2012 NNPSS Summer School

Strongly Interacting Fermi Gases

Martin Zwierlein

MIT, Cambridge, USA

Biblio- (or Webo-)graphy

Varenna Notes: on Fermi Gases: Ketterle, Zwierlein*, Making, Probing and Understanding Ultracold Fermi Gases* <http://arxiv.org/abs/0801.2500>

on BEC:

Ketterle, Durfee, Stamper-Kurn, *Making, Probing and Understanding BEC* http://cua.mit.edu/ketterle_group/Projects_1999/Pubs_99/kett99varenna.pdf

Stefano Giorgini, Lev P. Pitaevskii, Sandro Stringari *The theory of Fermi gases* <http://arxiv.org/abs/0706.3360>

Immanuel Bloch, Jean Dalibard, Wilhelm Zwerger Many-Body Physics with Ultracold Gases: <http://arxiv.org/abs/0704.3011>

Lecture Notes "The BEC-BCS crossover and the Unitary Fermi Gas" Edited by W. Zwerger, Springer, 2012

Degenerate gases

de Broglie wavelength ~ Interparticle spacing

 $\lambda_{dB} \approx n^{-1/3}$

Want lifetime $> 1s$ \Rightarrow $n < 10^{15}$ cm⁻³ Ultradilute \Rightarrow *n* < 10¹⁵ cm⁻³

$$
T_F \approx \frac{\hbar^2}{k_B m} n^{2/3} \approx 1 \,\mu\text{K} \qquad \text{Ultracold}
$$

Good news: *Bosons* condense at

$$
T_C \approx T_F
$$

Bosons vs Fermions

How to measure temperature?

How to measure temperature?

Observation of the atom cloud

 $T < T_C$

 $T > T_C$

Superfluidity in Bosonic Gases

Bosons vs Fermions

 23 Na 6 Li *T T^C* $T < T_c$ **Fermions** Bosons e.g.: ${}^{1}H$, ${}^{23}Na$, ${}^{6}Li_2$ e.g.: e⁻, ³He, ⁶Li, ⁴⁰K

 E_F

Non-interacting Fermi gas

 $f(\epsilon) \rightarrow \theta(E_F - \epsilon)$

- Fermi-Dirac Statistics: $At T = 0$: $f(\epsilon) = \frac{1}{e^{\beta(\epsilon-\mu)}+1}$
- Fermi gas in a box:
	- $\epsilon = \frac{\hbar^2 k^2}{2m}$ $N = \int d^3x \int \frac{d^3k}{(2\pi)^3} \theta \left(E_F - \frac{\hbar^2 k^2}{2m} \right)$

 $n = \frac{1}{(2\pi)^3}$ Volume of sphere in k-space with radius k_F $E_F = \frac{\hbar^2 k_F^2}{2m}$ $= \frac{1}{6\pi^2}k_F^3$

 $k_F = (6\pi^2 n)^{-1/3} \sim 1/\text{Interparticle spacing}$

Non-interacting Fermi gas

 $n(\mathbf{r}) = \frac{1}{6\pi^2} k_F(\mathbf{r})^3 = \frac{1}{6\pi^2 \hbar^3} (2m(E_F - V(\mathbf{r})))^{3/2}$

(Local density approximation)

Freezing out of collisions

No interactions if range of potential is $< \lambda_{dB}$

Fermions – The Building Blocks of Matter

Harvard-Smithsonian Center for Astrophysics

Scattering Theory

Interatomic interactions

- For Alkali atoms: $R_{\text{vdW}} \sim 50\text{-}200 \text{ a}_0$ • Ultracold collisions: $\lambda_{dB} \approx 1 \mu m >> R$
- \rightarrow atoms do not probe the details of the potential

Interatomic interactions

- For Alkali atoms: $R_{vdW} \sim 50\text{-}200 \text{ a}_{0}$
- Ultracold collisions:

 $\lambda_{\rm dB} \approx 1 \mu m >> R$

 \rightarrow atoms do not probe the details of the potential

Scattering Resonances

Tunable Interactions

Vary interaction strength between spin up and spin down Example: tunable square well (with $k_R R \ll 1$):

strong attraction *deep bound state*

weak attraction **bound state appears no bound state** Resonance scattering length

