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Getting to ~ 2.5x1014 g/cm3: Nuclear Physics

Properties of nuclei - almost get us there ! 

few fm



12,700 km 1km

Density Energy Phenomena

 103 -106  g/cm3 Electron Chemical Pot.
µe= 10 keV- MeV Ionization

106 -1011  g/cm3
Electron Chemical Pot.

µe= 1-25 MeV Neutron-rich Nuclei

1011 -1014  g/cm3 Neutron Chemical Pot.
µn= 1-30 MeV Neutron-drip

1014 -1015 g/cm3
Neutron Chemical Pot.

µn=30-1000 MeV
Nuclear matter

Hyperons or Quarks ?

Compression: Frustration and Liberation



Frustration in Neutron Matter 
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Strangeness in Dense Matter: 
Theory very uncertain. 

EΛ(p = 0) = MΛ + VnΛ(ρ) ≤ µB

EK−(p = 0) = MK− + VnK−(ρ) ≤ µe

Λ (uds),K− (d̄ s) Λ (uds),K− (d̄ s)

n

VnY

Interactions are poorly known 



Asymptotic Density
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Interactions lead to pairing and color superconductivity

Strongest attraction in color-
antisymmetric channel:
Color-Flavor-Locking
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4µ nu = nd = ns
Alford, Rajagopal, Wilczek (1999)

Interactions are nearly 
perturbative - calculable. 
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Quark Matter in Neutron Stars 
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•Difficult to predict 
ground state.
•Complicated spectrum 
of excitations (Strongly 
coupled quasi-particles)

•Ground state is CFL. 
•Low energy 
spectrum is  simple 
(Goldstone modes - 
weakly coupled) 

∆ ≥ m2
s

4µ

Interactions are 
non- perturbative. Difficult 
to predict critical density. 



Neutron Star in  



Phase & Composition 
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What can we observe?
• Orbital Characteristics 

in Binaries

• Surface Luminosity 

• Spin

What can we infer ?

• Explosions & Flares

• Neutrinos (Supernova)

• Gravity Waves (likely within 5 yrs!)   

• Mass

• Radius

• Crust thickness

• Oscillations frequencies

Hard Physics

Ground state EoS

• Surface and interior temperature 

• Neutrino cooling and scattering 
rates

• Electrical & Thermal Conductivities

• Damping rates   

Soft Physics

Low energy fluctuations



The Nuclear Equation of State
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The Nuclear Equation of State
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Nuclear Many Body Theory

Computational 
Methods: Quantum 
Monte Carlo

Diagrammatic Methods 
Perturbation Theory

E(ρn, ρp) : Energy per particle

Chiral potentials and  softer 
low energy  potentials 
obtained using RG.

Phenomenological potentials 
(Argonne etc) tuned to fit 
scattering and light nuclei. 
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Figure 1: The energy per particle of neutron matter for different values of the nuclear symmetry

energy (Esym). For each value of Esym the corresponding band shows the effect of different

spatial and spin structures of the three-neutron interaction. The inset shows the linear correlation

between Esym and its density derivative L.

strength of the short-range 3n interaction AR is taken to be a free parameter adjusted to yield

the experimentally accessible nuclear symmetry energy. This procedure will attribute missing

effects such as relativistic and four and higher nucleon forces to the strength of the 3n inter-

action. Although not proven, we make two reasonable assumptions: 1) relativistic effects in

neutron matter show a similar density dependence to the short-range three-nucleon interaction

as carefully studied in Ref. (25); and 2) four-nucleon force contributions are suppressed rela-

tive to the 3n force for densities up to 2-3 ρ0. This assumption can be justified at nuclear density

by the high precision fits to light-nuclei obtained with only 3n forces (21), at higher density this

model assumption can be tested by its predicted correlation between properties of neutron-rich

nuclei and neutron stars.

Our assumption is that the symmetry energy is defined as the difference between the en-

ergy per particle in symmetric nuclear and neutron matter at nuclear density and is denoted by

Esym = Eneutron(ρ0) − Enuclear(ρ0). It is determined from model fits to nuclear masses favors

7

Neutron Matter & 3N Forces

Gandolfi, Carlson, Reddy (2010)



Neutron-rich Nuclei
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• Nuclear masses are 
sensitive to the 
symmetry energy. 
• Neutron 
distribution at the 
surface is sensitive to 
its density 
dependence.  
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Neutron-rich Nuclei
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Nuclear Density Sub-nuclear
Density

• Nuclear masses are 
sensitive to the 
symmetry energy. 
• Neutron 
distribution at the 
surface is sensitive to 
its density 
dependence.  
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Nuclear experiments to 
measure S and L: 

Masses of very neutron-rich nuclei near the 
neutron-drip will reduce systematic errors in 
extracting S from model fits. 
(Facilities such as FRIB, FAIR, JPARC)  

Distribution of neutrons in the surface region of 
neutron-rich nuclei can measure L indirectly. 
Eg. PREX at Jefferson lab.   

To extrapolate to high density we need a 
theory that can predict S & L. 
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Figure 2: Mass-Radius relation for equations of state with three-neutron interactions corre-
sponding to the bands for different Esym shown in Fig. 1. The intersection with the orange
lines show roughly the central densities realized in stars with different masses and radii. The
dot-dashed lines show the masses of typical neutron star with M= 1.4 Msolar and the recently
observed mass of neutron star of Ref. (1). The yellow region is excluded by the causality con-
straint on the equation of state.

the estimated error in the prediction for the neutron star radius with a canonical mass of 1.4

Msolar. The error due to the current uncertainty in the symmetry energy of ±2 MeV leads to

an uncertainty of about 3 km for the radius, while the error due to uncertainties in the short-

distance structure of the 3n force predicts a radius uncertainty of less than 1 km. The blue

band corresponds to the band of equations of state shown in Fig. 1 with same color. They all

correspond to Esym = 33.7 MeV. Similarly the green band corresponds to the green band of

equations of state shown in Fig. 1 with Esym = 32.0 MeV. The red curve is the prediction for

neutron star mass and radius obtained without 3n interaction and the black curve is one for

which the 3n is very strong with Esym = 35.1 MeV corresponding to the original Urbana IX 3n

force.
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Maximum Mass & Phase Transitions

☞ note differences at ρ0 ! 
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Maximum Mass & Phase Transitions

Phase
Transition Hybrid

Star

☞ note differences at ρ0 ! 

Mass
Measurements 

The 2 solar mass neutron star rules out a strong 
first-order transitions at supra-nuclear density



BEYOND MASS & RADIUS:    
TRANSPORT PHENOMENA 

How does dense matter : 

•Cool

•Conduct heat and electric currents 

•Respond to angular momentum

•Oscillate when its perturbed   ?

  



FLUCTUATIONS
• The rate of production and scattering of neutrinos (neutron 

star cooling, supernova), and scattering of electrons (thermal 
relaxation) are related to the thermal fluctuation spectrum.  

Dense 
Matter

q0 = E1 − E3

q0 = −E1 − E3q0 = E1 + E3

Rate = Coupling X Kinematics X Response Function



FLUCTUATIONS
• The rate of production and scattering of neutrinos (neutron 

star cooling, supernova), and scattering of electrons (thermal 
relaxation) are related to the thermal fluctuation spectrum.  

Dense 
Matter

q

|ω|
scattering

pair
q0 = E1 − E3

q0 = −E1 − E3q0 = E1 + E3

Rate = Coupling X Kinematics X Response Function
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Response of Interacting System
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τcollision = Collision Time



Γµ(q) Γν(q)

Weak Interaction Rates
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lν = ν(x) γ
ν
(1−γ5)ν(x)

jµ =ψ(x)(cV γ
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µγ5+ iF2σ
µν qν
2M

)ψ(x)
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2 E

ʹ′ E 
Im Lµν (k,k + q)Πµν (q)[ ]

Lµν = Tr [ lµ(k) lν(k + q) ]

Πµν =
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Neutrino-Nucleon Scattering

Iwamoto & Pethick (1982) 

€ 

jµ(x) =ψ(x) γµ(cV − cAγ5) ψ(x)
NR
→ cV ψ+ψ δµ0 − cA ψ+ σi ψ δµi

Neutrinos couple to 
density and spin



Response of a classical liquid

Ensemble average

The density-density correlation for N particles is 

Positions at t=0

Positions at t

Need to specify equations of motion or rj(t). 
Classical limit:



Screening, Damping & Collective Modes

• Strong repulsive 
Coulomb forces affect 
the spatial 
distribution. 

• A collective mode 
exists in the system. 

• Response is pushed to 
high energy.  

• Multi-particle 
excitations smears the 
response.  

46

Figure 5. The l = 0 term in the Legendre expansion of the neutrino-nucleon scat-
tering kernel, Φ0(εν , ε′ν) (eq. (37)), for T = 6 MeV and ηn = −2 as a function of
ε′ν for εν = 5, 10, 15, 20, 25, and 35 MeV. Note that for εν = 5 MeV the neutrino
is predominantly upscattered, while for εν = 35 MeV the neutrino is predominantly
downscattered. The magnitude of Φ0(εν , ε′ν) and sign of 〈ω〉 are to be compared with
those in Fig. 3.
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Figure 6. Dynamic structure function of a plasma of ions as a function of energy
transfer ω (measured in units of the plasma frequency ωp $ 0.3 MeV) and fixed
momentum transfer |$q| = 2π/L $ 6 MeV (left panel) and |$q| = 6π/L $ 18 MeV
(right panel). Statistical errors for the results of the molecular dynamics simulations
are also indicated.
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Response Functions: In Quantum Fluids 
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Cooper Pairing & 
Superfluidity.   



Computing Correlation Functions

28

No exact methods exist in strongly coupled quantum systems. 

(a) (b)
FIG. 1. Standard loop (a) and anomalous loop (b) diagrams contributing to the quark polarization operator.

Παβ =
∑

f

[

(Cf
V )2ΠV

αβ + (Cf
A)2ΠA

αβ − 2Cf
V Cf

AΠV A
αβ

]

. (10)

The coupling constants for up quarks are Cu
V = 1

2
− 4

3
sin2 θW and Cu

A = 1
2

, and for down quarks, Cd
V = − 1

2
+ 2

3
sin2 θW

and Cd
A = − 1

2
, where sin2 θW " 0.23 is the Weinberg angle.

If we specify a frame in which the transfer momentum is qµ = (q0, q, 0, 0) we can separate longitudinal components
as

ΠV
L = −

q2
µ

q2
ΠV

00 = −
q2
µ

q2
0

ΠV
11 = −

q2
µ

q0q
ΠV

10 , (11)

and the transverse,

ΠV
T = ΠV

22 = ΠV
33 . (12)

Identical definitions apply to the axial polarizations ΠA
L and ΠA

T . The non-zero mixed correlation function is written

ΠV A
αβ = iεαβµ0 qµΠV A . (13)

Detailed calculations of these polarization functions are given in the Appendix.
As the gap increases, the superconducting quasi-particles naturally become the dominant excitations of the back-

ground, a property clearly visible in the neutrino response functions. The left panel of Fig. 2 shows the longitudinal
response in the vector channel. The free quark case, shown as a solid line labeled ∆ = 0, is the standard result describ-
ing Pauli-blocking and kinematics of massless single particle excitations [16]. Here, energy-momentum conservation
restricts the response to the spacelike region (q0 < q). Superconductivity modifies this result, as the quasi-quark
excitations become suppressed due to the pairing correlations at the Fermi surface. At the same time, the response
is enhanced when q0 ≥ 2∆, signifying the excitation of Cooper pairs. In particular, the results with greater ∆ clearly
show the threshold for these excitations at energy transfer q0 = 2∆. Results for ∆ = 10, 30 and 50 MeV show the
gradual reallocation of response strength from small q0 to the region q0 ≥ 2∆. Since scattering probes only the
spacelike region, the ΠV

00 contribution to the cross section is generically suppressed in the superconducting phase.
Contributions at q0 ≥ q will contribute to the neutrino production rate, rather than scattering cross section, when
the temperature is near ∆. Analytic results may be obtained for small transfer energies. When q0 is much smaller
than all other energy scales, the vector longitudinal response (see Eq. (A1) of the Appendix) reduces to
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µ2q0

2πq

1

1 + eβ∆
. (14)

From this the weakening of the low energy, vector-longitudinal response can be calculated for a given gap ∆.
The axial-longitudinal response, which physically corresponds to the excitation of spin waves, is shown in the right

panel of Fig. 2. As with the vector channel a threshold of 2∆ is apparent but, unlike the previous case, the response
as q0 → 0 is enhanced. This is manifest in the the limit q0 % T ∼ ∆, where one finds [17]
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Computing Correlation Functions

28

No exact methods exist in strongly coupled quantum systems. 

