Unravelling the neutron star interior: Prospects and challenges

INT, Univ. of Washington

10 light-years

INT, Univ. of Washington

 $x \Rightarrow 10^{-10} x$

 $x \Rightarrow 10^{-4} x$

 $x \Rightarrow 10^{-10} x$

 $x \Rightarrow (1-\epsilon) x$

Getting to ~ 2.5x10¹⁴ g/cm³: Nuclear Physics

Properties of nuclei - <u>almost</u> get us there !

Compression: Frustration and Liberation

Density	Energy	Phenomena
10 ³ - 10 ⁶ g/cm ³	Electron Chemical Pot. μ_e = 10 keV– MeV	Ionization
10 ⁶ - 10 ¹¹ g/cm ³	Electron Chemical Pot. $\mu_e=1-25$ MeV	Neutron-rich Nuclei
10 ¹¹ - 10 ¹⁴ g/cm ³	Neutron Chemical Pot. $\mu_n=1-30 \text{ MeV}$	Neutron-drip
10 ¹⁴ - 10 ¹⁵ g/cm ³	Neutron Chemical Pot. µn=30-1000 MeV	Nuclear matter Hyperons or Quarks ?

Frustration in Neutron Matter

Too many down quarks

Hyperon Matter

Kaplan & Nelson (1986)

e

Strangeness in Dense Matter: Theory very uncertain.

Asymptotic Density

Interactions lead to pairing and color superconductivity

Strongest attraction in colorantisymmetric channel: Color-Flavor-Locking

$$\Delta \gg \frac{m_s^2}{4\mu}$$

Alford, Rajagopal, Wilczek (1999)

 $n_u = n_d = n_s$

Asymptotic Density

Interactions lead to pairing and color superconductivity

Strongest attraction in colorantisymmetric channel: Color-Flavor-Locking

$$\Delta \gg \frac{m_s^2}{4\mu}$$

Alford, Rajagopal, Wilczek (1999)

Asymptotic Density

Interactions lead to pairing and color superconductivity

Strongest attraction in colorantisymmetric channel: Color-Flavor-Locking

$$\Delta \gg \frac{m_s^2}{4\mu}$$

Alford, Rajagopal, Wilczek (1999)

Quark Matter in Neutron Stars

ط

Rel. Fermi gas of u,d,s quarks

Interactions are non- perturbative. Difficult to predict critical density.

$$\Delta \simeq \frac{m_s^2}{4\mu}$$

Difficult to predict ground state.
Complicated spectrum of excitations (Strongly coupled quasi-particles)

Ground state is CFL.
Low energy
spectrum is simple
(Goldstone modes - weakly coupled)

Phase & Composition

What can we observe?

- Orbital Characteristics in Binaries
- Surface Luminosity

- Explosions & Flares
- Neutrinos (Supernova)
- Gravity Waves (likely within 5 yrs!)

• Spin

What can we infer ?

Hard Physics

- Mass
- Radius
- Crust thickness
- Oscillations frequencies Ground state EoS

Soft Physics

- Surface and interior temperature
- Neutrino cooling and scattering rates
- Electrical & Thermal Conductivities
- Damping rates

Low energy fluctuations

 $E(\rho_n, \rho_p)$: Energy per particle

Neutron Matter & 3N Forces

Gandolfi, Carlson, Reddy (2010)

Neutron-rich Nuclei

 ρ_n Nuclear masses are sensitive to the 0.08 symmetry energy. 0.06 Neutron $\rho(r)$ distribution at the $\Delta R = R_n$ 0.04 surface is sensitive to its density 0.02 dependence. 2 6 4 Bethe-Weizsäcker formula: $E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + \frac{a_a(A)}{4} \frac{(N-Z)^2}{A} + E_{mic}$ Horowitz (2007) Danielewicz (2008)

Neutron-rich Nuclei

 Nuclear masses are sensitive to the symmetry energy.

 Neutron distribution at the surface is sensitive to its density dependence.

