial^{-} A^{a+}(y^{-}) A^{a+}(0) \rangle
$$
\n
$$
\hat{e}_2 = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^{-} \langle F^{a+}(y^{-}) F^{a+}(0) \rangle
$$
\n
$$
m_b = -\lim_{|x| \to \infty} \frac{1}{|x|} \ln \langle E^{a}(x) E^{a}(0) \rangle
$$
\n**Color screening:** Quarkonium states

Probes of hot QCD matter

Which **properties of hot QCD matter** can we hope to determine from relativistic heavy ion data (RHIC and LHC, maybe FAIR) ?

Easy for	$T_{\mu\nu}$	\Leftrightarrow	\mathcal{E}, p, s	Equation of state : spectra, coll. flow, fluctuations
$c_s^2 = \frac{\partial p}{\partial \varepsilon}$	Speed of sound : multiparticle correlations			
$\eta = \frac{1}{T} \int d^4x \langle T_{xy}(x) T_{xy}(0) \rangle$	Shear viscosity : anisotropic collective flow			
$\hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^{-} \langle F^{a+i}(y^{-}) F_i^{a+}(0) \rangle$	Monentum/energy diffusion : parton energy loss, jet fragmentation			
$\hat{e}_2 = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^{-} \langle i\partial^{-} A^{a+}(y^{-}) A^{a+}(0) \rangle$	Monentum/energy diffusion : parton energy loss, jet fragmentation			
$\hat{e}_2 = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^{-} \langle F^{a+-}(y^{-}) F^{a+-}(0) \rangle$	Color screening : Quarkonium states			

OCD

|*x*|→∞

 $|x|$

Probes of hot QCD matter

Which **properties of hot QCD matter** can we hope to determine from relativistic heavy ion data (RHIC and LHC, maybe FAIR) ?

Easy for $C_S^2 = \partial p / \partial \varepsilon$	Equation of state: spectra, coll. flow, fluctuations			
$C_S^2 = \partial p / \partial \varepsilon$	Speed of sound: multiparticle correlations			
$\eta = \frac{1}{T} \int d^4x \langle T_{xy}(x) T_{xy}(0) \rangle$	Shear viscosity: anisotropic collective flow			
Hard for $CQCD$	$\hat{q} = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^2 \langle F^{a+i}(y^-) F^{a+}(0) \rangle$	Monentum/energy diffusion: $\hat{e}_2 = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^2 \langle F^{a+i}(y^-) A^{a+}(0) \rangle$	Monentum/energy diffusion: $\hat{e}_2 = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \int dy^2 \langle F^{a+i}(y^-) F^{a+i}(0) \rangle$	Mor screening: Quarkonium states

10

Part 2 The Liquid QGP

d^τ

⎣

2nd order relativistic hydrodynamics

$$
\frac{\partial_{\mu} T^{\mu\nu} = 0 \quad \text{with} \quad T^{\mu\nu} = (\varepsilon + P) u^{\mu} u^{\nu} - P g^{\mu\nu} + \Pi^{\mu\nu} \qquad \boxed{\eta = \frac{d \Pi^{\mu\nu}}{d \tau} + \left(u^{\mu} \Pi^{\nu\lambda} + u^{\nu} \Pi^{\mu\lambda} \right) \frac{du^{\lambda}}{d \tau}} = \eta \left(\frac{\partial^{\mu} u^{\nu} + \partial^{\nu} u^{\mu} - \text{trace}}{\partial^{\mu} u^{\nu}} \right) - \Pi^{\mu\nu}
$$

d^τ

 $\overline{}$

$$
\eta = \text{Shear viscosity}
$$

Excellent approximation of Boltzmann transport; negligible uncertainties due to:

- Bulk viscosity
- **QCD Equation of state**

Main input parameters:

- η/s
- Initial energy density profile
- Equilibration time τ_0

Perfect fluid

In gauge theories with a gravity dual, dissipation is dominated by absorption of gravitons on the black brane. This leads to the universal relation

Kovtun, Son & Starinets PRL 94 (2005) 111601

KSS bound is not completely universal, can be violated in dual gravity theories involving higher derivative (non-GR) terms. It is far below η/s of any known material (except QGP and ultra-cold fermionic atoms with unitary interactions).

A similar bound is found in kinetic theory from unitarity limit of cross sections and uncertainty relation [Danielewicz & Gyulassy (1985)]:

$$
\eta \approx \frac{1}{3} n \overline{p} \lambda_f \approx \frac{1}{12} s(\overline{p} \lambda_f) \rightarrow \frac{\eta}{s} \approx \frac{\overline{p} \lambda_f}{12} \ge \frac{\hbar}{12}
$$

Hydro describes spectra @ LHC

Identified particle spectra show clear evidence of thermalization and flow.