(a) (b)
FIG. 1. Standard loop (a) and anomalous loop (b) diagrams contributing to the quark polarization operator.
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3
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2
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, where sin2 θW " 0.23 is the Weinberg angle.
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and the transverse,
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Detailed calculations of these polarization functions are given in the Appendix.
As the gap increases, the superconducting quasi-particles naturally become the dominant excitations of the back-
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restricts the response to the spacelike region (q0 < q). Superconductivity modifies this result, as the quasi-quark
excitations become suppressed due to the pairing correlations at the Fermi surface. At the same time, the response
is enhanced when q0 ≥ 2∆, signifying the excitation of Cooper pairs. In particular, the results with greater ∆ clearly
show the threshold for these excitations at energy transfer q0 = 2∆. Results for ∆ = 10, 30 and 50 MeV show the
gradual reallocation of response strength from small q0 to the region q0 ≥ 2∆. Since scattering probes only the
spacelike region, the ΠV

00 contribution to the cross section is generically suppressed in the superconducting phase.
Contributions at q0 ≥ q will contribute to the neutrino production rate, rather than scattering cross section, when
the temperature is near ∆. Analytic results may be obtained for small transfer energies. When q0 is much smaller
than all other energy scales, the vector longitudinal response (see Eq. (A1) of the Appendix) reduces to
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From this the weakening of the low energy, vector-longitudinal response can be calculated for a given gap ∆.
The axial-longitudinal response, which physically corresponds to the excitation of spin waves, is shown in the right

panel of Fig. 2. As with the vector channel a threshold of 2∆ is apparent but, unlike the previous case, the response
as q0 → 0 is enhanced. This is manifest in the the limit q0 % T ∼ ∆, where one finds [17]
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reduction in the differential cross sections in the region
q0 /q�vF , where vF is the Fermi velocity. The presence of
a collective state in the region q0 /q�vF enhances the cross
sections in this region. This enhancement, however, is not
significant enough to override the large suppression seen in
the region where q0 /q is small.
Integrating over the q0-q space, we obtain the total cross

section per unit volume or equivalently the inverse collision
mean free path. This is shown in Fig. 12. The left panels
show the cross sections calculated by taking into account
only effects due to M*. The results shown are for different
temperatures and for a neutrino energy E���T . The right
panels show the ratio �RPA /�M* . The resulting increase in �
due to the presence of a repulsive p-h interaction is approxi-
mately a factor of 2.5 at low temperature and decreases with
increasing temperature.

The density dependence of the Fermi-liquid parameters is
poorly constrained by data. Although numerous theoretical
models have been constructed to gain insight into their high-
density behavior, there appears to be no general consensus at
the present time. Microscopic calculations of neutron matter
differ quantitatively depending on their underlying assump-
tions. These model dependences are so large that no generic
qualitative trends may be identified. The exception is the
isoscalar parameter F0, which becomes positive and in-
creases with increasing density, a feature which may be ex-
pected on general grounds as the repulsive vector meson
contributions dominate. The uncertainties associated with F0�
are related to the model dependence of the nuclear symmetry
energy. In models that favor a less than linear increase of a4
with density, F0� is expected to decrease with increasing den-
sity �see Eq. �35��. State-of-the-art microscopic many-body
calculations favor a modest increase in the nuclear symmetry
energy at intermediate densities �27,31�; thus, we may expect
that F0� will generally decrease. The parameter G0� is related
to pion condensation, since it is a measure of the spin-isospin
susceptibility of nuclear matter. The large repulsive character
of G0� strongly inhibits s-wave pion condensation in the vi-
cinity of the nuclear saturation density. However, at higher
densities pion condensation cannot be ruled out a priori
�30,31�. Thus, while we may expect G0� to decrease some-
what with increasing density, quantitatively it remains very
sensitive to the underlying model. The density dependence of
the isoscalar spin parameter G0, which is not well con-
strained even at nuclear density, is largely unknown.
Faced with these uncertainties, we begin by assuming that

the spin-dependent parameters are fixed at their empirical
values �determined at saturation density�, and use schematic
models to explore the influence of the density dependence of
F0 and F0� . For this purpose, we employ a simple parametric
form for the EOS �41� �see Appendix A�. This model does
not explicitly address the role of spin-dependent interactions
and assumes that the favored ground state is spin symmetric.
In particular, we choose the Skyrme-like models labeled
‘‘SLn2’’ with a linear increase in the nuclear symmetry en-
ergy. The index ‘‘n’’ in SLn2 takes on the values n�1, 2,
and 3 for which K�120, 180, and 240 MeV, respectively.
The magnitudes of the RPA corrections to the neutrino mean
free paths for these different EOS models are shown in Fig.
13. Since the dominant contribution to the scattering cross
section arises from the axial vector response function, the
magnitudes of the RPA corrections are mostly sensitive to
the spin-dependent parameters. Thus, although the vector re-
sponse of the nuclear medium is modified by about 50–80%
at high density due to RPA effects, the changes due to the
varying stiffness of the dense matter EOS are small. This
suggests that the neutrino mean free paths will not be signifi-
cantly altered due to variations in the nuclear compressibility
(F0) or due to variations in the nuclear symmetry energy
(F0�) as long as the axial contributions are not drastically
reduced.
Figure 14 shows the behavior of the neutrino mean free

paths in symmetric nuclear matter for the EOS labeled SL22
as a function of density for the temperatures of interest. A
comparison of the upper and lower panels shows that there is

FIG. 11. The neutrino differential cross sections in symmetric
nuclear matter for q�E��30 MeV. The Fermi-liquid parameters
employed are given in Eq. �36�. Results for the free gas, the Hartree
approximation, and with RPA correlations are compared for T�0
and 10 MeV.

FIG. 12. The temperature dependence of the neutrino scattering
mean free path in symmetric nuclear matter at density n0 for the
Fermi-liquid parameters in Eq. �36�. The left panel shows results for
thermal neutrinos (E���T) calculated in the Hartree approxima-
tion, and the right panel shows the effect of RPA correlations.
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q0 /q�vF , where vF is the Fermi velocity. The presence of
a collective state in the region q0 /q�vF enhances the cross
sections in this region. This enhancement, however, is not
significant enough to override the large suppression seen in
the region where q0 /q is small.
Integrating over the q0-q space, we obtain the total cross

section per unit volume or equivalently the inverse collision
mean free path. This is shown in Fig. 12. The left panels
show the cross sections calculated by taking into account
only effects due to M*. The results shown are for different
temperatures and for a neutrino energy E���T . The right
panels show the ratio �RPA /�M* . The resulting increase in �
due to the presence of a repulsive p-h interaction is approxi-
mately a factor of 2.5 at low temperature and decreases with
increasing temperature.

The density dependence of the Fermi-liquid parameters is
poorly constrained by data. Although numerous theoretical
models have been constructed to gain insight into their high-
density behavior, there appears to be no general consensus at
the present time. Microscopic calculations of neutron matter
differ quantitatively depending on their underlying assump-
tions. These model dependences are so large that no generic
qualitative trends may be identified. The exception is the
isoscalar parameter F0, which becomes positive and in-
creases with increasing density, a feature which may be ex-
pected on general grounds as the repulsive vector meson
contributions dominate. The uncertainties associated with F0�
are related to the model dependence of the nuclear symmetry
energy. In models that favor a less than linear increase of a4
with density, F0� is expected to decrease with increasing den-
sity �see Eq. �35��. State-of-the-art microscopic many-body
calculations favor a modest increase in the nuclear symmetry
energy at intermediate densities �27,31�; thus, we may expect
that F0� will generally decrease. The parameter G0� is related
to pion condensation, since it is a measure of the spin-isospin
susceptibility of nuclear matter. The large repulsive character
of G0� strongly inhibits s-wave pion condensation in the vi-
cinity of the nuclear saturation density. However, at higher
densities pion condensation cannot be ruled out a priori
�30,31�. Thus, while we may expect G0� to decrease some-
what with increasing density, quantitatively it remains very
sensitive to the underlying model. The density dependence of
the isoscalar spin parameter G0, which is not well con-
strained even at nuclear density, is largely unknown.
Faced with these uncertainties, we begin by assuming that

the spin-dependent parameters are fixed at their empirical
values �determined at saturation density�, and use schematic
models to explore the influence of the density dependence of
F0 and F0� . For this purpose, we employ a simple parametric
form for the EOS �41� �see Appendix A�. This model does
not explicitly address the role of spin-dependent interactions
and assumes that the favored ground state is spin symmetric.
In particular, we choose the Skyrme-like models labeled
‘‘SLn2’’ with a linear increase in the nuclear symmetry en-
ergy. The index ‘‘n’’ in SLn2 takes on the values n�1, 2,
and 3 for which K�120, 180, and 240 MeV, respectively.
The magnitudes of the RPA corrections to the neutrino mean
free paths for these different EOS models are shown in Fig.
13. Since the dominant contribution to the scattering cross
section arises from the axial vector response function, the
magnitudes of the RPA corrections are mostly sensitive to
the spin-dependent parameters. Thus, although the vector re-
sponse of the nuclear medium is modified by about 50–80%
at high density due to RPA effects, the changes due to the
varying stiffness of the dense matter EOS are small. This
suggests that the neutrino mean free paths will not be signifi-
cantly altered due to variations in the nuclear compressibility
(F0) or due to variations in the nuclear symmetry energy
(F0�) as long as the axial contributions are not drastically
reduced.
Figure 14 shows the behavior of the neutrino mean free

paths in symmetric nuclear matter for the EOS labeled SL22
as a function of density for the temperatures of interest. A
comparison of the upper and lower panels shows that there is

FIG. 11. The neutrino differential cross sections in symmetric
nuclear matter for q�E��30 MeV. The Fermi-liquid parameters
employed are given in Eq. �36�. Results for the free gas, the Hartree
approximation, and with RPA correlations are compared for T�0
and 10 MeV.

FIG. 12. The temperature dependence of the neutrino scattering
mean free path in symmetric nuclear matter at density n0 for the
Fermi-liquid parameters in Eq. �36�. The left panel shows results for
thermal neutrinos (E���T) calculated in the Hartree approxima-
tion, and the right panel shows the effect of RPA correlations.
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Neutrino scattering can be significantly reduced
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OBSERVING  TRANSPORT PHENOMENA 

•Can we measure correlation functions in 
neutron star matter ?  

Yes.  
This will require at least two of the following: 
• New experiments with exotic targets.  
•Temporal phenomena in neutron stars.
• Theoretical understanding of transport 
properties.  





Neuron star matter. 
Warning: Radioactive outside the pressure chamber

Missing target.  Awaiting 
new collaborators. 



• Thermal relaxation of the core. 

• Neutron star cooling. 

• Thermal relaxation of the crust.  

Time Dependent Phenomena 



Thermal Relaxation of the Core 

Once in a lifetime we may detect a neutrino burst 
from a galactic supernova.  

≈ 104 neutrinos

for SN @ 10 kpc

νe, ν̄e, νX , ν̄X



Supernova Neutrinos

Past: 
SN 1987a: ~ 20 neutrinos ..in support of supernova 
theory

Future: 
Can detect ~10,000 neutrinos from 
galactic supernova

3 ×1053 ergs = 1058 × 20 MeV Neutrinos

Pons et al. (2002)



• Neutrinos are trapped during core collapse. 
Collapse is nearly adiabatic.  