 $a > 0$ $a \rightarrow \pm \infty$ $a < 0$

Interparticle distance **Scattering length** $k_{\rm F}a$ $=$ Important for Many-Body ample: tunable square well (with k_F
 $\begin{array}{ccc}\nV & & F \\
V & & F \\
V & & F\n\end{array}$

traction Resonance we

md state bound state appears no

scattering length

a $\rightarrow \pm \infty$

a tor Many-Body Interparticle displaysics:

Feshbach resonances: Tuning the interactions

Large Hadron Collider (LHC)

Little Fermi Collider (LFC)

A Fermi gas collides with a cloud with resonant interactions

A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011) First study of spin currents in degenerate Fermi gases: Jin, DeMarco, 2001

Little Fermi Collider

Preparation: Mix, cool, kick, and rush to resonance

Rapid (10 us) probing of spin up and down

Earlier spin excitation experiments: DeMarco and Jin, PRL 88, 040405 (2002)

Little Fermi Collider (LFC)

Without Interactions

A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)

Evolution without interactions

Little Fermi Collider (LFC)

With resonant interactions

A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)

First collision initial 20 ms

Later times

Much later times

Much later times

Universal Spin Transport

Relaxation of spin current only due to $\downarrow \uparrow$ collisions Resonant scattering cross section: Mean free path: $l = \frac{1}{l} \div \frac{1}{l} = \frac{1}{l}$ interparticle spacing "A perfect liquid" 2 1 $\ddot{}$ $k_F^{\,2}$ σ $n\sigma$ $k_F^{}$ *l* 1 $\ddot{}$ 1 σ $=$

Diffusion constant: $\sim \frac{(\text{mean free path})^2}{\text{median time}}$ collision time *D m* Spin drag coefficient $\Gamma_{SD} \sim n \sigma v \sim \frac{n}{E_F} k_F^2 \sim E_F / \hbar$ $(\propto$ Collision rate) \hbar $\sim n \sigma v \sim \frac{n}{k_F^2} \sim E_F /$ $S_{SD} \sim n \sigma v \sim \frac{n}{m} k_F^2 \sim E_F^2$ *m* $\Gamma_{SD} \sim n \sigma v$

$$
\frac{\hbar}{m} = \frac{(100 \ \mu \text{m})^2}{1 \text{ s}}
$$

Spin Diffusion vs Temperature

Spin current $= -D \cdot$ Spin density gradient

A.T. Sommer, M.J.H. Ku, G. Roati, M.W. Zwierlein, Nature 472, 201 (2011)

Can Fermi Gases become superfluid?

Superconductivity

Electrons are Fermions

Discovery of superconductivity 1911

Heike Kamerlingh-Onnes 1911

Fermionic Superfluidity

Condensation of Fermion Pairs

• Helium-3 (Lee, Osheroff, Richardson 1971) • Superconductors: *Charged* superfluids of electron pairs Frictionless flow \Leftrightarrow Resistance-less current

John Bardeen Leon N. Cooper John R. Schrieffer

• Neutron stars In the core: Quark superfluid

BCS Wavefunction

- Many-body wavefunction for a condensate of Fermion Pairs: $\Psi(\mathbf{r}_1,\ldots,\mathbf{r}_N) = \varphi(|\mathbf{r}_1-\mathbf{r}_2|)\chi_{12}\ldots\varphi(|\mathbf{r}_{N-1}-\mathbf{r}_N|)\chi_{N-1,N}$ Spatial pair wavefunction
 $\chi_{ij} = \frac{1}{\sqrt{2}} (\ket{\uparrow}_{i}\ket{\downarrow}_{j} - \ket{\downarrow}_{i}\ket{\uparrow}_{j})$
- Second quantization:

 $|\Psi\rangle_N = \int \prod_i d^3 r_i \, \varphi(\mathbf{r}_1-\mathbf{r}_2) \Psi^\dagger_\uparrow(\mathbf{r}_1) \Psi^\dagger_\downarrow(\mathbf{r}_2) \ldots \varphi(\mathbf{r}_{N-1}-\mathbf{r}_N) \Psi^\dagger_\uparrow(\mathbf{r}_{N-1}) \Psi^\dagger_\downarrow(\mathbf{r}_N) \, |0\rangle$
• Fourier transform: Pair wavefunction: $\varphi(\mathbf{r}) = \sum_k \varphi_k \frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{\sqrt{\Omega}}$