Bethe-Weizsäcker formula:

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a$$

Sy.
he ive to

$$\rho(r) = \frac{\rho(r)}{0.04} + \frac{\rho_p}{\Delta R} = R_n - R_p$$
formula:

$$A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_a(A) \frac{(N-Z)^2}{A} + E_{mic}$$

$$\frac{1}{a_a(A)} = \frac{1}{a_a^V} + \frac{1}{a_a^S} A^{1/3}$$

$$a_a^V \Rightarrow E_{sym} (S)$$

$$\frac{\partial E_{sym}}{\partial E_{sym}} (L/2)$$

 ρ_n

 $a_a^S \Rightarrow \frac{\partial \mathcal{L}_{\text{sym}}}{\partial \rho}$

Horowitz (2007) Danielewicz (2008)

Neutron-rich Nuclei

 Nuclear masses are sensitive to the symmetry energy.

 Neutron distribution at the surface is sensitive to its density dependence.

Bethe-Weizsäcker formula:

$$E = -a_V A + a_S A^{2/3} + a_C \frac{Z^2}{A^{1/3}} + a_C \frac{Z^2}{A^{1$$

Nuclear Density 0.08 Sub-nuclear ho_p Density 0.06 $\rho(r)$ $\Delta R = R_n$ 0.04 0.02 6 2 4 $r(fm) \frac{(N-Z)^2}{\Delta} + E_{\rm mic}$

 ρ_n

Horowitz (2007) Danielewicz (2008)

Nuclear experiments to measure S and L:

Masses of very neutron-rich nuclei near the neutron-drip will reduce systematic errors in extracting S from model fits.
(Facilities such as FRIB, FAIR, JPARC)
Distribution of neutrons in the surface region of neutron-rich nuclei can measure L indirectly.
Eg. PREX at Jefferson lab.

To extrapolate to high density we need a theory that can predict S & L.

Mass-Radius

Soft EoS: low maximum mass and small radii
 Stiff EoS: high maximum mass and large radii

Mass and Radius

Mass and Radius

Maximum Mass & Phase Transitions

Maximum Mass & Phase Transitions

Maximum Mass & Phase Transitions

Maximum Mass & Phase Transitions

The 2 solar mass neutron star rules out a strong first-order transitions at supra-nuclear density

BEYOND MASS & RADIUS: TRANSPORT PHENOMENA

How does dense matter:

- Cool
- Conduct heat and electric currents
- Respond to angular momentum
- Oscillate when its perturbed ?

FLUCTUATIONS

• The rate of production and scattering of neutrinos (neutron star cooling, supernova), and scattering of electrons (thermal relaxation) are related to the thermal fluctuation spectrum.

Rate = Coupling X Kinematics X Response Function

FLUCTUATIONS

- The rate of production and scattering of neutrinos (neutron star cooling, supernova), and scattering of electrons (thermal relaxation) are related to the thermal fluctuation spectrum.
 - Rate = Coupling X Kinematics X Response Function

Weak Interaction Rates

target

$$\frac{d^2\sigma}{V\,d\cos\theta\,dE'} \approx G_F^2 \frac{E}{E'} \operatorname{Im} \left[L_{\mu\nu}(k,k+q) \Pi^{\mu\nu}(q) \right]$$
$$L_{\mu\nu} = \operatorname{Tr} \left[l_{\mu}(k) l_{\nu}(k+q) \right]$$
$$\Pi^{\mu\nu} = \int \frac{d^4p}{(2\pi)^4} \operatorname{Tr} \left[j^{\mu}(p) \ j^{\nu}(p+q) \right]$$