• Gravitational binding energy is stored as thermal 
energy and lepton degeneracy energy. 

3X107 km

1500 km

10 km

B. E.
~3 x 1053 ergs

100 km

proto-neutron star: t~1-2 s

Shock wave
~1051ergs

Core Collapse Supernova
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PNS Evolution



Protoneutron Star Evolution
Neutrino diffusion cools the PNS. 

Pons, Reddy, Lattimer & Prakash (1999)



Protoneutron Star Evolution
Neutrino diffusion cools the PNS. 

  

€ 

T(t) ≈ T(t = 0) 1− t
τC

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

τC ≈CV
R2

c λν

Yν (t) ≈ ν

3
µ
6π 2
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3
π 2

∂YL

∂Yν

R2

c λνe

Typical time-scales:

Pons, Reddy, Lattimer & Prakash (1999)



• Time structure of the neutrino signal maps 
the neutrino opacity as a function of depth.

• Opacity is directly related to spectrum of 
density and spin fluctuations in dense 
matter. 

• Important to note that several other 
astrophysical effects can complicate this 
simple interpretation.  

Neutron Star Tomography



Late Time Cooling in X-Rays
• Cooling of isolated neutron stars. 

• Thermal relaxation of accreting neutron stars. 

Shternin et al (2011) Page et al.  (2011)

Brown & Cumming (2007) Shternin et al (2007)

chandra.harvard.edu/photo/2011/casa/ chandra.harvard.edu/photo/2001/ks1731/

Neutron star in 
X-ray Binary

Neutron Star in a 
Supernova Remnant

Cassiopeia A KS1731-260 

http://chandra.harvard.edu/photo/2001/ks1731/
http://chandra.harvard.edu/photo/2001/ks1731/


NEUTRON STAR COOLING
Crust cools by conduction

Isothermal core cools 
by neutrino emission

Surface photon emission dominates at 
late time t > 106 yrs

n → p + e− + ν̄e

e− + p → n + νe

n + n → n + p + e− + ν̄e

e− + p + n → n + n + νe

Basic neutrino reactions:

Fast: Direct URCA

Slow: Modified URCA
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Table 1. Dominant neutrino emission processes.
Name Process Emissivity† Efficiency

(erg cm−3 s−1)
Modified Urca cycle
(neutron branch)

n+ n → n+ p+ e− + ν̄e
n+ p+ e− → n+ n+ νe

∼ 2×1021 R T 8
9

Slow

Modified Urca cycle
(proton branch)

p+ n → p+ p + e− + ν̄e
p+ p+ e− → p + n+ νe

∼ 1021 R T 8
9

Slow

Bremsstrahlung
n+ n → n+ n+ ν + ν̄

n+ p → n+ p + ν + ν̄

p+ p → p+ p+ ν + ν̄

∼ 1019 R T 8
9

Slow

Cooper pair
formations

n+ n → [nn] + ν + ν̄

p+ p → [pp] + ν + ν̄

∼ 5×1021 R T 7
9

∼ 5×1019 R T 7
9

Medium

Direct Urca cycle
(nucleons)

n → p+ e− + ν̄e
p+ e− → n+ νe

∼ 1027 R T 6
9

Fast

Direct Urca cycle
(Λ hyperons)

Λ → p+ e− + ν̄e
p+ e− → Λ+ νe

∼ 1027 R T 6
9

Fast

Direct Urca cycle
(Σ− hyperons)

Σ− → n+ e− + ν̄e
n+ e− → Σ− + νe

∼ 1027 R T 6
9

Fast

π− condensate n+ < π− >→ n+ e− + ν̄e ∼ 1026 R T 6
9

Fast
K− condensate n+ < K− >→ n+ e− + ν̄e ∼ 1025 R T 6

9
Fast

Direct Urca cycle
(u-d quarks)

d → u+ e− + ν̄e
u+ e− → d+ νe

∼ 1027 R T 6
9

Fast

Direct Urca cycle
(u-s quarks)

s → u+ e− + ν̄e
u+ e− → s+ νe

∼ 1027 R T 6
9

Fast

† The coefficients R’s are control functions to incorporate the effects of pairing, see § 2.4.

a strong temperature gradient in the uppermost layers, commonly called
the envelope. As a rule of thumb one can use

Te ≈ 106(T/108K)1/2 K (3)

which implies that Lγ ≈ 1035 T 2
9 erg s−1. The details of this Te−T relation-

ship depend on the chemical composition of the envelope and the presence
or absence of a strong magnetic field.

2.3. Neutrino emission processes

A list of the most important neutrino emission processes is presented in
Table 1, with rough values of their emissivities. They are separated into
“slow” and “fast” processes, the former involving 5 and the latter only 3
degenerate fermions. Notice the different temperature dependences: T 6 for
the three degenerate fermion processes compared to T 8 for the five fermion
ones, a direct consequence of the stronger phase space limitation resulting
in a significantly reduced emissivity. The Cooper pair process is described
in § 2.4. A detailed description of neutrino processes can be found in [8]
and an alternative approach in [9].

Page (2012)
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COOLING AND EOS
Neutron decay at the Fermi 
surface cannot conserve 
momentum if
 xp ~ (pFp /pFn )3 < 0.12-14

• In the standard scenario only 
massive stars (M ~ 2 M✪ ) cool 
rapidly. 

pFn

pFp pFe T

Yakovlev & Pethick (2004) 



COOLING AND EOS
Neutron decay at the Fermi 
surface cannot conserve 
momentum if
 xp ~ (pFp /pFn )3 < 0.12-14

• In the standard scenario only 
massive stars (M ~ 2 M✪ ) cool 
rapidly. 

pFn

pFp pFe T

Yakovlev & Pethick (2004) 

• A large symmetry energy will 
allow direct URCA for typical NS 
(M ~ 1.4 M✪ ) .  
•  Recall a large symmetry energy 
also favors large radii.



Page et al (2009,2010)

Standard or 
Slow Cooling

Rapid Cooling



Pairing 
1. Too hot for electron pairing: 

Tc ≈ ωion
p exp

�
− vFe

αem

�
Ginzburg (1969) 

Relativistic electrons move too quickly to feel the 
phonon induced  attraction.  

1I. Pairing between nucleons is inevitable.  

Typical energy scale is MeV (~1010 K)

Tc ≈ EFn exp

�
− π

2kFn ann

�
Bohr, Mottelson, Pines (1958)
Migdal (1959)



Recall Response Function in Superfluid !
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FIG. 2: Neutron matter pairing gap at kF a = −10 versus
particle number in periodic boundary conditions, BCS and
QMC calculations.
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in periodic boundary conditions for different �N�.
The line in Fig. 2 is the continuum BCS result for

kF a = −10, and the open symbols are the solutions of the

BCS equations for different �N�. The continuum results

are nearly identical for the AV18 interaction and the sim-

ple cosh potential adjusted to yield the same scattering

length and effective range. For the finite systems BCS re-

sults are shown for the cosh potential. Unlike the case of

cold atoms near unitarity, where −kF a >> 1 and re ≈ 0,

the BCS gap shows sizable oscillations for small numbers

of particles. The BCS value approaches the continuum

limit (straight line) near N = 66, and oscillations from

that point on are fairly small, comparable in size to the

statistical error in the QMC calculations. We also show

as solid points the gaps obtained from particle-projected

BCS wave functions in variational Monte Carlo calcula-

tions and the odd-even staggering formula. The projec-

tion to definite particle number is a small effect.

The lower points in Fig. 2 are QMC results for

kF a = −10. At very small values of N the gap is quite

large, as is also seen in the BCS calculations. This is

due to the coarse description of the Fermi surface in such

small systems; the momentum grid spacing in occupied

states is similar in magnitude to the Fermi momentum.

When the pairing is very strong, as in cold atoms in the

unitary regime, this coarse description is not too critical.
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FIG. 3: Superfluid pairing gap versus kF a for cold atoms
(re ≈ 0) and neutron matter (|re/a| ≈ 0.15). BCS (solid
lines) and QMC results (points) are shown.

However for weaker coupling or the larger effective range

in neutron matter this becomes more important. The

gap in both BCS and QMC calculations reaches a mini-

mum near 44 particles (near the midpoint between closed

shells at 38 and 54), and then increases to values near the

continuum limit. Pairing gap results for N = 66− 92 are

consistent within the statistical errors.

For all values of N the gap is considerably smaller than

the BCS results. For comparison, at unitarity in cold

atoms BCS calculations give a gap of 0.69 EF while the

QMC result is 0.50(3) EF .[31] These calculations are in

good agreement with recent polarized cold atom exper-

iments [9, 32]. For cold atoms the BCS equations will

produce the exact gap in the BEC limit where the pairs

are strongly bound. No such limit is relevant for a finite-

range interaction.

In Fig. 3 we plot the pairing gap as a function of kF a
for both cold atoms and neutron matter. BCS calcula-

tions are shown as solid lines, and QMC results are shown

as points with error bars. QMC pairing gaps are shown

from calculations of N = 66 − 68 particles. For cold

atoms away from unitarity the pairing gaps are smaller

than calculated previously [21], due to more complete op-

timizations and because these larger simulations reduce

the finite-size effects.

For very weak coupling, −kF a << 1, the pairing

gap is expected to be reduced from the BCS value by

the polarization corrections calculated by Gorkov [33]

∆/∆BCS = (1/4e)1/3
. Because of finite-size effects, it

is difficult to calculate pairing gaps using QMC in the

weak coupling regime. The QMC calculations at the low-

est density, kF a = −1, are roughly consistent with this

reduction from the BCS value. At slightly larger yet still

Gezerlis & Carlson (2008)  

Cold atom experiments help 
validate many-body theory of 
strong short-range interactions.   
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Figure 10: Three collections of predicted pairing critical temperatures for neutrons in the 1S0 and 3P2
channels and protons in the 1S0 channel. See [35] for references to the original works.

the model has a single dimensionless parameter, |a|kF , and the dilute gas corresponds to |a|kF ! 1.
Assuming the pairing interaction is just the bare interactionU (which is, improperly, called the BCS
approximation), the gap equation at T = 0 can be solved analytically, giving the weak-coupling
BCS-approximation gap:

!(kF) −→ !BCS(kF) =
8
e2

(

h̄2k2
F

2M

)

exp
[

−
"

2|a|kF

]

when |a|kF → 0 . (5.4)

This result is bad news: the gap depends exponentially on the pairing potentialU . The Cooper pairs
have a size of the order of # ∼ h̄vF/! (the coherence length) and thus # kF ∼ exp[+"/2|a|kF ]% 1
in the weak coupling limit. There appear to be many other particles within the pair’s coherence
length. These particles will react, and can screen or un-screen, the interaction. Including this
medium polarization on the pairing is called beyond BCS, and in the weak coupling limit its effect
has been calculated analyticaly [18], giving

!(kF) −→ !GMB(kF) =
1

(4e)1/3!BCS(kF)& 0.45!BCS(kF) when |a|kF → 0 . (5.5)

So, screening by the medium reduces the gap by more than a factor two, even in an extremely dilute
system.

Pairing correlations in nuclei are part of everyday nuclear physics, and a significant amount of
work has also been devoted to the neutron star environment (see, e.g., [13] and [28] for reviews).
We show in Fig. 10 three sets of predicted Tc for the neutron star interior. At low density, corre-
sponding to the neutron star crust in the regime of dripped neutrons, the expectation of a neutron
1S0 superfluid is amply confirmed by the models. This regime was also illustrated in the inset A
of Fig. 1. At higher densities, corresponding to the neutron star core, the situation is much more
ambiguous. Due to their low concentrations, protons have small Fermi momenta in the core and
are expected to form a 1S0 superconductor. There is, however, a significant uncertainty in the
size of their gap, with predicted values of Tc ranging from ∼ 109 K up to 6× 109 K, and a larger
uncertainty in the range of Fermi momenta in which !(kF) is non-zero, which translates into an
uncertainty of a factor of more than 3 on the density range covered by the superconductor. In the
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Figure 9: Left panel: possible spin-angular momentum combinations for Cooper-pairs. Right panel: phase
shifts for N-N scattering as a function of the laboratory energy (middle axis) or the neutron Fermi energy
and density for a neutron star interior (lower axis). Adapted from [47].

clearly require a finite minimal energy for excitation. This energy was interpreted as being the
binding energy of the Cooper pair which must break to produce an excitation. In contrast, odd
nuclei do not show such a gap, and this is due to the fact that they have one nucleon, neutron or
proton, which is not paired and can be easily excited. The right panel of Fig. 8 shows that pairing
also manifests itself in the binding energies, even-even nuclei being slightly more bound than odd
nuclei6.