- Operators: $\Psi^\dagger_\sigma({\bf r}) = \sum_k c^\dagger_{k\sigma} \frac{e^{-i{\bf k}\cdot{\bf r}}}{\sqrt{\Omega}}$
- Pair creation operator: $b^{\dagger} = \sum \varphi_k c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow}$
- Many-body wavefunction: $\ket{\Psi}_{N}=b^{\dagger\,N/2}\ket{0}$ *a fermion pair condensate*

 $|\Psi\rangle_N$ is not a Bose condensate

$$
\left|\Psi\right\rangle _{N}=b^{\dagger\frac{N/2}{}}\left|0\right\rangle
$$

• Commutation relations for pair creation/annihilation operators

$$
[b^{\dagger}, b^{\dagger}]_{-} = \sum_{kk'} \varphi_k \varphi_{k'} \left[c^{\dagger}_{k\uparrow} c^{\dagger}_{-k\downarrow}, c^{\dagger}_{k'\uparrow} c^{\dagger}_{-k'\downarrow} \right]_{-} = 0 \quad \checkmark
$$

$$
[b, b]_{-} = \dots = 0
$$

$$
[b, b^{\dagger}]_{-} = \cdots = \sum_{k} |\varphi_k|^2 (1 - n_{k\uparrow} - n_{k\downarrow}) \neq 1 \qquad \blacktriangleright
$$

Occupation of momentum *k*

- pairs do not obey Bose commutation relations, *unless* $n_k \ll 1$
	- $[b, b^{\dagger}]_{-} \approx \sum |\varphi_k|^2 = 1$ BEC limit of tightly bound molecules

BCS Wavefunction

• Introduce coherent state / switch to grand-canonical description: $\label{eq:W} \mathcal{N}\left|\Psi\right\rangle \;\;=\sum_{J_{\rm even}}\frac{N_p^{J/4}}{(J/2)!}\left|\Psi\right\rangle_J\;\;=\sum_M\frac{1}{M!}N_p^{M/2}\;b^{\dagger\,M}\left|0\right\rangle$ $= e^{\sqrt{N_p} b^{\dagger}} |0\rangle$ $\mathbf{a} = \prod e^{\sqrt{N_p}} e^{k c_{k\uparrow}^\dagger c_{k\downarrow}^\dagger} \ket{0}$ c_k^\dagger and c_k^\dagger commute $\mathcal{E} = \prod (1 + \sqrt{N_p} \varphi_k c_{k\uparrow}^\dagger c_{-k\downarrow}^\dagger) |0\rangle$ because $c_k^{\dagger 2} = 0$ • Normalization: $\mathcal{N} = \prod_k \frac{1}{u_k} = \prod_k \sqrt{1 + N_p |\varphi_k|^2}$ • BCS wavefunction: $\left(|\Psi_{\rm BCS}\rangle = \prod_k (u_k + v_k c^{\dagger}_{k\uparrow}c^{\dagger}_{-k\downarrow})\,|0\rangle \right)$ with $v_k = \sqrt{N_p} \varphi_k u_k$ and $|u_k|^2 + |v_k|^2 = 1$

Bosons vs Fermions

Interatomic interactions

- Mean-field interaction energy: $E_{\text{M}} = \frac{4\pi\hbar^2 na}{2}$
- Weak or strong interaction?

$$
\frac{E_{\text{MF}}}{E_F} \simeq k_F a
$$

$$
k_F = (6\pi^2 n)^{1/3} \sim 1/2000 a_0
$$

$$
a \sim 50-100a_0
$$

$$
k_Fa\lesssim 5\%
$$

- Typically weak interaction
- Superconductors: Electron-Phonon interaction also weak: $\frac{\hbar\omega_D}{E_F} = \frac{100 \text{ K}}{10000 \text{ K}} \sim 1\%$

How can we have atom pairs with arbitrarily weak interaction?

Critical Temperature for Fermionic Superfluidity

Superconductivity far above room temperature!

Experimental realization of the BEC-BCS Crossover

The cooling methods

• **Laser cooling** • **Evaporative cooling**

Techniques

Magnetic Trapping

Evaporative Cooling

Source of ultracold fermions

Cool fermionic lithium-6 using sodium as a refrigerator 10⁷ atoms in BEC (w/o Li) 5×10^7 Li atoms at $\frac{T}{T_F} < 0.3$ **Bosons Fermions**

Z. Hadzibabic *et.al.*, PRL **91**, 160401 (2003)

Preparation of an interacting Fermi system in Lithium-6

Electronic spin: $S = \frac{1}{2}$, Nuclear Spin: I = 1 \rightarrow (2I+1)(2S+1) = 6 hyperfine states