Neutrino-Nucleon Scattering

Neutrinos couple to density and spin

$$j^{\mu}(x) = \overline{\psi}(x) \,\gamma^{\mu}(c_V - c_A \gamma_5) \,\psi(x)$$

$$\stackrel{NR}{\longrightarrow} c_V \,\psi^+ \psi \,\delta^{\mu 0} - c_A \,\psi^+ \,\sigma^i \,\psi \,\delta^{\mu i}$$

$$\frac{d\Gamma}{d\cos\theta dE'_{\nu}} = \frac{G_F^2}{4\pi^2} \left(1 - f_{\nu}(E'_{\nu})\right) E'_{\nu}^2 \times \left(c_V^2 \left(1 + \cos\theta\right) S(|\vec{q}|, \omega) + c_A^2 \left(3 - \cos\theta\right) S^A(|\vec{q}|, \omega)\right)$$

$$\begin{split} S(|\vec{q}|,\omega) &= \int_{-\infty}^{\infty} dt \; \exp(i\omega t) \; \langle \; \rho(\vec{q},t)\rho(-\vec{q},0) \; \rangle \\ S^{A}(|\vec{q}|,\omega) &= \int_{-\infty}^{\infty} dt \; \exp(i\omega t) \; \delta_{ij} \; \langle \; \sigma_{i}(\vec{q},t)\sigma(-\vec{q},0) \; \rangle \end{split}$$

Iwamoto & Pethick (1982)

Response of a classical liquid

The density-density correlation for N particles is

$$\langle \rho(\mathbf{q}, \mathbf{0}) \rho(\mathbf{q}, \mathbf{t}) \rangle = \langle \Sigma_{\mathbf{i}} \mathbf{e}^{-\mathbf{i}\mathbf{q}, \mathbf{r}_{\mathbf{i}}} \Sigma_{\mathbf{j}} \mathbf{e}^{-\mathbf{i}\mathbf{q}, \mathbf{r}_{\mathbf{j}}(\mathbf{t})} \rangle$$

$$= \sum_{\text{Ensemble average}} \sum_{\text{Positions at t}} \sum_{\mathbf{r} \in \mathbf{1}} \sum_{\mathbf{q} \in \mathbf{q}, \mathbf{r}_{\mathbf{r}}} \sum_{\mathbf{r} \in \mathbf{r}} \sum_{\mathbf{r} \in \mathbf{q}, \mathbf{r}_{\mathbf{r}}} \sum_{\mathbf{r} \in \mathbf{q}, \mathbf{r}_{\mathbf{r}}} \sum_{\mathbf{r} \in \mathbf{r}} \sum_{$$

Need to specify equations of motion or $\mathbf{r}_{j}(t)$. Classical limit:

$$\mathbf{r}_{j}(\Delta t) = \mathbf{r}_{j}(0) + \mathbf{v}_{j} \ \Delta t + \frac{1}{2 \ m} \sum_{i \neq j} \mathbf{F}_{ij} \ t^{2}$$

Screening, Damping & Collective Modes

- Strong repulsive Coulomb forces affect the spatial distribution.
- A collective mode exists in the system.
- Response is pushed to high energy.
- Multi-particle excitations smears the response.

Response Functions: In Quantum Fluids

$$S_{q}(\omega) = \sum_{\lambda,\lambda'} f_{\lambda} |\langle \lambda | A_{q} | \lambda' \rangle|^{2} \delta(E_{\lambda} - E'_{\lambda} - \omega)$$

$$= \int dt \ e^{i\omega t} \langle \langle \lambda | A_{q}(t) \ A^{\dagger}_{q}(0) | \lambda \rangle \rangle$$

Response Functions: In Quantum Fluids

$$S_{q}(\omega) = \sum_{\lambda,\lambda'} f_{\lambda} |\langle \lambda | A_{q} | \lambda' \rangle|^{2} \delta(E_{\lambda} - E_{\lambda}' - \omega)$$

$$= \int dt \ e^{i\omega t} \langle \langle \lambda | A_{q}(t) \ A_{q}^{\dagger}(0) | \lambda \rangle \rangle$$

Fermi Motion and Pauli Blocking.

Correlations and collisions.

Response Functions: In Quantum Fluids

$$S_{q}(\omega) = \sum_{\lambda,\lambda'} f_{\lambda} |\langle \lambda | A_{q} | \lambda' \rangle|^{2} \delta(E_{\lambda} - E'_{\lambda} - \omega)$$

$$= \int dt \ e^{i\omega t} \langle \langle \lambda | A_{q}(t) \ A^{\dagger}_{q}(0) | \lambda \rangle \rangle$$
Fermi Motion and
Pauli Blocking.

