National Nuclear Physics Summer School 2012

Spin Structure of the Nucleon

Zein-Eddine Meziani

Temple University Philadelphia

Lecture # 2

Questions: meziani@temple.edu

NNPSS 2012, Santa Fe, NM

Coutesy of CERN Courier

Probing the constituents

How do we probe the structure and dynamics of matter in ep / pp scattering?

Quark-Parton Model

Bjorken, Feynman and Paschos

The nucleon is made out of non-interacting point like particles called partons

The photon quark scattering is elastic scattering

	Proton	Parton	
	\downarrow	\downarrow	Where \boldsymbol{x} is the fraction of nucleon momentum carried by the struck quark
Energy	\mathbf{E}	хE	
Momentum	p_L	xp_L	
	$p_T = 0$	$p_T = 0$	
Mass	Μ	$m = (x^2 E^2 - x^2 p_L^2)^{1/2} = xM$	
7/16/12		NNPSS 2012, Santa Fe	, NM

Quark Parton Model

$$(xP+q)^2 = m^2 \Rightarrow x^2P^2 + 2xP \cdot q + q^2 = m^2$$

At large
$$q^2$$
 assume $q^2 \gg x^2 P^2$ and $q^2 \gg m^2$ thus $2xP\cdot q + q^2 \simeq 0$

solving for x in the Lab frame we obtain

$$2xM \cdot \nu + q^2 = 0 \Rightarrow x = \frac{Q^2}{2M\nu}$$

Elastic scattering off a quark lead to

$$q^2 = 2m\nu$$

Then

Fraction of nucleon mass carried by struck quark !?

A scattering picture of the proton Quark & Leptons: An Introductory Course in Modern Particle Physics, Francis Halzen and Alan Martin One quark

Structure functions in the parton model

In the infinite-momentum frame:

- > no time for interactions between partons
- > Partons are point-like non-interacting particles: $\sigma_{
 m Nucleon} = \sum \sigma_i$

$$F_{1}(x) = \frac{1}{2} \sum_{i} e_{i}^{2} [q_{i}^{\uparrow}(x) + q_{i}^{\downarrow}(x)]$$

$$F_{2}(x) = \sum_{i} e_{i}^{2} x [q_{i}^{\uparrow}(x) + q_{i}^{\downarrow}(x)]$$

$$\sigma_{L} = \sigma_{L}$$

$$2xF_1(x) = F_2(x) = \sum_i e_i^2 xq_i(x)$$
Callan-Gross relation
$$\vec{\sigma_T} \to 0$$
It is a consequence of quarks having a spin 1/2

$$g_1(x) = \frac{1}{2} \sum_{i} e_i^2 \left[q_i^{\uparrow}(x) - q_i^{\downarrow}(x) \right] = \frac{1}{2} \sum_{i} e_i^2 \Delta q_i(x)$$

 $g_2(x)$ has no simple partonic interpretation.

It involves quark-gluon interactions

Virtual photon-nucleon asymmetries

Longitudinal

$$\frac{\sigma^{\downarrow\uparrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\downarrow\uparrow} + \sigma^{\uparrow\uparrow\uparrow}} = A_{\parallel} = D(A_1 + \eta A_2)$$

Transverse
$$\frac{\sigma^{\downarrow\Leftarrow} - \sigma^{\uparrow\Leftarrow}}{\sigma^{\downarrow\Leftarrow} + \sigma^{\uparrow\Leftarrow}} = A_{\perp} = d(A_1 - \xi A_2)$$

- D, d, η and ξ are kinematic factors
- D depends on $R(x,Q^2)=\sigma_L/\sigma_T$

$$A_1 = \frac{g_1(x, Q^2) - \gamma^2 g_2(x, Q^2)}{F_1(x, Q^2)}$$

$$A_2 = rac{\gamma [g_1(x,Q^2)+g_2(x,Q^2)]}{F_1(x,Q^2)}$$
 where $\gamma = \sqrt{Q^2}/
u$

• Positivity constraints $|A_1| \leq 1$ and $|A_2| \leq \sqrt{R(1+A_1)/2}$

In the quark-parton model:

 $F_{1}(x,Q^{2}) = \frac{1}{2} \sum_{f} e^{2}q_{f}(x,Q^{2}) \qquad g_{1}(x,Q^{2}) = \frac{1}{2} \sum_{f} e^{2}\Delta q_{f}(x,Q^{2})$ $q_{f}(x) = q_{f}^{\uparrow}(x) + q_{f}^{\downarrow}(x) \qquad \Delta q_{f}(x) = q_{f}^{\uparrow}(x) - q_{f}^{\downarrow}(x)$ $q_{f}(x) \quad \text{quark momentum distributions of flavor } f$ $\uparrow(\downarrow) \quad \text{parallel (antiparallel) to the nucleon spin}$ $F_{1}(x,Q^{2}) = \frac{1}{2} \sum_{f} e^{2}\Delta q_{f}(x,Q^{2}) \qquad g_{1}(x,Q^{2}) = \frac{1}{2} \sum_{f} e^{2}\Delta q_{f}(x,Q^{2})$

Probes of nucleon helicity structure

Impressive experimental progress in QCD spin physics in the last 25 years

• Inclusive spin-dependent DIS

- ► CERN: EMC, SMC, COMPASS
- ➡ SLAC: E80, E142, E143, E154, E155
- ➡ DESY: HERMES
- ➡ JLab: Hall A, B and C

• Semi-inclusive DIS

- SMC, COMPASS
- ➡ HERMES, JLab

Polarized pp collisions BNL: PHENIX & STAR

- Polarized e+e- collisions
 - ➡ KEK: Belle

7/16/12

NNPSS 2012

Polarized Structure functions

Picture of a proton from polarized ep

7/16/12

• Spin sum rule:
$$\frac{1}{2}\Delta\Sigma$$

$$\frac{1}{2} = \langle S_q \rangle + \langle S_g \rangle + \langle L_q \rangle + \langle L_g \rangle$$
(R.L. Jaffe and A. Manohar, Nucl. Phys. B337, 509 (1990))
$$\Delta\Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$

$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x,Q^2) dx \qquad \Delta G(Q^2) = \int_0^1 \Delta g(x,Q^2) dx$$

$$\Box \text{ Data only from fixed-target experiments}$$
(Limited reach in x and Q²) mostly at lower energy

□ Quark spin contribution is small (~25%): $\Delta\Sigma = 0.242 \; (Q^2 = 10 \, {\rm GeV}^2)$

(D. deFlorian et al., Phys. Rev. D80, 034030 (2009))

Gluon spin contribution unconstrained

NNPSS 2012, Santa Fe, NM So far!

Spin of the Proton: Two views

Jaffe-Manohar 1990

Jaffe-Manohar proton spin decomposition

$$\begin{split} g_D &= \frac{1}{2} \int d^3 r \ \psi^{\dagger} \vec{\Sigma} \psi \\ &+ \int d^3 r \ \psi^{\dagger} \vec{r} \times \left(-i \vec{\nabla} \right) \psi \\ &+ \int d^3 r \ \vec{E}^a \times \vec{A}^a \\ &+ \int d^3 r \ \vec{E}^{ai} \vec{r} \times \vec{\nabla} \vec{A}^{ai} \end{split}$$

News:

Gauge-invariant extension

./

[Chen et al. (2008)]

OAM accessible via Wigner distributions

Lorce, Pasquini (2011) Lorce, Pasquini, Xiong, Yuan(2011) Hatta (2011)

Pros:

- Satisfies Canonical relations
- Complete decomposition

Cons:

7/18/12

- Gauge variant decomposition Missing observables for OAM
 - Coutesy of C. Lorce

Ji's proton spin decomposition

- **Pros:** Gauge-invariant decomposition
 - Accessible in DIS and DVCS
- **Cons:** Does not satisfy canonical relations
 - Incomplete decomposition
- **News:** Complete decomposition

7/16/12

CIPANP 2012, St. Petersburg, FL

[Wakamatsu (2009,2010)]