Elliptic Flow (v_2)

Hydrodynamics:

Flow is generated by ∇P $|\nabla P(\leftrightarrow) > \nabla P(\updownarrow)$

 $v_2 = cos(2\phi)$ coefficient of the azimuthal distribution

Event by event

Initial state generated in A+A collision is grainy event plane \neq reaction plane \Rightarrow eccentricities ε_1 , ε_2 , ε_3 , ε_4 , etc. \neq 0

 \Rightarrow flows v₁, v₂, v₃, v₄,...

Elliptic flow "measures" η_{QGP}

v2 & v3 @ LHC

Shear viscosity

Viscosity of QCD matter

Part 3 The Opaque QGP

Parton energy loss in QCD

pQCD formalism

Example: DGLV

$$
x \frac{dN_g^{\text{DGLV}}}{dx} = \frac{2C_R \alpha_s}{\pi^3} \frac{L}{\lambda_f} \int d^2 q \, d^2 k \frac{\mu^2}{\left(q^2 + \mu^2\right)} K_{\text{rad}}(k, q) \int_0^L dz \, K_{\text{LPM}}(k, q; z) \rho(z)
$$
\n
$$
K_{\text{rad}}(k, q) = \frac{\vec{k} \cdot \vec{q}(k - q)^2 - \beta^2 \vec{q} \cdot (\vec{k} - \vec{q})}{\left[(k - q)^2 + \beta^2\right] \left(k^2 + \beta^2\right)} \quad \text{with} \quad \beta^2 = m_g^2 + x^2 M_g^2
$$
\n
$$
K_{\text{LPM}}(k, q; z) = 1 - \cos\left(\frac{(k - q)^2 + \beta^2}{2xE}z\right)
$$
\n
$$
\text{LPM coherence effect}
$$

Towards measuring \hat{q}

Good fits for light hadrons can be obtained for all energy loss models with 3-D hydro evolution, *but***...**

Transport parameter \hat{q} deviates by more than factor 2 between different implementations.

Caused by differences in the cut-offs in collinear approximation used in all implementations of gluon radiation.

MC implementations required to accurately simulate energy loss

Jet quenching at LHC

Vitev "nailed it"

1.4

1.8

2

Connecting jets with the medium

Hard partons probe the medium via the density of colored scattering centers:

$$
\hat{q} = \rho \int q^2 dq^2 \left(d\sigma / dq^2 \right) \sim \int dx^- \left\langle F^{\perp +} (x^-) F^+_\perp (0) \right\rangle
$$

If kinetic theory applies, thermal gluons are quasi-particles that experience the same medium. Then the shear viscosity is:

In QCD, small angle scattering dominates:

$$
\eta \approx \frac{1}{3} \rho \langle p \lambda_f(p) \rangle = \frac{1}{3} \langle \frac{p}{\sigma_{tr}(p)} \rangle
$$

 ρ

 $p\big\}^2$

With $\langle p \rangle \sim 3T$ and $s \approx 3.6p$ (for gluons) one finds:

$$
\frac{\eta}{s} \approx 1.25 \frac{T^3}{\hat{q}}
$$

A. Majumder, BM, X-N. Wang, PRL 99 (2007) 192301

From RHIC data: $T_0 \approx 335 \text{ MeV}, \hat{q}_0 \approx 2.8 \text{ GeV}^2/\text{fm} \rightarrow (\eta / s)_0 \approx 0.10$

Di-jets

- Dijet selection:
	- $| \eta^{jet} |$ < 2
	- Leading jet $p_{T,1}$ > 120GeV/c
	- Subleading jet $p_{T,2}$ > 50GeV/c
	- $\Delta \phi_{1,2} > 2\pi/3$

Quantify dijet energy imbalance by asymmetry ratio:

$$
A_j = \frac{p_{\tau,1} - p_{\tau,2}}{p_{\tau,1} + p_{\tau,2}}
$$

Removes uncertainties in overall jet energy scale

Di-jet asymmetry

Parton shower in matter

Di-jet asymmetry

CMS data ATLAS data CMS Pb-Pb 10-20% ATLAS Pb-Pb 0-10% ATLAS Pb-Pb 10-20% **CMS Pb-Pb 0-10%** PYTHIA **PYTHIA PYTHIA** PYTHIA PYTHIA + medium PYTHIA + medium PYTHIA + medium PYTHIA + medium 4 GY Qin & BM PRL 106 ('11) $\mathrm{P}(\mathrm{A}_J)$ σ_0 0 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.2 0.4 0.8 0.2 0.4 0.8 Ω 0.8 0.6 $\overline{0}$ 0.6 $A_{\rm r}$ A. А, \mathbf{A}

ATLAS and CMS data differ in cuts on jet energy, cone angle, etc. ATLAS results depend somewhat on precise cuts and background corrections. Theoretical fits require 20% different parameters.