Correlations and collisions.

Cooper Pairing & Superfluidity.

Computing Correlation Functions

No exact methods exist in strongly coupled quantum systems.

In the Fermi gas:

In the mean field approximation:

Computing Correlation Functions

No exact methods exist in strongly coupled quantum systems.

In the Fermi gas:

In the mean field approximation:

Correlations in a nuclear liquid

 $\frac{d\Gamma(E_1)}{d\cos\theta \ dq_0} = \frac{G_F^2}{4\pi^2} \ (E_1 - q_0)^2 \ \left[(1 + \cos\theta) \ S_V^{\text{RPA}}(q_0, q) + (3 - \cos\theta) \ S_A^{\text{RPA}}(q_0, q) \right]$

Neutrino scattering can be significantly reduced

OBSERVING TRANSPORT PHENOMENA

• Can we measure correlation functions in neutron star matter ?

OBSERVING TRANSPORT PHENOMENA

• Can we measure correlation functions in neutron star matter ?

Yes.

This will require at least two of the following:
New experiments with exotic targets.
Temporal phenomena in neutron stars.
Theoretical understanding of transport properties.

Neuron star matter. Warning: Radioactive outside the pressure chamber

Missing target. Awaiting new collaborators.

lain Injecto

Time Dependent Phenomena

- Thermal relaxation of the core.
- Neutron star cooling.
- Thermal relaxation of the crust.

Thermal Relaxation of the Core

Once in a lifetime we may detect a neutrino burst from a galactic supernova.

Supernova Neutrinos

3×10^{53} ergs = $10^{58} \times 20$ MeV Neutrinos

Past:

SN 1987a: ~ 20 neutrinos ..in support of supernova theory

Future:

100.000

Can detect ~10,000 neutrinos from galactic supernova

Core Collapse Supernova

- Neutrinos are trapped during core collapse.
 Collapse is nearly adiabatic.
- Gravitational binding energy is stored as thermal energy and lepton degeneracy energy.

Protoneutron Star Evolution

Neutrino diffusion cools the PNS.

Protoneutron Star Evolution

Neutrino diffusion cools the PNS.

Typical time-scales:

$$T(t) \approx T(t = 0) \left(1 - \frac{1}{\tau_{c}} \tau_{c} \right)$$
$$\tau_{c} \approx C_{v} \frac{R^{2}}{c \left\langle \lambda_{v} \right\rangle}$$

Neutron Star Tomography

- Time structure of the neutrino signal maps the neutrino opacity as a function of depth.
- Opacity is directly related to spectrum of density and spin fluctuations in dense matter.
- Important to note that several other astrophysical effects can complicate this simple interpretation.

Late Time Cooling in X-Rays

• Cooling of isolated neutron stars.

Shternin et al (2011) Page et al. (2011)

• Thermal relaxation of accreting neutron stars.

Brown & Cumming (2007) Shternin et al (2007)

Neutron Star in a Supernova Remnant

chandra.harvard.edu/photo/2011/casa/

Neutron star in X-ray Binary

NEUTRON STAR COOLING

Crust cools by conduction

Isothermal core cools by neutrino emission

Surface photon emission dominates at late time t > 10^{6} yrs

Basic neutrino reactions: $n \rightarrow p + e^{-} + \bar{\nu}_{e}$ $e^{-} + p \rightarrow n + \nu_{e}$ $n + n \rightarrow n + p + e^{-} + \bar{\nu}_{e}$ $e^{-} + p + n \rightarrow n + n + \nu_{e}$ Slow: Modified URCA