Optical trapping @ 1064 nm

Feshbach resonances: Tuning the interactions

Disclaimer: That's a cartoon picture

BEC of Fermion Pairs (Molecules)

 $T > T_C$ $T < T_C$ $T < T_C$

These days: Up to 10 million condensed molecules

Boulder Nov '03 Innsbruck Nov '03, Jan '04 MIT Nov '03 Paris March '04

Rice, Duke

Molecule Number Per Unit Length [1/mm] 0.9 mW 2.4 mW 2.7 mW 3.3 mW 4.5 mW 8.9 mW Ω 0.0 0.5 1.0

 \cdots , \cdots and \cdots
M.W. Zwierlein, C. A. Stan, C. H. Schunck, \cdots S.M.F. Raupach, S. Gupta, Z. Hadzibabic, W. Ketterle, Phys. Rev. Lett. 91, 250401 (2003)

Thermal + condensed pairs

First observation: C.A. Regal et al., Phys. Rev. Lett. **92**, 040403 (2004)

M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. **92**, 120403 (2004).

Condensate Fraction vs Magnetic Field

M.W. Zwierlein, C.A. Stan, C.H. Schunck, S.M.F. Raupach, A.J. Kerman, W. Ketterle, Phys. Rev. Lett. **92**, 120403 (2004).

How can we show that these gases are superfluid?

Rotating superfluid

Look from top into the bucket

Look from top into the bucket

Aleksei A. Abrikosov

 $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ \bigcup Abrikosov lattice (honeycomb lattice)

Vortex Arrays in Bosonic Gases / Fluids

Berkeley (R.E. Packard, 1979) Helium-4

> **ENS (J. Dalibard, 2000) Rubidium BEC**

Also: Phase engineering of single vortices in BEC: JILA (1999)

THE DIRECT OBSERVATION OF INDIVIDUAL FLUX LINES IN TYPE II SUPERCONDUCTORS

U. ESSMANN and H. TRAUBLE

Institut für Physik am Max-Planck-Institut für Metallforschung, Stuttgart and Institut für theoretische und angewandte Physik der Technischen Hochschule Stuttgart

Received 4 April 1967

Neutral superfluids under rotation $\vec{F} = 2m\vec{v} \times \vec{\omega}$

Coriolis force in rotating frame

Superconductors in magnetic field Lorentz Force $F = qv \times \vec{B}$

U. Essmann and H. Träuble, Physics Letters A, **24**, 526 (1967)

Fig. 1. "Perfect" triangular lattice of flux lines on the surface of a lead- $4at\%$ indium rod at 1.1% . The black dots consist of small cobalt particles which have been stripped from the surface with a carbon replica.

Spinning a strongly interacting Fermi gas

The rotating bucket experiment with a strongly interacting Fermi gas, a million times thinner than air

Vortex lattices in the BEC-BCS crossover

Establishes *superfluidity* and *phase coherence* in gases of fermionic atom pairs

Gallery of **superfluid gases**

Atomic Bose-Einstein condensate (sodium)

Molecular Bose-Einstein condensate (lithium ⁶Li₂)

Pairs of fermionic atoms (lithium-6)

Thermodynamics

Classical gas Equation of State (EoS):

Jason asks:

What is the EoS of a strongly interacting Fermi gas?

$P(n,T)$

Lots of expts.: Thomas, Jin, Salomon, Grimm, Ketterle, Hulet, Mukaiyama, Vale, ... Influential proposal: Tin-Lun Ho, Qi Zhou, Nature Physics 6, 131 (2010)

Thermodynamics

Equilibrium Thermodynamics as baseline for non-equilibrium studies

 \rightarrow Establish Equation of State

Classical gas $P = nk_B T$

Generally need

P(*n*,*T*)

Or fixing chemical potential Or replacing *T* ,*a*,... *P n* ∂u ∂

 $P(\mu,T)$

Thermodynamics of the Unitary Fermi Gas

• Transition temperature **Critical Entropy** Energy of the superfluid • … • *Superfluid properties*: High-*T* Low-⁷ T_{c} • *Normal state:* **• Is it a Fermi liquid?** Are there preformed pairs (pseudogap regime)? **t** Classical gas Fermi Liquid Preformed pairs? **Superfluid** Spin ½ - Fermi gas at a Feshbach resonance