Part 4 The screened QGP

Plasma screening

- **Plasma: An globally neutral state of matter with mobile charges**
- **Interactions among charges of many particles spread charge over a characteristic (Debye) length** ➠ **(chromo-) electric screening**
- **Strongly coupled plasmas: Only few particles in Debye sphere** ➠ **Nearest neighbor correlations ⇿ liquid-like properties**
- *Test* **QGP** *screening with heavy quark bound states* **Do they survive? Which ones?**
- **Ideal system: Upsilon states**
- **Do residual correlations enhance recombination?**

In the good old days...

... life seemed so simple:

The real story...

...is more complicated that just m_D .

Q-Qbar bound state interacts with medium elastically and inelastically!

$$
i\hbar \frac{\partial}{\partial t} \Psi_{Q\overline{Q}} = \left[\frac{p_Q^2 + p_{\overline{Q}}^2}{2M} + V_{Q\overline{Q}} - \frac{i}{2} \Gamma_{Q\overline{Q}} + \eta \right] \Psi_{Q\overline{Q}}
$$

Strickland, arXiv:1106.2571, 1112.2761; Akamatsu & Rothkopf, arXiv:1110.1203

➠ heavy-Q energy loss and Q-Qbar suppression cannot be separated

Ƴ melting revisited

Decreasing QQ binding due to screening and increasing width due to thermal gluon absorption lead to gradual melting of quarkonium states [here Ƴ(1s)]. See M. Laine, arXiv:1108.5965. Similar to ρ⁰ melting at SPS?

State of art

Tour de force calculation of Ƴ suppression by M. Strickland, PRL 107, 132301 (2011):

- $Re(V)$, Im(V) in anisotropic HTL / NRQCD + T-dep. confining pot.
- Schrödinger equation for Y states •• E_{QQ}, Γ_{QQ}
- Anisotropic (viscous) hydrodynamics for medium evolution
- Time integrated suppression factor: $R_{\scriptscriptstyle AA} = \exp \left| \int \Gamma_{\scriptscriptstyle QQ}(\tau, x_\perp, \xi) d\tau \right|$ $\begin{pmatrix} & & & \tau_f & & \ & - & \int & & \cdot & \cdot & \cdot \end{pmatrix}$ \setminus $\overline{}$ \overline{a} ⎠

Borghini & Gombeaud, arXiv - 1109.4271:

 $\tau_{\rm form}$

Treat dipole transitions between QQ states induced by thermal gluons dynamically.

J/ψ suppression

Bewildering observations:

RHIC - more suppression at forward rapidity

LHC - more suppression at central rapidity

Same suppression at SPS and RHIC at midrapidity

Differential suppression of Ƴ states clearly observed

Epilogue Hadronization of the QGP

v₂(p_T) vs. hydrodynamics

v₂(p_T) vs. hydrodynamics

v₂(p_T) vs. hydrodynamics

Bulk hadronization

Fast hadrons experience a rapid transition from medium to vacuum for fast hadrons

Sudden recombination

$$
v_2^M(p_t) = 2v_2^Q\left(\frac{p_t}{2}\right)
$$

$$
v_2^B(p_t) = 3v_2^Q\left(\frac{p_t}{3}\right)
$$

Quark number scaling of $v₂$

$$
\frac{1}{2}v_2^M(p_t) = v_2^Q\left(\frac{p_t}{2}\right) \qquad \frac{1}{3}v_2^B(p_t) = v_2^Q\left(\frac{p_t}{3}\right)
$$

Quark number scaling of $v₂$

$$
\frac{1}{2}v_2^M(p_t) = v_2^Q\left(\frac{p_t}{2}\right) \qquad \frac{1}{3}v_2^B(p_t) = v_2^Q\left(\frac{p_t}{3}\right)
$$

Emitting medium is composed of unconfined, flowing quarks.

Quark number scaling of $v₂$

$$
\frac{1}{2}v_2^M(p_t) = v_2^Q\left(\frac{p_t}{2}\right) \qquad \frac{1}{3}v_2^B(p_t) = v_2^Q\left(\frac{p_t}{3}\right)
$$

Hadron production at the LHC

Recombination at LHC?

Lattice QCD - 2010

Below T_c - the HRG