Name	Process	Emissivity [†] (erg cm ^{-3} s ^{-1})	Efficiency
Modified Urca cycle	$n + n \rightarrow n + n + e^- + \bar{\nu}_{e}$		
(neutron branch)	$n + n + e^{-} \rightarrow n + n + u$	$\sim 2 \times 10^{21} R T_9^8$	Slow
Modified Urea cyclo	$ n + p + e \rightarrow n + n + \nu_e $		
(nnoton bronch)	$p + n \rightarrow p + p + e^{-} + \nu_{e}$	$\sim 10^{21} R T_9^8$	Slow
(proton branch)	$p + p + e \rightarrow p + n + \nu_e$		
D 11	$n + n \rightarrow n + n + \nu + \nu$	10 ¹⁰ D 78	Cl
Bremsstrahlung	$n + p \rightarrow n + p + \nu + \overline{\nu}$	$\sim 10^{19} R T_9^{6}$	Slow
	$p + p \rightarrow p + p + \nu + \bar{\nu}$	0.1	
Cooper pair	$n+n \rightarrow [nn] + \nu + \bar{\nu}$	$\sim 5 \times 10^{21} R T_9^7$	Medium
formations	$p + p \rightarrow [pp] + \nu + \bar{\nu}$	$\sim 5 \times 10^{19} R T_9^{7}$	Wiedium
Direct Urca cycle	$n \to p + e^- + \bar{\nu}_e$	$\sim 10^{27} \; R T_9^6$	Fast
(nucleons)	$p + e^- \rightarrow n + \nu_e$		
Direct Urca cycle	$\Lambda \to p + e^- + \bar{\nu}_e$	$\sim 10^{27} \; R T_9^6$	Fast
$(\Lambda \text{ hyperons})$	$p + e^- \to \Lambda + \nu_e$		
Direct Urca cycle	$\Sigma^- \rightarrow n + e^- + \bar{\nu}_e$	$\sim 10^{27}\; R T_9^6$	Fast
$(\Sigma^{-} \text{ hyperons})$	$n + e^- \rightarrow \Sigma^- + \nu_e$		
π^- condensate	$n+ < \pi^- > \rightarrow n + e^- + \bar{\nu}_e$	$\sim 10^{26} R T_0^6$	Fast
K^- condensate	$n+ \langle K^- \rangle \rightarrow n + e^- + \bar{\nu}_e$	$\sim 10^{25} R T_{0}^{9}$	Fast
Direct Urca cycle	$d \rightarrow u + e^- + \bar{\nu}_c$	$\sim 10^{27} R T_9^6$	Fast
(u-d quarks)	$u + e^- \rightarrow d + u$		
Direct Urca cyclo	a + c - 7a + ve		
(n a cuerlea)	$s \rightarrow u + e + \nu_e$	$\sim 10^{27} R T_{ m Q}^6$	Fast
(u-s quarks)	$u + e \rightarrow s + \nu_e$		

Table 1. Dominant neutrino emission processes.

Page (2012)
Standard Cooling

Standard Cooling

Standard Cooling

COOLING AND EOS

Neutron decay at the Fermi surface cannot conserve momentum if

 $x_p \sim (p_{F_p} / p_{F_n})^3 < 0.12 - 14$

• In the standard scenario only massive stars (M ~ 2 Mo) cool rapidly.

COOLING AND EOS

Neutron decay at the Fermi surface cannot conserve momentum if

 $x_p \sim (p_{F_p} / p_{F_n})^3 < 0.12 - 14$

- In the standard scenario only massive stars (M ~ 2 M) cool rapidly.
- A large symmetry energy will allow direct URCA for typical NS (M ~ 1.4 M_☉).

• Recall a large symmetry energy also favors large radii.

Page et al (2009,2010)

Pairing

I. Too hot for electron pairing:

$$T_c \approx \omega_p^{\text{ion}} \exp\left(-\frac{v_{Fe}}{\alpha_{\text{em}}}\right)$$

Ginzburg (1969)

Relativistic electrons move too quickly to feel the phonon induced attraction.