Relation to equation of state of a neutron star

Both systems lie in universal regime: $a \gg n^{-1/3}$

small print: neglecting effective range

Measuring the Equation of State

When climbing a mountain, the air gets thinner... Equation of state \rightarrow density as a function of height *The inverse works as well!* Density as a function of height \rightarrow equation of state

Atoms in our trapping potential $\stackrel{\wedge}{=}$ air particles in gravitational potential

Equation of State

 $V(\mathbf{r})$

Equation of state from density distribution in a trap

 $\mu(\vec{r}) = \mu_0 - V(\vec{r})$ *Local chemical potential* μ_{0}

 $n(V) = n(\mu_0 - V, T)$ *Local density*

Density profile provides a scan through the equation of state

Equation of State: Measuring density

Exploiting cylindrical symmetry and careful characterization of trapping potential:

Equation of State: Measuring pressure

How to get T?

...Not impossible, but it's very difficult, so...

Don't! Instead:

$K(n, P)$ *Compressibility* Equation of State

All other thermodynamic quantities follow!

No-fit Equation of State

Normalize compressibility & pressure via known density:

$$
\widetilde{\kappa} = \frac{\kappa}{\kappa_0} = \frac{d\varepsilon_F}{d\mu} = -\frac{d\varepsilon_F}{dV} \qquad \qquad \widetilde{P} = \frac{P}{P_0}
$$
\n
$$
\kappa_0 = \frac{3}{2} \frac{1}{n\varepsilon_F} \qquad P_0 = \frac{2}{5} n\varepsilon_F
$$

For a scale-invariant system

$$
\overline{\widetilde{\kappa}=\widetilde{\kappa}(\widetilde{p})}
$$

0 *P*

 ${\cal E}$

P

Science **335**, 563-567 (2012)

$$
\kappa(n,P) \longrightarrow \kappa(n,T)
$$

Getting the temperature scale:

$$
\frac{\mathrm{d}(P/P_0)}{\mathrm{d}(T/T_F)}\bigg|_T = \frac{5}{2} \frac{T_F}{T} \bigg(\frac{P}{P_0} - \frac{\kappa_0}{\kappa} \bigg)
$$

$$
\frac{T}{T_F} = \frac{T_i}{T_F} \exp \left\{ \frac{2}{5} \int_{\tilde{p}_i}^{\tilde{p}} d\tilde{p} - \frac{1}{\tilde{p}} \right\}
$$

 M would occur far above room temperature Scaled to the density of electrons in a solid, superfluidity

Compressibility, Heat Capacity, Condensates

Going back to Density Equation of State $\left(T\,/\,T_{_F}\,\right)$ μ T^2 d $(\beta \mu)$ ${\cal E}$ \boldsymbol{K} d $\mathrm{d}(T\,/\,$ d $\approx -\frac{d}{dt}$ 2 2 $F = -\frac{T_F^2}{F} \, \mathrm{d} (T \, / \, T_F)$ *T T* $=\frac{u c_F}{1}= \beta\mu = \beta\mu_i - \int d(T/T_F) \frac{F}{T^2} \frac{1}{\widetilde{K}}$ 1 (T/T_F) / 2 $=\beta\mu_i-\int$ T/T_F *F T* $d(T/T)$

 T_i / T_F

with $\beta \mu_i$ and T_i known at high temperatures

i \int ^{*u*}(*I* / *I*_{*F*} / *T*

2

Mark Ku, Ariel Sommer, Lawrence Cheuk, MWZ, Science **335**, 563-567 (2012) K. Van Houcke, F. Werner, E. Kozik, N. Prokofev, B. Svistunov, M. Ku, A. Sommer, L. Cheuk, A. Schirotzek, MWZ, Nature Physics **8**, 366 (2012) **Binding Energy of Pairs**

A Gedanken experiment

What is the energy cost of removing one fermion from the superfluid?

 $\omega = \hbar \omega_0 + E_B + 2\varepsilon_k$ Photon energy = Zeeman + Binding + Kinetic energy

 $\omega = \hbar \omega_0 + E_B + 2\varepsilon_k$ Photon energy = Zeeman + Binding + Kinetic energy

BCS pairing is a many-body affair. Does the picture still hold?