As a two-particle bound state, the Cooper pair can appear in many spin-orbital angular mo-
mentum states (see left panel of Fig. 9). In terrestrial superconducting metals, the Cooper pairs are
generally in the 1S0 channel, i.e., spin-singlets with L = 0 orbital angular momentum, whereas in
liquid 3He they are in spin-triplet states. What can we expect in a neutron star ? In the right panel
of Fig. 9, we adapt a figure from one of the first works to study neutron pairing in the neutron star
core [47] showing laboratory measured phase-shifts from N-N scattering. A positive phase-shift
implies an attractive interaction. From this figure, one can expect that nucleons could pair in a
spin-singlet state, 1S0, at low densities, whereas a spin-triplet, 3P2, pairing should appear at higher
densities. We emphasize that this is only a presumption as medium effects can strongly affect
particle interactions.

A simple model can illustrate the difficulty in calculating pairing gaps. Consider a dilute Fermi
gas with a weak, attractive, interaction potential U . The interaction is then entirely described by
the corresponding scattering length, a, 7 which is negative for an attractive potential. In this case,

6Notice that, as a result of pairing, the only stable odd-odd nuclei are 2H(1,1), 6Li(3,3), 10B(5,5), and 14N(7,7). All
heavier odd-odd nuclei are beta-unstable and decay into an even-even nucleus.

7The scattering length a is related toU by a= (m/4" h̄)U0 withUk =
∫

d3r exp(ik · r)U(r).
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Figure 4. Comparison of luminosities from various processes during three realistic cooling histories: photon (“γ ”), all ν-processes (“Total ν”), modified Urca and
nucleon bremsstrahlung (“MURCA+Brem ν”), and PBF (“PBF ν”) from neutron 3P2 (“n”) and proton 1S0 (“p”) pairing. PBF neutrino emission from the neutron 1S0
gap is not shown explicitly as its contribution is always dominated by other processes, but is included in the total ν luminosity. Suppression of the vector channel of
the PBF processes is properly taken into account in all cases. In all cases shown, the proton 1S0 gap is from Amundsen & Østgaard (1985, model “AO” in Figure 3)
and the neutron 1S0 gap from Schwenk et al. (2003, model “SFB” in Figure 1). The neutron 3P2 gap is chosen to be vanishingly small (left panel), from our model “a”
(center), or model “b” (right) from Figure 3. The star is a 1.4 M! star built with the EOS of APR (Akmal et al. 1998) and has a heavy element envelope (see Paper I).

occurring in the core is from the proton 1S0 pairing, but due
to its intrinsically low efficiency it cannot compete with the
modified Urca process which is unsuppressed in the inner core
where the proton gap vanishes. This model is very similar to
the old “standard cooling” case. The other two panels in Figure 4
with non-vanishing neutron 3P2 gaps clearly show that the PBF
processes dominate the total neutrino luminosity as soon as the
neutron 3P2 pairing appears.

It is worthwhile to note the competition between the proton
1S0 and neutron 3P2 PBF processes which depends on the
relative sizes of the gaps. For a large neutron 3P2 gap, as our case
“b” used to obtain the luminosities in the right panel of Figure 4,
the temperature of the entire core drops below Tc in a short
time; thereafter, the corresponding PBF process is suppressed.
When neutrons in the entire core are well into the superfluid
phase the PBF process from the proton 1S0 gap subsequently
drives the cooling, at ages !103 yr, but with a low efficiency.
In contrast, when the neutron 3P2 model gap “a” is used to
obtain the luminosities in the central panel of Figure 4, neutrino
emission from the neutron PBF process largely dominates the
cooling. As noted in Paper I, such gaps as “a” lead to the coldest
minimal cooling neutron stars.

3.3. Characterization of the Most Efficient Neutron 3P2 Gaps
in the Core

The most efficient pairing configurations, which lead to the
coldest neutron stars, a situation explored in Paper I, are neutron
3P2 gaps with Tc values around 109 K in the largest possible
fraction of the core (as in the case of our model “a”). In this case,
the efficient PBF process from the neutron 3P2 gap dominates the
neutrino luminosity at ages ∼100–105 yr (as seen in the central
panel of Figure 4) and results in the coldest young neutron stars
within the minimal cooling paradigm.

The schematic illustration in Figure 5 shows the neutrino
luminosity as a function of temperature for the modified Urca
and PBF processes. As long as the temperature is greater than
T max

c , which we define as the maximum value of Tc in the
core, the modified Urca process drives the cooling. When the
temperature falls below T max

c , the PBF process turns on and
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Figure 5. Schematic diagram of the neutrino luminosity as a function of
temperature for the modified Urca and PBF processes. The dotted curve shows
the optimal PBF luminosity (i.e., obtainable when a thick enough layer in
the core has its temperature close to Tc) and the dashed curve shows the
unsuppressed MUrca luminosity. The values of T min

c and T max
c are the minimum

and maximum values of Tc for the neutron 3P2 gap (which is a function of
density) that occur within the star. When the temperature in the core falls below
T max

c the neutrino luminosity at that point increases to the PBF luminosity,
which can be almost 2 orders of magnitude higher than the MUrca luminosity in
the optimal case. When the temperature falls further, to below T min

c , the neutrino
luminosities from both the PBF and MUrca process are quenched. (This figure
inspired by Figure 20 of Paper I.)

dominates the cooling, until the temperature drops below T min
c ,

which we define as the minimum value of Tc in the core,
when both the PBF and modified Urca processes are quenched
everywhere in the core.

The surface temperature at early times is controlled by crustal
physics, as described in Section 3.1, and is independent of the
evolution of the core. For the surface temperature to reach the
smallest possible values, the value of T max

c should be large
enough for the PBF process to turn on before, or not much
later than, the crust isothermalization time. A useful reference
age is ∼103 yr, the estimated age of the youngest observed
cooling neutron stars, for the PBF process to be fully operating.
At later times, if the value of T min

c is too large both the PBF and
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Flowers, Ruderman, Sutherland (1976)
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gap is not shown explicitly as its contribution is always dominated by other processes, but is included in the total ν luminosity. Suppression of the vector channel of
the PBF processes is properly taken into account in all cases. In all cases shown, the proton 1S0 gap is from Amundsen & Østgaard (1985, model “AO” in Figure 3)
and the neutron 1S0 gap from Schwenk et al. (2003, model “SFB” in Figure 1). The neutron 3P2 gap is chosen to be vanishingly small (left panel), from our model “a”
(center), or model “b” (right) from Figure 3. The star is a 1.4 M! star built with the EOS of APR (Akmal et al. 1998) and has a heavy element envelope (see Paper I).

occurring in the core is from the proton 1S0 pairing, but due
to its intrinsically low efficiency it cannot compete with the
modified Urca process which is unsuppressed in the inner core
where the proton gap vanishes. This model is very similar to
the old “standard cooling” case. The other two panels in Figure 4
with non-vanishing neutron 3P2 gaps clearly show that the PBF
processes dominate the total neutrino luminosity as soon as the
neutron 3P2 pairing appears.

It is worthwhile to note the competition between the proton
1S0 and neutron 3P2 PBF processes which depends on the
relative sizes of the gaps. For a large neutron 3P2 gap, as our case
“b” used to obtain the luminosities in the right panel of Figure 4,
the temperature of the entire core drops below Tc in a short
time; thereafter, the corresponding PBF process is suppressed.
When neutrons in the entire core are well into the superfluid
phase the PBF process from the proton 1S0 gap subsequently
drives the cooling, at ages !103 yr, but with a low efficiency.
In contrast, when the neutron 3P2 model gap “a” is used to
obtain the luminosities in the central panel of Figure 4, neutrino
emission from the neutron PBF process largely dominates the
cooling. As noted in Paper I, such gaps as “a” lead to the coldest
minimal cooling neutron stars.

3.3. Characterization of the Most Efficient Neutron 3P2 Gaps
in the Core

The most efficient pairing configurations, which lead to the
coldest neutron stars, a situation explored in Paper I, are neutron
3P2 gaps with Tc values around 109 K in the largest possible
fraction of the core (as in the case of our model “a”). In this case,
the efficient PBF process from the neutron 3P2 gap dominates the
neutrino luminosity at ages ∼100–105 yr (as seen in the central
panel of Figure 4) and results in the coldest young neutron stars
within the minimal cooling paradigm.

The schematic illustration in Figure 5 shows the neutrino
luminosity as a function of temperature for the modified Urca
and PBF processes. As long as the temperature is greater than
T max

c , which we define as the maximum value of Tc in the
core, the modified Urca process drives the cooling. When the
temperature falls below T max

c , the PBF process turns on and
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Figure 5. Schematic diagram of the neutrino luminosity as a function of
temperature for the modified Urca and PBF processes. The dotted curve shows
the optimal PBF luminosity (i.e., obtainable when a thick enough layer in
the core has its temperature close to Tc) and the dashed curve shows the
unsuppressed MUrca luminosity. The values of T min

c and T max
c are the minimum

and maximum values of Tc for the neutron 3P2 gap (which is a function of
density) that occur within the star. When the temperature in the core falls below
T max

c the neutrino luminosity at that point increases to the PBF luminosity,
which can be almost 2 orders of magnitude higher than the MUrca luminosity in
the optimal case. When the temperature falls further, to below T min

c , the neutrino
luminosities from both the PBF and MUrca process are quenched. (This figure
inspired by Figure 20 of Paper I.)

dominates the cooling, until the temperature drops below T min
c ,

which we define as the minimum value of Tc in the core,
when both the PBF and modified Urca processes are quenched
everywhere in the core.

The surface temperature at early times is controlled by crustal
physics, as described in Section 3.1, and is independent of the
evolution of the core. For the surface temperature to reach the
smallest possible values, the value of T max

c should be large
enough for the PBF process to turn on before, or not much
later than, the crust isothermalization time. A useful reference
age is ∼103 yr, the estimated age of the youngest observed
cooling neutron stars, for the PBF process to be fully operating.
At later times, if the value of T min

c is too large both the PBF and
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gap is not shown explicitly as its contribution is always dominated by other processes, but is included in the total ν luminosity. Suppression of the vector channel of
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(center), or model “b” (right) from Figure 3. The star is a 1.4 M! star built with the EOS of APR (Akmal et al. 1998) and has a heavy element envelope (see Paper I).

occurring in the core is from the proton 1S0 pairing, but due
to its intrinsically low efficiency it cannot compete with the
modified Urca process which is unsuppressed in the inner core
where the proton gap vanishes. This model is very similar to
the old “standard cooling” case. The other two panels in Figure 4
with non-vanishing neutron 3P2 gaps clearly show that the PBF
processes dominate the total neutrino luminosity as soon as the
neutron 3P2 pairing appears.

It is worthwhile to note the competition between the proton
1S0 and neutron 3P2 PBF processes which depends on the
relative sizes of the gaps. For a large neutron 3P2 gap, as our case
“b” used to obtain the luminosities in the right panel of Figure 4,
the temperature of the entire core drops below Tc in a short
time; thereafter, the corresponding PBF process is suppressed.
When neutrons in the entire core are well into the superfluid
phase the PBF process from the proton 1S0 gap subsequently
drives the cooling, at ages !103 yr, but with a low efficiency.
In contrast, when the neutron 3P2 model gap “a” is used to
obtain the luminosities in the central panel of Figure 4, neutrino
emission from the neutron PBF process largely dominates the
cooling. As noted in Paper I, such gaps as “a” lead to the coldest
minimal cooling neutron stars.