II. Pairing between nucleons is inevitable.

$$T_c \approx E_{Fn} \exp\left(-\frac{\pi}{2k_{Fn} a_{nn}}\right)$$

Bohr, Mottelson, Pines (1958) Migdal (1959)

Typical energy scale is MeV (~10¹⁰ K)

Recall Response Function in Superfluid !

$$S_{q}(\omega) = \sum_{\lambda,\lambda'} f_{\lambda} |\langle \lambda | A_{q} | \lambda' \rangle|^{2} \delta(E_{\lambda} - E_{\lambda}' - \omega)$$

$$= \int dt \ e^{i\omega t} \langle \langle \lambda | A_{q}(t) \ A_{q}^{\dagger}(0) | \lambda \rangle \rangle$$

Recall Response Function in Superfluid !

$$S_{q}(\omega) = \sum_{\lambda,\lambda'} f_{\lambda} |\langle \lambda | A_{q} | \lambda' \rangle|^{2} \delta(E_{\lambda} - E'_{\lambda} - \omega)$$

$$= \int dt \ e^{i\omega t} \langle \langle \lambda | A_{q}(t) \ A^{\dagger}_{q}(0) | \lambda \rangle \rangle$$

Fermi Motion and Pauli Blocking.

Correlations and collisions.

Recall Response Function in Superfluid !
$$S_q(\omega) = \sum_{\lambda,\lambda'} f_\lambda |\langle \lambda | A_q | \lambda' \rangle|^2 \delta(E_\lambda - E'_\lambda - \omega)$$
 $= \int dt \ e^{i\omega t} \langle \langle \lambda | A_q(t) \ A^{\dagger}_q(0) | \lambda \rangle \rangle$ Fermi Motion and
Pauli Blocking. $S_q(\omega)$ $S_q(\omega)$ $S_q(\omega)$

Cooper Pairing & Superfluidity.

collisions.

S-wave pairing

Gezerlis & Carlson (2008)

Bulgac, Carlson, Drut, Gandolfi,

Forbes, Kaplan ...

S-wave pairing

The nucleon-nucleon interaction is known up to relative momenta ~ 350 MeV.
Perturbation theory fails, but Quantum Monte Carlo and lattice methods may be reliable.

•Best estimates for the gap indicate that it reaches a maximum value ~ I MeV in the crust.

Page et al. (2011)

PAIRING PROFILE

Predictions based on the sign and magnitude of the interaction.

Screening, the multi-component nature, and other many-body effects can be important at high density.

Pair Breaking & Formation

- Fluctuations near T_c are efficient at producing neutrinos. Flowers, Ruderman, Sutherland (1976)
- Fluctuations in the ³P₂ superfluid are most efficient: (i) because neutrino's couple to spin, (ii) conservation laws suppress the emission in the ¹S₀ channel.

Leinson (2008) Steiner & Reddy (2009)

Page et al. (2011)

Pair Breaking & Formation

- Fluctuations near T_c are efficient at producing neutrinos. Flowers, Ruderman, Sutherland (1976)
- Fluctuations in the ³P₂ superfluid are most efficient: (i) because neutrino's couple to spin, (ii) conservation laws suppress the emission in the ¹S₀ channel.

Leinson (2008) Steiner & Reddy (2009)

Page et al. (2011)

Pair Breaking & Formation

Page et al. (2011)

Cooling of the Neutron Star in Cas A

Cooling on a 10 year time scale requires very rapid cooling.

Is a large volume inside the neutron star undergoing a superfluid transition to produce enhanced cooling ?

Cooling behavior over the next decade will tell.

Heinke, & Ho (2010) Page et al. (2011), Shternin et al. (2011)

Cooling of the Neutron Star in Cas A

Cooling on a 10 year time scale requires very rapid cooling.

Is a large volume inside the neutron star undergoing a superfluid transition to produce enhanced cooling ?

Cooling behavior over the next decade will tell.