Energy gain due to pairing (BCS):

$$
\delta E(N) = E_{SF}(N) - E_{Normal}(N) = -\frac{3}{8}N\frac{\Delta^2}{E_F}
$$

Binding energy per particle:

$$
E_B = \frac{\delta E(N+2) - \delta E(N)}{2} = -\frac{\Delta^2}{2E_F}
$$

Photon energy = Zeeman + Quasiparticle + Kinetic energy $\omega = \hbar \omega_0 + E_k - \mu + \varepsilon_k$ Onset at $\hbar\omega = \hbar\omega_{0} + \frac{\Delta^{2}}{2}$ $\omega = \hbar \omega_0 + \frac{1}{2}$ $2E$ ^{*F*} Δ

BCS pairing is a many-body affair. Does the picture still hold?

Photon energy = Zeeman + Quasiparticle + Kinetic energy

$$
\hbar \omega = \hbar \omega_0 + E_k - \mu + \varepsilon_k
$$

Onset at
$$
\hbar \omega = \hbar \omega_0 + \frac{\Delta^2}{2E}
$$

 $2E$

Fermi's Golden Rule:

$$
\Gamma(\omega) \equiv \frac{2\pi}{\hbar} \sum_{f} \left| \left\langle f \left| \hat{V} \right| \Psi_{\rm BCS} \right\rangle \right|^2 \delta \left(\hbar \omega - E_f \right)
$$

Interaction:

$$
\hat{V} = V_0 \sum_k c_{k3}^\dagger c_{k\uparrow} + c_{k\uparrow}^\dagger c_{k3}
$$

Insert quasiparticle operators: $c_{k\uparrow} = u_k \gamma_{k\uparrow} + v_k \gamma_{-k\downarrow}^{\dagger}$

$$
\text{Act on BCS-state:} \quad c_{k3}^{\dagger} c_{k\uparrow} \ket{\Psi_{\rm BCS}} = v_k c_{k3}^{\dagger} \gamma_{-k\downarrow}^{\dagger} \ket{\Psi_{\rm BCS}}
$$

And thus:

$$
\hat{V} | \Psi_{\rm BCS} \rangle = V_0 \sum_{k} v_k c_{k3}^{\dagger} \gamma_{-k\downarrow}^{\dagger} | \Psi_{\rm BCS} \rangle
$$

Fermi's Golden Rule:

$$
\Gamma(\omega) \equiv \frac{2\pi}{\hbar} \sum_{f} \left| \left\langle f \left| \hat{V} \right| \Psi_{\rm BCS} \right\rangle \right|^2 \delta \left(\hbar \omega - E_f \right)
$$

Possible final states: $|k\rangle \equiv c_{k3}^{\dagger} \gamma_{-k\uparrow} | \Psi_{\rm BCS} \rangle$

RF Photon provides: $\hbar\Omega(k) = \hbar\omega_{13} + E_k + \epsilon_k - \mu$

Invert: $\hbar\Omega(k) = \hbar\omega_{13} + E_k + \epsilon_k - \mu$ to get ϵ_k in terms of ω

 $\delta(\hbar\omega-\hbar\Omega(k))=\frac{1}{\hbar}\frac{d\epsilon_k}{d\Omega}\,\delta(\epsilon_k-\epsilon(\omega))$ Then:

$$
\text{But:} \qquad \qquad \frac{d\Omega}{d\epsilon_k} = \frac{\xi_k}{E_k} + 1 = 2u_k^2
$$

And the final RF spectrum becomes:

$$
\Gamma(\omega) = \frac{\pi}{\hbar} V_0^2 \rho(\epsilon_k) \left. \frac{v_k^2}{u_k^2} \right|_{\epsilon_k = \epsilon(\omega)} = \pi N_p V_0^2 \rho(\epsilon_k) |\varphi_k|^2 |_{\epsilon_k = \epsilon(\omega)}
$$

$$
\Gamma(\omega) = \pi N_p V_0^2 \rho(\epsilon_k) |\varphi_k|^2 |_{\epsilon_k = \epsilon(\omega)}
$$

$$
\hbar\omega_{\rm th} = \sqrt{\mu^2 + \Delta^2} - \mu \rightarrow \begin{cases} \frac{\Delta^2}{2E_F} & \text{in the BCS-limit} \\ 0.31E_F & \text{on resonance} \\ |E_B| = \frac{\hbar^2}{ma^2} & \text{in the BEC-limit} \end{cases}
$$

Explicitely:

$$
\Gamma(\omega)=\frac{3\pi}{4\sqrt{2}\hbar}\frac{N\,V_0^2\Delta^2}{E_F^{3/2}}\,\frac{\sqrt{\hbar\omega-\hbar\omega_{\rm th}}}{\hbar^2\omega^2}\sqrt{1+\frac{\omega_{\rm th}}{\omega}+\frac{2\mu}{\hbar\omega}}
$$