3.3. Characterization of the Most Efficient Neutron 3P2 Gaps
in the Core

The most efficient pairing configurations, which lead to the
coldest neutron stars, a situation explored in Paper I, are neutron
3P2 gaps with Tc values around 109 K in the largest possible
fraction of the core (as in the case of our model “a”). In this case,
the efficient PBF process from the neutron 3P2 gap dominates the
neutrino luminosity at ages ∼100–105 yr (as seen in the central
panel of Figure 4) and results in the coldest young neutron stars
within the minimal cooling paradigm.

The schematic illustration in Figure 5 shows the neutrino
luminosity as a function of temperature for the modified Urca
and PBF processes. As long as the temperature is greater than
T max

c , which we define as the maximum value of Tc in the
core, the modified Urca process drives the cooling. When the
temperature falls below T max

c , the PBF process turns on and
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Figure 5. Schematic diagram of the neutrino luminosity as a function of
temperature for the modified Urca and PBF processes. The dotted curve shows
the optimal PBF luminosity (i.e., obtainable when a thick enough layer in
the core has its temperature close to Tc) and the dashed curve shows the
unsuppressed MUrca luminosity. The values of T min

c and T max
c are the minimum

and maximum values of Tc for the neutron 3P2 gap (which is a function of
density) that occur within the star. When the temperature in the core falls below
T max

c the neutrino luminosity at that point increases to the PBF luminosity,
which can be almost 2 orders of magnitude higher than the MUrca luminosity in
the optimal case. When the temperature falls further, to below T min

c , the neutrino
luminosities from both the PBF and MUrca process are quenched. (This figure
inspired by Figure 20 of Paper I.)

dominates the cooling, until the temperature drops below T min
c ,

which we define as the minimum value of Tc in the core,
when both the PBF and modified Urca processes are quenched
everywhere in the core.

The surface temperature at early times is controlled by crustal
physics, as described in Section 3.1, and is independent of the
evolution of the core. For the surface temperature to reach the
smallest possible values, the value of T max

c should be large
enough for the PBF process to turn on before, or not much
later than, the crust isothermalization time. A useful reference
age is ∼103 yr, the estimated age of the youngest observed
cooling neutron stars, for the PBF process to be fully operating.
At later times, if the value of T min

c is too large both the PBF and
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and the neutron 1S0 gap from Schwenk et al. (2003, model “SFB” in Figure 1). The neutron 3P2 gap is chosen to be vanishingly small (left panel), from our model “a”
(center), or model “b” (right) from Figure 3. The star is a 1.4 M! star built with the EOS of APR (Akmal et al. 1998) and has a heavy element envelope (see Paper I).

occurring in the core is from the proton 1S0 pairing, but due
to its intrinsically low efficiency it cannot compete with the
modified Urca process which is unsuppressed in the inner core
where the proton gap vanishes. This model is very similar to
the old “standard cooling” case. The other two panels in Figure 4
with non-vanishing neutron 3P2 gaps clearly show that the PBF
processes dominate the total neutrino luminosity as soon as the
neutron 3P2 pairing appears.

It is worthwhile to note the competition between the proton
1S0 and neutron 3P2 PBF processes which depends on the
relative sizes of the gaps. For a large neutron 3P2 gap, as our case
“b” used to obtain the luminosities in the right panel of Figure 4,
the temperature of the entire core drops below Tc in a short
time; thereafter, the corresponding PBF process is suppressed.
When neutrons in the entire core are well into the superfluid
phase the PBF process from the proton 1S0 gap subsequently
drives the cooling, at ages !103 yr, but with a low efficiency.
In contrast, when the neutron 3P2 model gap “a” is used to
obtain the luminosities in the central panel of Figure 4, neutrino
emission from the neutron PBF process largely dominates the
cooling. As noted in Paper I, such gaps as “a” lead to the coldest
minimal cooling neutron stars.

3.3. Characterization of the Most Efficient Neutron 3P2 Gaps
in the Core

The most efficient pairing configurations, which lead to the
coldest neutron stars, a situation explored in Paper I, are neutron
3P2 gaps with Tc values around 109 K in the largest possible
fraction of the core (as in the case of our model “a”). In this case,
the efficient PBF process from the neutron 3P2 gap dominates the
neutrino luminosity at ages ∼100–105 yr (as seen in the central
panel of Figure 4) and results in the coldest young neutron stars
within the minimal cooling paradigm.

The schematic illustration in Figure 5 shows the neutrino
luminosity as a function of temperature for the modified Urca
and PBF processes. As long as the temperature is greater than
T max

c , which we define as the maximum value of Tc in the
core, the modified Urca process drives the cooling. When the
temperature falls below T max

c , the PBF process turns on and
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Figure 5. Schematic diagram of the neutrino luminosity as a function of
temperature for the modified Urca and PBF processes. The dotted curve shows
the optimal PBF luminosity (i.e., obtainable when a thick enough layer in
the core has its temperature close to Tc) and the dashed curve shows the
unsuppressed MUrca luminosity. The values of T min

c and T max
c are the minimum

and maximum values of Tc for the neutron 3P2 gap (which is a function of
density) that occur within the star. When the temperature in the core falls below
T max

c the neutrino luminosity at that point increases to the PBF luminosity,
which can be almost 2 orders of magnitude higher than the MUrca luminosity in
the optimal case. When the temperature falls further, to below T min

c , the neutrino
luminosities from both the PBF and MUrca process are quenched. (This figure
inspired by Figure 20 of Paper I.)

dominates the cooling, until the temperature drops below T min
c ,

which we define as the minimum value of Tc in the core,
when both the PBF and modified Urca processes are quenched
everywhere in the core.

The surface temperature at early times is controlled by crustal
physics, as described in Section 3.1, and is independent of the
evolution of the core. For the surface temperature to reach the
smallest possible values, the value of T max

c should be large
enough for the PBF process to turn on before, or not much
later than, the crust isothermalization time. A useful reference
age is ∼103 yr, the estimated age of the youngest observed
cooling neutron stars, for the PBF process to be fully operating.
At later times, if the value of T min

c is too large both the PBF and
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Figure 15: A very good fit of the rapid cooling of the neutron star in Cassiopeia A obtained assuming a
recent onset of neutron 3P2 superfluidity and the resulting increase in neutrino emission from the formation
and breaking of Cooper pairs. The successful model assumes a maximum critical temperature TC = 5.5×108

K and the inset compares it with the six observational points, with their 1! error bars, from [20] and [46].
The two dotted curves with no neutron superfluidity, TC = 0, and superfluidity with a higher TC = 1×109 K
illustrate the sensitivity to TC . Figure adapted from [37].

which is 3-4 orders of magnitude larger than what it seen in L" ! For a young neutron star, neutrinos
are the prime candidates to induce such a large energy loss.

The cooling rate of this neutron star is so large that it must be a transitory event, which was
initiated only recently. Something critical occurred recently within this star! "Something critical"
for a cooling neutron star points toward a critical temperature, and a phase transition is a good
candidate. The results of the previous section exhibited a phase of accelerated cooling when the
neutron 3P2 pairing phase transition is triggered. With a TC " 5× 108 K, a transitory cooling can
occur at an age " 300 yrs as shown in the right panel of Fig. 12.

This interpretation of the observed rapid cooling of the neutron star in Cassiopeia A as trig-
gered by the recent onset of the neutron 3P2 superfluid phase transition and the resulting increase in
neutrino emission from the formation and breaking of pairs in the neutron superfluid was recently
proposed in [37] and, independently, in [46]. Models such as the ones in the right panel of Fig. 12
do not, however, exhibit a cooling rate as large as the observed one.

A second key ingredient for reproducing the observed cooling rate is illustrated in the right
panel of Fig. 13. The neutron star was very hot before the onset of neutron superfluidity. This is
possible in the case the protons were already in a superconducting state, which implies that the
corresponding critical temperature is significantly larger than the Tc for neutrons. That the Tc for
1S0 proton pairing is larger than the Tc for neutron 3P2 pairing is expected from the theoretical
results presented in § 5.1. However, a hot young neutron star can only be achieved in the case that
the protons are superconducting in the entire core, so that neutrino emission form the modified Urca
processes is strongly suppressed [46, 37]. This requirement places strong constraints on the proton
1S0 pairing and is easier to fulfill if the neutron star mass is not too large as theoretical models
show that proton superconductivity does not extend to very high densities. A better understanding
of the progenitor of Cassiopeia A, and constraining the expected neutron star mass, is essential for
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available, are shown in Tables 1–3. The data in these tables
show that, in general, there is a large discrepancy between the
spin-down age and the kinematic age in cases where both are
given. In most cases, the spin-down age is longer, but in the
case of the Vela pulsar, it is shorter. Typical discrepancies are
of order 3 or larger. For this reason, we have used the kinematic
age in Figures 1 and 2 where available, and otherwise have
assigned an uncertainty of a factor of 3 in each direction to the
spin-down ages.

2.3. Distances and Luminosities

The distances are estimated from pulsar dispersion mea-
sures, estimated distances to the related supernova remnants, or
observations of interstellar absorption to other stars in prox-
imity. In three cases, parallax estimates are available. The
details are discussed in Appendix A. Uncertainties in the dis-
tances are in many cases rather large. Since the inferred lu-
minosities of the stars are proportional to the square of the
assumed distances, it is usually the case that the inferred stellar
luminosity has greater relative error bars than the inferred stel-
lar temperature. However, in cases in which the composition
of the stellar atmosphere is uncertain, but the distance to the
source is accurately known, the inferred stellar luminosity
might be more accurately estimated. A consistency check of
the measurements of T1, L1, and the distance d is that the
relation

L1 ¼ 4!R2
1"SBT

4
1 ð1Þ

should give a radius at infinity R1 comparable to the radius of
a neutron star. This is the case for the measurements listed in
Table 1, whereas for the measurements based on BB spectral fits
listed in Table 2 only 1055$52 has a possibly acceptable R1,
but with very large errors due to the uncertainty in d. However,
BB models are overly simplistic. Nonmagnetic heavy-element
dominated atmospheres tend to have values of R1 factors of
2 to 3 larger than a BB (Romani 1987), so that essentially all
the sources listed in Table 2 satisfy this consistency check. For
the objects listed in Table 3, this consistency test is only mar-
ginally possible for J0205+6449 (3C 58).
Theoretical cooling calculations also give an effective tem-

perature T1
e and a luminosity L1 that are related to each other

by the equation (see also eq. [B9])

L1 % e2!(R)L(R) ¼ 4!R12"SBT
14
e ; ð2Þ

where we have used the superscript ‘‘1’’ to denote the the-
oretical values and subscript ‘‘1’’ for the observed values at
infinity in order to emphasize the difference. It is only for a
star for which the measured T1 and L1 satisfy equation (2)
and for which an accurate measurement of d exists (implying a
small error bar on L1) that comparison of cooling curves with
data in terms of T or L are equivalent. For the stars listed in
Table 2 that do not pass the above consistency test, the mea-
sured T1 is thus not an effective temperature and cannot be
directly compared with the calculated T1

e . In these cases, the
luminosity L1 is more representative of thermal emission
and should be used for comparison with L1. For this reason,
we have chosen to tabulate luminosities as well as tem-
peratures in Tables 1 and 2, and we have plotted both tem-
perature and luminosity in Figure 1. In Table 3, we have
reported only upper limits to L1, which is the quantity that
observation can usefully constrain and plotted them separately
in Figure 2.
One feature notable in Figures 1 and 2 is the sizes of the error

boxes, particularly in the age dimension. These uncertainties
represent an inherent difficulty in using these observations to
firmly constrain the details of neutron star cooling. For this rea-
son, instead of attempting to detail properties of the equation
of state, superconductivity, and/or neutrino emissivities from
the observations, our approach will be to model a reasonably

Fig. 1.—Inferred temperature T1 (top) and luminosity L1 (bottom) vs. age
for neutron stars with thermal emission. Data from Table 1 are marked as
‘‘H atmosphere fits’’ and data from Table 2 as ‘‘Blackbody fits.’’