Heinke, & Ho (2010) Page et al. (2011), Shternin et al. (2011)

Transient Accretion

- Nuclear reactions heat the crust during accretion.
 Haensel & Zdunik 1990, Brown, Bildsten, Rutledge (1998)
- Crust relaxes during quiescence. Shternin & Yakovlev (2007), Brown & Cumming (2009)

Transient Accretion

- Nuclear reactions heat the crust during accretion. Haensel & Zdunik 1990, Brown, Bildsten, Rutledge (1998)
- Crust relaxes during quiescence.
 Shternin & Yakovlev (2007), Brown & Cumming (2009)

Crust Relaxation

• Crust relaxes during quiescence. Shternin & Yakovlev (2007), Brown & Cumming (2009)

data from MXB 1659

Crust Relaxation

• Crust relaxes during quiescence.

Shternin & Yakovlev (2007), Brown & Cumming (2009)

MORETHAN ONE SOURCE!

Cackett et al. 2006

Cackett et al. 2008

 $au_{\rm Cool} \simeq \frac{C_V}{\kappa} \ (\Delta R)^2$

Crustal Specific Heat

 $au_{\rm Cool} \simeq \frac{C_V}{\kappa} (\Delta R)^2$

 $au_{\rm Cool} \simeq \frac{C_V}{\kappa} \ (\Delta R)^2$

Crustal Specific Heat

Thermal Conductivity

Microscopic Structure of the Crust

Baym Pethick & Sutherland (1971) Negele & Vautherin (1973)

Microscopic Structure of the Crust

Baym Pethick & Sutherland (1971) Negele & Vautherin (1973)

Microscopic Structure of the Crust

Baym Pethick & Sutherland (1971) Negele & Vautherin (1973)

Low Energy Theory of Phonons

- Proton (clusters) move collectively on lattice sites. Displacement is a good coordinate.
- Neutron superfluid: Goldstone excitation is the phase of the condensate.

Cirigliano, Reddy & Sharma (2011)

Low Energy Theory of Phonons

- Proton (clusters) move collectively on lattice sites. Displacement is a good coordinate.
- Neutron superfluid: Goldstone excitation is the phase of the condensate.

Low Energy Theory of Phonons

Proton (clusters) move collectively on lattice sites. Displacement is a good coordinate.

Neutron superfluid: Goldstone excitation is the phase of the condensate.

$$\langle \psi_{\uparrow}(r)\psi_{\downarrow}(r)\rangle = |\Delta| \exp\left(-2i \theta\right)$$

Collective coordinates:

Vector Field: $\xi_i(r, t)$ Scalar Field: $\phi(r, t)$

Cirigliano, Reddy & Sharma (2011)

Crustal Specific Heat

Page & Reddy (2012)

Crustal Specific Heat

Impurity scattering is important at low temperature.

Flowers & Itoh (1976)

Impurity scattering is important at low temperature.

Flowers & Itoh (1976)

Unraveling thermal relaxation

- •Late time signal is sensitive to inner crust thermal and transport properties.
- •Impurity parameter can be fixed at earlier

times. Shternin & Yakovlev (2007) Brown & Cumming (2009)

•Variations in the pairing gap (changes the fraction of normal neutrons) are discernible !

Unraveling thermal relaxation

- •Late time signal is sensitive to inner crust thermal and transport properties.
- •Impurity parameter can be fixed at earlier

times. Shternin & Yakovlev (2007) Brown & Cumming (2009)

•Variations in the pairing gap (changes the fraction of normal neutrons) are discernible !

Page & Reddy (2012)

NS Collisions - Gravity Waves

The gravity wave and EM counterparts are also likely to be sensitive to both the EoS and response functions.

Simulations by Rezolla et al.

NS Collisions - Gravity Waves

The gravity wave and EM counterparts are also likely to be sensitive to both the EoS and response functions.

Simulations by Rezolla et al.

Summary & Outlook

- A qualitative understanding of connections between dense matter properties and neutron star observations have emerged in the past decade.
- There is much to do. Pursuing theoretical work to provide a quantitative description of the equation of state and correlations functions of interest will be both challenging and rewarding.
- Multi-messenger probes of the neutron star interior (x-rays, neutrinos, and GWs) contain a wealth of information .. extracting it will require good ideas, theory, and large-scale simulations.