BEC-limit:

$$
\Gamma_{\rm BEC}(\omega) = \frac{4}{\hbar} N_M V_0^2 \sqrt{|E_B|} \frac{\sqrt{\hbar \omega - |E_B|}}{\hbar^2 \omega^2}
$$

Connection to tunneling experiments

Introduction to Superconductivity

Connection to tunneling experiments

BCS limit, onset at:

$$
\hbar\omega - \hbar\omega_0 = \frac{\Delta^2}{2E_F}
$$

Rf Spectra in the BEC-BCS Crossover

- Determine binding energy spectroscopically
- Infer size of the pairs at unitarity: about half the interparticle spacing

Christian H. Schunck, Yong-il Shin, Andre Schirotzek, Wolfgang Ketterle, Nature **454**, 739 (2008)
Fermions entering Flatland

High-T^c Superconductor with stacks of CuO planes

Stacks of 2D coupled fermionic superfluids

- 2D Fermi Gases: A paradigm of condensed matter physics
- Access physics of layered superconductors
- Evolution of Fermion Pairing from 3D to 2D
- Study superfluidity in lower dimensions

Expts on 2D Bose gases: Ketterle, Dalibard, Cornell, Phillipps, Chin Expts on 2D Fermi gases: Turlapov, Koehl, Thomas, Vale

Making quasi-2D Fermi gases

- Confine atoms tightly in one direction until only the ground state is occupied
- Our setup: 1D lattice (retro-reflected laser beam)
- 2D-ness tuned by lattice depth
- Deep lattice: $\frac{\varepsilon_F}{\hbar\omega} \sim 0.1$, aspect ratio of ~1:1000

Evolution of Fermion Pairing from 3D to 2D

Evolution of Fermion Pairing from 3D to 2D

RF spectrum of fermion pairs

 ω b) ω) ~ $\rho(\varepsilon_k) |\psi(k)|^2_{|\varepsilon_k = \varepsilon(\omega)}$ $I(\omega) \sim \rho(\varepsilon_k) |\psi(k)|^2_{|\varepsilon_k = \varepsilon(\omega)}$ 2 $\sim \sqrt{\varepsilon}$ Density of States: 3D *const*. 2D — $\omega - \omega$ Interactions in final state: $I(\omega) \sim \frac{\sqrt{\omega} \omega_{th}}{2}$ (ω) ~ 3D: Langmack, Barth, Zwerger, Braaten 2 Phys. Rev. Lett. **108**, 060402 (2012) ω $\ln^2(E_b^f$ / $E_b^{\phantom f})$ *f* $\overline{}$ $(\omega - \omega_{th})$ E_b^f / E $\theta(\omega-\omega)$ $I(\omega) \sim \frac{U(\omega - \omega_{th})}{2}$ (ω) ~ 2D: 2 $\ln^2((\omega - E_b)/E_b^f) + \pi^2$ $E^{\,}_b)$ / $E^{\,j}_b$ ω

Logarithmic Corrections in 2D Spectra

2D nature of interactions strongly influence "naïve" spectra

Logarithmic Corrections in 2D Spectra

2D nature of interactions strongly influence "naïve" spectra

Evolution of Fermion Pairing from 3D to 2D

A. T. Sommer, L. W. Cheuk, M. J.-H. Ku, W. S. Bakr, M. W. Zwierlein PRL 108, 045302 (2012) **D** Selected for Viewpoint in Physics, Jan '12

Deep 2D regime Comparison with mean-field BEC-BCS in 2D

A. T. Sommer, L. W. Cheuk, M. J.-H. Ku, W. S. Bakr, M. W. Zwierlein PRL 108, 045302 (2012) **D** Selected for Viewpoint in Physics, Jan '12

Deep 2D regime Comparison with mean-field BEC-BCS in 2D

Prediction: Randeria et al. (1989) Many-body bound state energy = 2-body bound state energy

Only small deviation observed between many-body and 2-body bound-state energy

Same conclusion in M. Koehl group: Feld et al., Nature 480, 75 (2011)

A. T. Sommer, L. W. Cheuk, M. J.-H. Ku, W. S. Bakr, M. W. Zwierlein PRL 108, 045302 (2012) **D** Selected for Viewpoint in Physics, Jan '12