Fig. 2.—Inferred upper limits on thermal luminosity L1, vs. age, for the
compact objects listed in Table 3.
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which is 3-4 orders of magnitude larger than what it seen in L" ! For a young neutron star, neutrinos
are the prime candidates to induce such a large energy loss.

The cooling rate of this neutron star is so large that it must be a transitory event, which was
initiated only recently. Something critical occurred recently within this star! "Something critical"
for a cooling neutron star points toward a critical temperature, and a phase transition is a good
candidate. The results of the previous section exhibited a phase of accelerated cooling when the
neutron 3P2 pairing phase transition is triggered. With a TC " 5× 108 K, a transitory cooling can
occur at an age " 300 yrs as shown in the right panel of Fig. 12.

This interpretation of the observed rapid cooling of the neutron star in Cassiopeia A as trig-
gered by the recent onset of the neutron 3P2 superfluid phase transition and the resulting increase in
neutrino emission from the formation and breaking of pairs in the neutron superfluid was recently
proposed in [37] and, independently, in [46]. Models such as the ones in the right panel of Fig. 12
do not, however, exhibit a cooling rate as large as the observed one.

A second key ingredient for reproducing the observed cooling rate is illustrated in the right
panel of Fig. 13. The neutron star was very hot before the onset of neutron superfluidity. This is
possible in the case the protons were already in a superconducting state, which implies that the
corresponding critical temperature is significantly larger than the Tc for neutrons. That the Tc for
1S0 proton pairing is larger than the Tc for neutron 3P2 pairing is expected from the theoretical
results presented in § 5.1. However, a hot young neutron star can only be achieved in the case that
the protons are superconducting in the entire core, so that neutrino emission form the modified Urca
processes is strongly suppressed [46, 37]. This requirement places strong constraints on the proton
1S0 pairing and is easier to fulfill if the neutron star mass is not too large as theoretical models
show that proton superconductivity does not extend to very high densities. A better understanding
of the progenitor of Cassiopeia A, and constraining the expected neutron star mass, is essential for

23

available, are shown in Tables 1–3. The data in these tables
show that, in general, there is a large discrepancy between the
spin-down age and the kinematic age in cases where both are
given. In most cases, the spin-down age is longer, but in the
case of the Vela pulsar, it is shorter. Typical discrepancies are
of order 3 or larger. For this reason, we have used the kinematic
age in Figures 1 and 2 where available, and otherwise have
assigned an uncertainty of a factor of 3 in each direction to the
spin-down ages.

2.3. Distances and Luminosities

The distances are estimated from pulsar dispersion mea-
sures, estimated distances to the related supernova remnants, or
observations of interstellar absorption to other stars in prox-
imity. In three cases, parallax estimates are available. The
details are discussed in Appendix A. Uncertainties in the dis-
tances are in many cases rather large. Since the inferred lu-
minosities of the stars are proportional to the square of the
assumed distances, it is usually the case that the inferred stellar
luminosity has greater relative error bars than the inferred stel-
lar temperature. However, in cases in which the composition
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might be more accurately estimated. A consistency check of
the measurements of T1, L1, and the distance d is that the
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should give a radius at infinity R1 comparable to the radius of
a neutron star. This is the case for the measurements listed in
Table 1, whereas for the measurements based on BB spectral fits
listed in Table 2 only 1055$52 has a possibly acceptable R1,
but with very large errors due to the uncertainty in d. However,
BB models are overly simplistic. Nonmagnetic heavy-element
dominated atmospheres tend to have values of R1 factors of
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infinity in order to emphasize the difference. It is only for a
star for which the measured T1 and L1 satisfy equation (2)
and for which an accurate measurement of d exists (implying a
small error bar on L1) that comparison of cooling curves with
data in terms of T or L are equivalent. For the stars listed in
Table 2 that do not pass the above consistency test, the mea-
sured T1 is thus not an effective temperature and cannot be
directly compared with the calculated T1

e . In these cases, the
luminosity L1 is more representative of thermal emission
and should be used for comparison with L1. For this reason,
we have chosen to tabulate luminosities as well as tem-
peratures in Tables 1 and 2, and we have plotted both tem-
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in Figure 2.
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MORE THAN ONE SOURCE !
Cackett et al. 2006 Cackett et al. 2008
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Figure 6. Velocities of phonons in the inner crust for two chemical compositions from Fig
2 and three values of the nuclei effective mass A∗.

Mixing implies that the longitudinal eigenmodes are superpositions of the longitudinal lat-
tice and superfluid phonons. The velocity of these eigenmodes is given by
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where X = g2
mix+v2

l +v2
φ and vl and vφ are defined in Eq. 14. The velocity of the eigenmodes

for the crustal compositions of catalyzed and accreted matter shown in panels (A) and (B) of
Fig. 2 are plotted in Fig. 6. The dashed curves show results for vl and vφ without mixing and
they cross at ρ � 1013 g/cm3. In this resonance region mixing is large and level repulsion
can be significant. Away from resonance, the eigenmodes contain only small admixtures:
below ρ � 1013 g/cm3 the mode labelled v2 is predominantly the superfluid mode and above
it is predominantly the lattice mode. In these calculations we have neglected the second
contribution in Eq. 17 to gmix and the value of nb was chosen somewhat arbitrarily to reflect
the range of m∗ predicted in [24]. The panels show results for three values of gmix chosen to
reflect different fractions a = 0, 30% and 60% of unbound neutrons in the cell entrained by
each nucleus. Transverse modes are unaffected by mixing at leading order but are affected
by entrainment. Its variation in the crust for different values of a is also shown in Fig. 6.
Despite strong mixing vt � v1 or v2, and transverse modes will continue to be dominate the
specific heat.
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Fig. 2 are plotted in Fig. 6. The dashed curves show results for vl and vφ without mixing and
they cross at ρ � 1013 g/cm3. In this resonance region mixing is large and level repulsion
can be significant. Away from resonance, the eigenmodes contain only small admixtures:
below ρ � 1013 g/cm3 the mode labelled v2 is predominantly the superfluid mode and above
it is predominantly the lattice mode. In these calculations we have neglected the second
contribution in Eq. 17 to gmix and the value of nb was chosen somewhat arbitrarily to reflect
the range of m∗ predicted in [24]. The panels show results for three values of gmix chosen to
reflect different fractions a = 0, 30% and 60% of unbound neutrons in the cell entrained by
each nucleus. Transverse modes are unaffected by mixing at leading order but are affected
by entrainment. Its variation in the crust for different values of a is also shown in Fig. 6.
Despite strong mixing vt � v1 or v2, and transverse modes will continue to be dominate the
specific heat.
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Mixing implies that the longitudinal eigenmodes are superpositions of the longitudinal lat-
tice and superfluid phonons. The velocity of these eigenmodes is given by

v1,2 =

�����X
2



1±

�

1−
4v2

l v2
φ

X2



 (19)

where X = g2
mix+v2

l +v2
φ and vl and vφ are defined in Eq. 14. The velocity of the eigenmodes

for the crustal compositions of catalyzed and accreted matter shown in panels (A) and (B) of
Fig. 2 are plotted in Fig. 6. The dashed curves show results for vl and vφ without mixing and
they cross at ρ � 1013 g/cm3. In this resonance region mixing is large and level repulsion
can be significant. Away from resonance, the eigenmodes contain only small admixtures:
below ρ � 1013 g/cm3 the mode labelled v2 is predominantly the superfluid mode and above
it is predominantly the lattice mode. In these calculations we have neglected the second
contribution in Eq. 17 to gmix and the value of nb was chosen somewhat arbitrarily to reflect
the range of m∗ predicted in [24]. The panels show results for three values of gmix chosen to
reflect different fractions a = 0, 30% and 60% of unbound neutrons in the cell entrained by
each nucleus. Transverse modes are unaffected by mixing at leading order but are affected
by entrainment. Its variation in the crust for different values of a is also shown in Fig. 6.
Despite strong mixing vt � v1 or v2, and transverse modes will continue to be dominate the
specific heat.
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of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T � Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2π2

15
T 3

v3
φ

(11)

where

vφ =

�
n f

mn f 2
φ

�
with f 2

φ =
∂n f

∂µn
, see §3.5.

�
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems vφ = vF/

√
3 where

vF is the Fermi velocity. In most of the inner crust vφ � vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where vφ � vt and
T ≤ Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show
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we discuss below the phonon contribution can become important in accreting neutron stars
where T � 108 −109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2π2

15

�
T 3

v3
l
+

2 T 3

v3
t

�
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

�
Kion−e/ρ where Kion−e = ρ(∂(Pion+Pe)/∂ρ) is the bulk-modulus

of the electron-ion system and the ion mass density ρ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe � Pion, we can write

vl =

�
∂Pe

∂ρ
=

ωp

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

�
µ
ρ
= α

ωp

qD
, (6)

where qD = (6π2nI)1/3 is the ion Debye momentum, and the constant α � 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

�
π

4e2

�
2
Z

�1/3

� 1 (7)

we have vl � vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12π4

5

�
T
TD

�3

, (8)

where TD = (3/2)1/3vt qD � 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ≤ Tp/50 but fails when T ≥ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ≥ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T � Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ≈ 1

3
mn kFn T exp

�
−∆n

T

�
(T � Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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In Fig. 4 model predictions for the critical temperature Tc = ∆n/1.76 are shown where

curves labelled "BCS" and "GMB" show the analytical results in the weak coupling valid

in the limit |akF |� 1. In the Bardeen Cooper and Schrieffer (BCS) approximation ∆BCS =
(8/e2)exp(π/2a kF)EF , with a scattering length a=−18.5, fm. Corrections due to medium

polarization which appear at the same order reduce the gap to ∆GMB = 1/(4e)1/3∆BCS from

[11]. Curves labelled "A1" and "A2" are examples of slowly growing Tc at low kF , from [12]

and [13], respectively. Curves "B1" and "B2" mimic behavior predicted by strong coupling

QMC calculations from [14] and [15] where the gap increases rapidly with density. In

models labelled "A1" and "B1" where gaps vanish at ρ � 10
14

g/cm
3
. For more details on

the density and model dependence of the gap we refer the reader to the chapter by Gezerlis

and Carlson[16] in this book.

In the region where T < Tc collective excitations of the neutron fluid called superfluid

phonons, with a dispersion relation ω = vφ q, are the relevant low energy degrees of free-

dom. This mode corresponds to fluctuations of the phase of the superfluid condensate (and

can be related to density fluctuations) and is the Goldstone mode associated with the spon-

taneous breaking of the global U(1) symmetry in superfluid ground state (the Hamiltonian

is invariant under arbitrary phase rotations of the fermion fields, but in the superfluid ground

state is preserved only by discrete rotations of π/2).

3.4. Specific heat

The electron contribution the specific heat (hereafter Cv will represent the specific heat per

unit volume) is given by

Ce
v =

1

3
µ2

e T , (3)

at low temperature. Band structure affects only negligible as only small regions of the

Fermi surface are affected. At low-temperature when T � Tp electrons dominate, but as
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of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T � Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2π2

15
T 3

v3
φ

(11)

where

vφ =

�
n f

mn f 2
φ

�
with f 2

φ =
∂n f

∂µn
, see §3.5.

�
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems vφ = vF/

√
3 where

vF is the Fermi velocity. In most of the inner crust vφ � vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where vφ � vt and
T ≤ Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show
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we discuss below the phonon contribution can become important in accreting neutron stars
where T � 108 −109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2π2

15

�
T 3

v3
l
+

2 T 3

v3
t

�
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

�
Kion−e/ρ where Kion−e = ρ(∂(Pion+Pe)/∂ρ) is the bulk-modulus

of the electron-ion system and the ion mass density ρ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe � Pion, we can write

vl =

�
∂Pe

∂ρ
=

ωp

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

�
µ
ρ
= α

ωp

qD
, (6)

where qD = (6π2nI)1/3 is the ion Debye momentum, and the constant α � 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

�
π

4e2

�
2
Z

�1/3

� 1 (7)

we have vl � vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12π4

5

�
T
TD

�3

, (8)

where TD = (3/2)1/3vt qD � 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ≤ Tp/50 but fails when T ≥ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ≥ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T � Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ≈ 1

3
mn kFn T exp

�
−∆n

T

�
(T � Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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we discuss below the phonon contribution can become important in accreting neutron stars
where T � 108 −109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2π2

15

�
T 3

v3
l
+

2 T 3

v3
t

�
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

�
Kion−e/ρ where Kion−e = ρ(∂(Pion+Pe)/∂ρ) is the bulk-modulus

of the electron-ion system and the ion mass density ρ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe � Pion, we can write

vl =

�
∂Pe

∂ρ
=

ωp

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

�
µ
ρ
= α

ωp

qD
, (6)

where qD = (6π2nI)1/3 is the ion Debye momentum, and the constant α � 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

�
π

4e2

�
2
Z

�1/3

� 1 (7)

we have vl � vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12π4

5

�
T
TD

�3

, (8)

where TD = (3/2)1/3vt qD � 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ≤ Tp/50 but fails when T ≥ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ≥ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T � Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ≈ 1

3
mn kFn T exp

�
−∆n

T

�
(T � Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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we discuss below the phonon contribution can become important in accreting neutron stars
where T � 108 −109 K. For T � TD the contribution from lattice phonons (lph) is given by

Clph
v =

2π2

15

�
T 3

v3
l
+

2 T 3

v3
t

�
, (4)

and vl and vt are velocities of the longitudinal, and transverse lattice phonons, respectively.
In a model where the strong interaction between the neutron superfluid and the ion lattice is
ignored it is simple to calculate these velocities. The speed of longitudinal lattice vibrations
is approximated as vl =

�
Kion−e/ρ where Kion−e = ρ(∂(Pion+Pe)/∂ρ) is the bulk-modulus

of the electron-ion system and the ion mass density ρ = Amn nI where A is the number of
bound nucleons in the ion. Since Pe � Pion, we can write

vl =

�
∂Pe

∂ρ
=

ωp

kTFe
, (5)

which is usually referred to as the Bohm-Staver sound speed. The velocity of the transverse
lattice mode is related to µ, the shear modulus of the lattice, and is given by

vt =

�
µ
ρ
= α

ωp

qD
, (6)

where qD = (6π2nI)1/3 is the ion Debye momentum, and the constant α � 0.4 is obtained
by numerical calculations of Coulomb crystals [17]. Further, since

qD

kTFe
=

�
π

4e2
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2
Z

�1/3

� 1 (7)

we have vl � vt and the contribution from longitudinal modes to Cv in Eq. 4 in negligible.
Thus the lattice contribution can be written in the familiar form

Clph
v = ni

12π4

5

�
T
TD

�3

, (8)

where TD = (3/2)1/3vt qD � 0.45Tp is the Debye temperature of the ion lattice. This low
temperature form of the specific heat provides an excellent approximation in Coulomb
solids up to T ≤ Tp/50 but fails when T ≥ Tp/10 [18].

To calculate the neutron contribution to Cv we first note that there are two distinct
regimes. In the normal phase when T ≥ Tc the neutron contribution is large and is given by

Cneutron
v =

1
3

mn kFn T (T > Tc) (9)

This normal contribution can become important in the vicinity of neutron drip where T > Tc,
and at the crust-core boundary. In the superfluid phase when T � Tc the neutron single
particle excitations are strongly suppressed and

Cneutron
v ≈ 1

3
mn kFn T exp

�
−∆n

T

�
(T � Tc) . (10)

which is usually negligible. The four models for the gap in Fig. 4 allow us to explore the
effect of pairing on the neutron specific heat. In models A1 and A2 we have a thick shell
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of normal neutrons above the drip point, while models A1 and B1 predict a thick layer of
normal neutrons at the highest densities. Modifications to this simple picture of pairing in
uniform neutron matter due to the presence of the nuclei are discussed in this book in the
chapter by N. Sandulescu & J. Margueron [19]. Further, we briefly note that like in the
case of electrons, coherent Bragg scattering of neutrons by the lattice lead to band structure
effects that modify the shape of the Fermi surface, still Eq. 9 is an excellent approximation
to Cv in normal phase for reasons described in [20].

Elsewhere in the crust where T � Tc the relevant neutron contribution is from superfluid
phonons, i.e., collective instead of single particle excitations, and is given by

Csph
v =

2π2

15
T 3

v3
φ

(11)

where

vφ =

�
n f

mn f 2
φ

�
with f 2

φ =
∂n f

∂µn
, see §3.5.

�
(12)

is the superfluid phonon velocity, n f , µn and mn are the number density, chemical potential
and mass of the free neutrons, respectively. For weakly coupled systems vφ = vF/

√
3 where

vF is the Fermi velocity. In most of the inner crust vφ � vt (see Fig. 6) and hence their
contribution to the heat capacity is negligible except perhaps in a sliver where vφ � vt and
T ≤ Tc.
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Figure 5. Specific heat of ions, electrons, and for neutrons with (labelled nSF) and without
the effects of the superfluid gap (labelled nN) are shown for four representative tempera-
tures.

The specific heat due to these components is shown in Fig. 5. The ion contribution for
T � 0.1Tp varies as T 3 and is to very good approximation given by Clph

V , while electron
contribution is linear in T and dominates at low temperature. As mentioned earlier, the
neutron contribution is sensitive to the variation of the 1S0 gap. To illustrate this we show
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Figure 9. Electron thermal conductivity κe vs density at four different temperatures. Scat-
tering processes e-ion, e-e, and e-imp with 6 values of Qimp = 0, 1, 2, 3, 4, and 5 (as
indicated in the left panel) are included.

of impurity scattering in the inner crust for T < 108 K and for Qimp � 1. Both of these trends
are easily understood in terms of the preceding discussion of various scattering mechanisms
and their temperature dependencies. As we discuss in §5., Qimp will play an important role
in interpreting observations in accreting neutron stars when the inner crust is cold with
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Electron Conduction

Impurity scattering is important at low temperature. 
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Figure 7. Feynman diagrams indicating the various scattering and dissipative processes

involving electrons, lattice phonons and superfluid phonons.

4. Transport Properties

The electron and phonon thermal conductivity can be written as κ = Cv v λ/3 where Cv is

their specific heat, v is their velocity, and λ is the transport mean free path. Using Eqs. 3 &

4 the electron and phonon conductivities are

κe =
1

9
µ2

e T λe , κphi
=

2π2

45 v2

i
T 3 λphi

(20)

where electrons are relativistic (v = 1) with mean-free path λe, and the phonon contribution

is for each phonon type with velocity vi and mean free path λphi
. Since µe � T , electrons

dominate at low temperature but phonon contributions can become relevant at high tem-

perature when λphi
� (µe/T )2 v2

i λe or when the magnetic field is large enough to restrict

electron motion [26, 27]. Phonon velocity was discussed in §3., we now turn to discuss

scattering and absorption processes that determine their mean free path. Feynman diagrams

for relevant interactions are illustrated in Fig. 7 and in the following we briefly discuss the

most important of these processes in the inner crust.

4.1. Electron-phonon processes

In its general form, the electron mean free path relevant for the thermal conductivity due to

electron-ion scattering is given by

λ−1

e =
Z2e4

4πµ2
e

�
2kFe

0

dk k3 |Ṽ (k)|2
� ∞

−∞
dω F (βω)S(ω,k) gκ(k,βω) (21)

where

gκ(βω,k) = 1+

�
βω
π

�
2
�

3
k2

Fe
k2

− 1

2

�
, F (βω) = βω

exp(βω)−1
(22)

and the dynamical structure factor S(ω,k) embodies all relevant dynamics of the strongly

coupled system of ions [28]. Here, ω,k are the energy and momentum transfer. The function
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and sums are over all reciprocal lattice vectors or lattice momenta �Q, and the longitudinal

and transverse phonon states with polarization vector ε̂i and velocity vi. Using Eq. 24 and

the delta functions to perform the integration over k and ω, the electron mean free paths in

Eq. 21 can be written as

1

λph

e
=

2π2e2 ω2

p

µe T ∑
i

K (i)(T,vi) , where , (25)

K (i)(T,vi) =
P<2kFe

∑
Q

� qD

0

d3q
(2π)3

Ṽ (P )
P (�P .ε̂i)2(1−P 2/4k2

Fe) gκ(βviq,P )

(exp(βviq)−1)(1− exp−(βviq))
, (26)

and �P =�q+ �Q. To unravel the dependence on the temperature and the phonon velocity we

examine two limitings forms of the function K (i)(T,vi). First, when 2kFe � qD, the domi-

nant contribution comes from the Umklapp and we can set �P = �Q in evaluating K (i)(T,vi).
In this case, from the RHS of Eq. 26 it is easy to deduce that

lim
Q�q

K (i)(T,vi) ∝ T 3

v3

i
. (27)

In the opposite limit, when only the normal process involving longitudinal lattice modes

contribute we can set �Q = 0 in the RHS of Eq. 26 to find that

lim
Q=0

K (i)(T,vl) ∝ T 4

v4

l
. (28)

At very low temperature, the band gap in the electron spectrum suppress Umklapp

processes. As mentioned in §3., coherent Bragg scattering by the lattice will distort the

electron Fermi surface for momenta that can coincide with the reciprocal lattice vectors

Q. Here, the spectrum will differ due to a band gap δU � (4e3/3π) kFe. Although distorted

patches on the Fermi surface occupy only a small fraction of the total area, these regions are

important for Umklapp transitions. To understand this suppression consider the case when

the phonon momentum q ≈ 0. In this limit, large angle electron Umklapp scattering with

�k � �Q can only involve electrons on these patches. However, at low temperature the gap

will suppress such transitions unless the phonon momentum q ≥ δk where δk � δU/vFe can

"steer" electrons away from these patches. For transverse thermal phonons q � 3T/vt and

the condition on the phonon momentum implies that Umklapp occurs for T ≥ Tum where

Tum = (4e3/9π) vt kFe.

From the preceding discussions we can conclude that for T > Tum the mean free path

λph

e ∝ v3

t /T 2
since vt � vl . For T � Tum where only normal processes involving longitudinal

phonons are allowed we expect λph

e ∝ v4

l /T 3
. However, the normal electron-phonon process

is too weak to compete with two other sources of electron scattering that we now discuss.

4.2. Electron-impurity scattering

As we noted in §2., in accreting neutron stars nuclear reactions that process accreted mate-

rial can produce a mix of metastable nuclei. The evolution of nuclei in the outer crust has

been studied in [5] where it was found that electron capture induced neutron emission reac-

tions populate a very diverse mix of nuclei with a large dispersion in Z and A. Although it

{
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As we noted in §2., in accreting neutron stars nuclear reactions that process accreted mate-

rial can produce a mix of metastable nuclei. The evolution of nuclei in the outer crust has

been studied in [5] where it was found that electron capture induced neutron emission reac-

tions populate a very diverse mix of nuclei with a large dispersion in Z and A. Although it
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is reasonable to expect that this dispersion will significantly decrease in the inner crust due

to pycno-nuclear reactions and the abundant supply of neutrons, reaction pathways in the

inner crust remain poorly understood. It is generally assumed that at each depth a specific

nucleus with large Z and the highest abundance will crystallize and the remaining mix of

nuclei can be treated as impurities in the solid. The impurity parameter

Qimp =
1

nion

∑
i

ni (Zi −�Z�)2 , (29)

is a good measure of the dispersion in the nuclear charge. For moderate Qimp ≈ 1 an ordered

lattice is likely with scattered impurities. If the impurities cannot diffuse easily their spatial

distribution will be uncorrelated, and electron scattering off them can become significant.

The scattering mean free path in this case is given by

λimp

e =
k2

Fe

4πe4 ∑i ni (Zi −�Z̄�)2
Λ−1 =

3π�Z�
4e4Qimp kFe

Λ−1 , (30)

where Λ � 1/2 (ln(π/e2)−2) is the Coulomb logarithm, and we have used charge neutral-

ity which requires �Z� nion = ne = k3

Fe
/3π2

in arriving at the second equality.