Spin-Orbit Coupled Fermi Gases

Spin-Orbit Coupling

Motivation:

- Possible Ingredient for Topological Phases of Matter
- Induces p- (and higher-order) partial wave interactions + p-wave pairing
	- Topological Superconductors: \rightarrow Majorana Edge States Topological protection
	- \rightarrow Quantum computation with Majorana fermions (Kitaev)

M.Z. Hasan and C.L. Kan RMP **82**, 3045 (2010)

Spin-Orbit Coupling

Raman transition: Couple different spin (hyperfine) states Doppler effect causes momentum-dependent coupling

The spin-orbit Hamiltonian

• The SO Hamiltonian

$$
\mathcal{H} = \frac{\hbar^2 k^2}{2m} - \frac{g\mu_B}{\hbar} \mathbf{S} \cdot (\mathbf{B}^{(D)} + \mathbf{B}^{(R)} + \mathbf{B}^{(Z)})
$$

\n
$$
\mathbf{B}^{(R)} = \alpha(k_y, -k_x, 0) \qquad \mathbf{B}^{(D)} = \beta(k_y, k_x, 0)
$$

\n• 1D SO Hamiltonian
\n
$$
\mathcal{H} = \frac{\hbar^2 k^2}{2m} + 2\alpha k \sigma_z + \frac{\delta}{2} \sigma_z + \frac{\hbar \Omega_R}{2} \sigma_x
$$

\nLaser 1 Fermion Laser 2
\n
$$
\mathbf{Laser 1}
$$

\n
$$
\mathbf{Laser 2}
$$

\n
$$
\mathbf{Laser 2}
$$

\n
$$
\mathbf{V}_2 - \mathbf{V}/\lambda
$$

\n
$$
\mathbf{V}_1 + \mathbf{V}/\lambda
$$

Laser

The spin-orbit gap

Coupling Spin and Momentum via Raman

 $\left|\overrightarrow{\uparrow}, \overrightarrow{p}\right\rangle \left| \downarrow, \overrightarrow{p} + \hbar \vec{k} \right\rangle$

Vary detuning Short pulse

ee also: Zhang et al. arXiv:1204.1887

Coupling Spin and Momentum via Raman

 $=\alpha_k|k,\uparrow\rangle + \beta_k|k+q,\downarrow\rangle$ $\ket{\tilde{k}}$

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- When SO coupling is ramped slowly:
- Spin composition follows effective magnetic field

– Process is reversible

- How to characterize Hamiltonian?
	- Can topology be measured?
- Condensed matter: transport, (spin-)ARPES, STM …
- Cold atom analog: momentum resolved RF (Jin, Koehl) (=photoemission spectroscopy)
- Photoemission Spectroscopy probes dispersion *E(k)*

- Spin-injection spectroscopy
	- Measures *E*(*k*) and spin texture.
	- Start from reservoir states: $\ket{\uparrow}_R$, $\ket{\downarrow}_R$
	- Transfer into SO coupled system with RF pulse
	- Project into free space, give TOF
	- Spin-selective imaging gives spin/momentum
	- Reconstruct *E(k)* along with "color" of band

 E/E_R

Direct Observation of the Spin-Orbit Gap

• With both Raman and RF, we obtain a spin-orbit coupled lattice (see Jiménez-García et al., arXiv:1201.6630 (2012))

 $\sigma_{\scriptscriptstyle +}$

• With both Raman and RF, we obtain a spin-orbit coupled lattice (see Jiménez-García et al., arXiv:1201.6630 (2012))

 Ω_{R}

Repeated scheme: $|\uparrow, k\rangle$ $|\uparrow, k+Q\rangle$ $\Omega_{\sf R}$ $\Omega_{\sf R}$ $\Omega_{\textsf{RF}}$ Ω_{RF} $|\downarrow, k\rangle$ $\ket{\downarrow,\,k\text{+} \text{Q}}$

• In repeated scheme

• Degenerate point inside spin orbit gap

• Bandgap opens between 2nd and 3rd band

• Larger RF, gap between lowest bands

Determination of Spinful Band Structure

Spin-orbit Coupling of a Fermi sea

With extensions of these techniques: Topological insulators, edge states With interactions: Topological superfluids, majorana fermions? Spin-Orbit coupled Fermi seanoves to the left, and to the right

Fermions and Bosons

ction: Felix Werner, Kris van Houcke, Evgeny Kozik, Nikolay Prokof'ev, Boris Svistunov

E