4.3. Electron-electron scattering

Typically electron-electron scattering is weak but it can become important when electron-

ion scattering is suppressed at T < Tum. Scattering between relativistic electrons is dom-

inated by the current-current interaction which unlike the Coulomb interaction between

charges, this interaction is unscreened in the static limit. The corresponding mean free path

was calculated including the effects of dynamical screening (or Landau damping) in [32].

For the case of relativistic and degenerate electrons

λe−e =
π2

6ζ[3] e2 T
≈ 188

T
, (31)

and it is remarkable that it is independent of density. The corresponding conductivity κe−e �
21 µ2

e is also interesting as it is independent of temperature. Consequently, electron-electron

process can become important at T < Tum when electron-phonon Umklapp scattering is

suppressed. However, in practice for T ≥ 10
7

K they are only relevant in a small region

close to the crust-core boundary if Qimp � 1.

4.4. Electron conduction

Numerical calculations of the electron conductivity with several refinements that include

the role of multi-phonon excitations, Debye-Waller corrections and the nuclear form fac-

tors have been calculated and tabulated by the neutron star research group at the Ioffe in-

stitute in St. Petersburg (http://www.ioffe.rssi.ru/astro/conduct/). Since our focus here is

to emphasize the qualitative aspects at low temperature we do not review these important

refinements. The results obtained (using the fits to the tabulated results) are shown in Fig. 9

and qualitative features can be generally understood in terms of our preceding discussion.

Four panels with increasing T in Fig.9 clearly demonstrates: (i) the rapid decrease in ther-

mal conductivity for the case Qimp = 0 as T becomes larger than Tum and (ii) the importance
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Typically electron-electron scattering is weak but it can become important when electron-

ion scattering is suppressed at T < Tum. Scattering between relativistic electrons is dom-

inated by the current-current interaction which unlike the Coulomb interaction between

charges, this interaction is unscreened in the static limit. The corresponding mean free path

was calculated including the effects of dynamical screening (or Landau damping) in [32].

For the case of relativistic and degenerate electrons

λe−e =
π2

6ζ[3] e2 T
≈ 188

T
, (31)

and it is remarkable that it is independent of density. The corresponding conductivity κe−e �
21 µ2

e is also interesting as it is independent of temperature. Consequently, electron-electron

process can become important at T < Tum when electron-phonon Umklapp scattering is

suppressed. However, in practice for T ≥ 10
7

K they are only relevant in a small region

close to the crust-core boundary if Qimp � 1.

4.4. Electron conduction

Numerical calculations of the electron conductivity with several refinements that include

the role of multi-phonon excitations, Debye-Waller corrections and the nuclear form fac-

tors have been calculated and tabulated by the neutron star research group at the Ioffe in-

stitute in St. Petersburg (http://www.ioffe.rssi.ru/astro/conduct/). Since our focus here is

to emphasize the qualitative aspects at low temperature we do not review these important

refinements. The results obtained (using the fits to the tabulated results) are shown in Fig. 9

and qualitative features can be generally understood in terms of our preceding discussion.

Four panels with increasing T in Fig.9 clearly demonstrates: (i) the rapid decrease in ther-

mal conductivity for the case Qimp = 0 as T becomes larger than Tum and (ii) the importance

Flowers & Itoh (1976)
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Figure 9. Electron thermal conductivity κe vs density at four different temperatures. Scat-
tering processes e-ion, e-e, and e-imp with 6 values of Qimp = 0, 1, 2, 3, 4, and 5 (as
indicated in the left panel) are included.

of impurity scattering in the inner crust for T < 108 K and for Qimp � 1. Both of these trends
are easily understood in terms of the preceding discussion of various scattering mechanisms
and their temperature dependencies. As we discuss in §5., Qimp will play an important role
in interpreting observations in accreting neutron stars when the inner crust is cold with
T < Tum.

4.5. Phonon conduction

Phonon heat conduction can become relevant when T >∼ 108 K when the phonon heat capac-
ity becomes comparable to that of electrons, or when the electron contribution is suppressed
either due to large Qimp or magnetic fields. Its importnace depends on the phonon mean free
path being large enough to compensate for their smaller velocity. Phonon scattering pro-
cesses have been discussed in Refs. [26, 27] and we will briefly review them here. As in
terrestrial metals [29], electrons in the inner crust are efficient at damping lattice phonons.
The phonon-electron process is shown in Fig 7 (2a) which depicts a phonon decay produc-
ing an electron-hole excitation. This, Landau damping, dominates over phonon-impurity
and phonon-phonon processes for the temperature realized in the crust [26].

The electron-phonon process discussed in §4.1. and the phonon-electron process we
discuss here are essentially similar. Only here it acts to bring into equilibrium the phonon
distribution function that carries the net thermal current relative to the electron gas. Since
transverse modes dominate the heat capacity their contribution to thermal conduction is rel-
evant and longitudinal modes can be neglected. For T ≥ Tum, Umklapp processes dominate
and transverse phonons are absorbed and emitted by large angle electron scattering on the
Fermi surface. The mean free path for these processes was estimated by Chugunov and
Haensel in [26]. For simplicity, neglecting corrections due to the Debye-Waller factor, we

Electron Conduction

Impurity scattering is important at low temperature. 
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Figure 7. Feynman diagrams indicating the various scattering and dissipative processes

involving electrons, lattice phonons and superfluid phonons.

4. Transport Properties

The electron and phonon thermal conductivity can be written as κ = Cv v λ/3 where Cv is

their specific heat, v is their velocity, and λ is the transport mean free path. Using Eqs. 3 &

4 the electron and phonon conductivities are

κe =
1

9
µ2

e T λe , κphi
=

2π2

45 v2

i
T 3 λphi

(20)

where electrons are relativistic (v = 1) with mean-free path λe, and the phonon contribution

is for each phonon type with velocity vi and mean free path λphi
. Since µe � T , electrons

dominate at low temperature but phonon contributions can become relevant at high tem-

perature when λphi
� (µe/T )2 v2

i λe or when the magnetic field is large enough to restrict

electron motion [26, 27]. Phonon velocity was discussed in §3., we now turn to discuss

scattering and absorption processes that determine their mean free path. Feynman diagrams

for relevant interactions are illustrated in Fig. 7 and in the following we briefly discuss the

most important of these processes in the inner crust.

4.1. Electron-phonon processes

In its general form, the electron mean free path relevant for the thermal conductivity due to

electron-ion scattering is given by

λ−1

e =
Z2e4

4πµ2
e

�
2kFe

0

dk k3 |Ṽ (k)|2
� ∞

−∞
dω F (βω)S(ω,k) gκ(k,βω) (21)

where

gκ(βω,k) = 1+

�
βω
π

�
2
�

3
k2

Fe
k2

− 1

2

�
, F (βω) = βω

exp(βω)−1
(22)

and the dynamical structure factor S(ω,k) embodies all relevant dynamics of the strongly

coupled system of ions [28]. Here, ω,k are the energy and momentum transfer. The function

Flowers & Itoh (1976)
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Figure 11. Models for the crust relaxation of MXB1659-29. See text for description. The
six data points in the left panel are from [40], assuming a source distance of 8.5 kpc.

5.2.1. Mapping the thermal conductivity: MXB1659-29.

The crust relaxation of MXB 1659-29 has been studied in detail by Brown & Cumming in
[43], and our results amply confirm their analysis. The accretion outburst was long enough
that the crust could reach a steady state: this is very important since it implies that the
initial T profile for the crust relaxation was independent of CV , providing some relief from
the CV/κ degeneracy in τth, Eq. 39.

As was shown in [43] there is a one-to-one mapping between the cooling curve, Te(t),
and the temperature profile of the crust, T (z) at the end of the outburst at time t0. At time
t − t0 after relaxation commences, the observed surface temperature Te is determined by the
temperature T (zt−t0) at a depth zt−t0 such that the thermal relaxation time from the surface
to this depth is τth ∼ t. (This is the "l2-effect" in Eq.39.) The schematic in the grey shaded
inset in the left panel of Fig. 11 shows: phase "1" when Te is determined by the outer crust
evolution; in "2" it is controlled by the evolution of matter at densities ρ ∼ 1011 − 1013 g
cm−3; in phase "3" the evolution is sensitive to the deep inner crust; and, finally, in phase
"4", the crust has relaxed with the core and Te reflects the core temperature. Approximating
CV and κ by power laws in T , the evolution is described by power laws, i.e., straight lines
in a Te-Log(t − t0) plot.

The thermal conductivity of a pure crystalline crust turns out to be much too high to
reproduce observed cooling, but good fits are obtained when κ is reduced due to additional
scattering by impurities. The cooling curves in the left panel of Fig. 11 illustrate three
cases with impurity parameters Qimp = 2.5, 5, and 7.5, as well as a pure crystalline crust,
Qimp = 0. A value of Qimp = 5 is favored in this set of results, but is dependent on the
assumed crust thickness and accretion rate (see [43] for a complete study). A finer study
[45] with a density dependent Qimp reveals that the cooling curves are mostly sensitive to
the value of Qimp at ρ > 1013 g cm−3, so that MXB 1659-29, and also KS 1731-260, are

•Late time signal is 
sensitive to inner crust 
thermal and transport  
properties.
•Impurity parameter 
can be fixed at earlier 
times. 
•Variations in the 
pairing gap (changes the 
fraction of normal 
neutrons) are 
discernible !  
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A: Low Tc - large normal fraction
B: High Tc- small normal fraction
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Figure 11. Models for the crust relaxation of MXB1659-29. See text for description. The
six data points in the left panel are from [40], assuming a source distance of 8.5 kpc.

5.2.1. Mapping the thermal conductivity: MXB1659-29.

The crust relaxation of MXB 1659-29 has been studied in detail by Brown & Cumming in
[43], and our results amply confirm their analysis. The accretion outburst was long enough
that the crust could reach a steady state: this is very important since it implies that the
initial T profile for the crust relaxation was independent of CV , providing some relief from
the CV/κ degeneracy in τth, Eq. 39.

As was shown in [43] there is a one-to-one mapping between the cooling curve, Te(t),
and the temperature profile of the crust, T (z) at the end of the outburst at time t0. At time
t − t0 after relaxation commences, the observed surface temperature Te is determined by the
temperature T (zt−t0) at a depth zt−t0 such that the thermal relaxation time from the surface
to this depth is τth ∼ t. (This is the "l2-effect" in Eq.39.) The schematic in the grey shaded
inset in the left panel of Fig. 11 shows: phase "1" when Te is determined by the outer crust
evolution; in "2" it is controlled by the evolution of matter at densities ρ ∼ 1011 − 1013 g
cm−3; in phase "3" the evolution is sensitive to the deep inner crust; and, finally, in phase
"4", the crust has relaxed with the core and Te reflects the core temperature. Approximating
CV and κ by power laws in T , the evolution is described by power laws, i.e., straight lines
in a Te-Log(t − t0) plot.

The thermal conductivity of a pure crystalline crust turns out to be much too high to
reproduce observed cooling, but good fits are obtained when κ is reduced due to additional
scattering by impurities. The cooling curves in the left panel of Fig. 11 illustrate three
cases with impurity parameters Qimp = 2.5, 5, and 7.5, as well as a pure crystalline crust,
Qimp = 0. A value of Qimp = 5 is favored in this set of results, but is dependent on the
assumed crust thickness and accretion rate (see [43] for a complete study). A finer study
[45] with a density dependent Qimp reveals that the cooling curves are mostly sensitive to
the value of Qimp at ρ > 1013 g cm−3, so that MXB 1659-29, and also KS 1731-260, are
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Summary & Outlook

• A qualitative understanding of connections between dense 
matter properties and neutron star observations have 
emerged in the past decade.  

• There is much to do.  Pursuing theoretical work to provide a 
quantitative description of the equation of state and 
correlations functions of interest will be both challenging and 
rewarding.

• Multi-messenger probes of the neutron star interior (x-rays, 
neutrinos, and GWs) contain a wealth of information .. 
extracting it will require good ideas, theory, and large-scale 
simulations. 