Courtesy of C. Lorce

Proton Spin Decomposition Jaffe and Manohar 1990

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G(Q^2) + L_q(Q^2) + L_g(Q^2)$$

$$\Delta \Sigma = \Delta u + \Delta \bar{u} + \Delta d + \Delta \bar{d} + \Delta s + \Delta \bar{s}$$

$$\Delta q_i(Q^2) = \int_0^1 \Delta q_i(x, Q^2) dx \qquad \Delta G(Q^2) = \int_0^1 \Delta g(x, Q^2) dx$$
$$\Delta q(x) = \left| \xrightarrow{P, +} \underbrace{\xrightarrow{xP_{\checkmark}}}_{}^{+} X \right|^2 - \left| \xrightarrow{P, +} \underbrace{\xrightarrow{xP_{\checkmark}}}_{}^{-} X \right|^2$$

$$\Delta g(x) = \left| \xrightarrow{P, +} \underbrace{x_{P, \circ}}_{0^{\circ}}^{*} \right|^{2} - \left| \xrightarrow{P, +} \underbrace{x_{P, \circ}}_{0^{\circ}}^{*} \right|^{2}$$

Quark Helicity Distributions from SIDIS

• Results from inclusive and semi- inclusive experiments from different experiments (COMPASS, HERMES, JLab) are consistent

7/16/12

Quark Helicity distributions (continued)

Recent data analyses

➡ De Florian, Sassot,
Stratmann, Vogelsang,
2008/2009

Blumlein, Bottcher,2010

➡ Leader, Sidorov, Stamenov, 2010

 ➡ RHIC results on Wproduction may provide further information) – so
 far: proof of principle measurements (PHENIX, 2010 / STAR, 2010)

Extracting the quark spin content of the Nucleon

$$\Gamma_1(Q^2) = \int_0^1 g_1(x, Q^2) \, dx = \mu_2 + \frac{\mu_4}{Q^2} + \frac{\mu_6}{Q^4} + \cdots$$

leading twist higher twist

 $\mu_2^{p,n}(Q^2) = (\pm \frac{1}{12}g_A + \frac{1}{36}a_8) + \frac{1}{9}\Delta\Sigma$ + pQCD corrections

 $g_A = 1.257$ and $a_8 = 0.579$ are the triplet and octet axial charge, respectively $\Delta \Sigma$ = singlet axial charge

$$g_{A} = \Delta u - \Delta d$$

$$a_{8} = \Delta u + \Delta d - 2\Delta s$$

$$\Delta \Sigma = \Delta u + \Delta d + \Delta s$$
pQCD radiative corrections
7/16/12
NNPSS 2012, Santa Fe, NM

Gluon Helicity

Recent results - Gluon polarization program

STAR: Mid-rapidity Inclusive Jet ALL measurement

Jefferson Lab Experimental Halls

T

7/16/12

Jlab Hall A Experimental Setup

Pol ³He Target Commissioning

Hall B setup

- Large kinematical coverage
- detection of charged and neutral particles
- Multiparticle final state

Polarized NH₃ &ND₃ 75% (NH₃) or 30% (ND₃) Longitudial polarization only Acceptance ~2.5π

Luminosity: 10^{34} cm⁻² s⁻¹

Sum rules and Moments of Structure functions

First moments

Moments of Structure Functions

$$\tau = 2$$

 $\tau > 2$

$$\rightarrow$$
 $a_2(Q^2) \equiv 2 \int_0^1 dx \, x^2 \, g_1^{\text{twist}-2}(x,Q^2) \rightarrow$ target mass correction term

 $\rightarrow d_{2}(Q^{2}) \rightarrow \text{dynamical twist-3 matrix element}$ $d_{2}(Q^{2}) \equiv \int_{0}^{1} dx \ x^{2} \left\{ 3 g_{2}(x, Q^{2}) + 2 g_{1}(x, Q^{2}) \right\}$ $d_{2}S^{[\mu}P^{\{\nu]}P^{\lambda\}} = \frac{1}{8} \sum_{q} \langle P, S | \bar{\psi}_{q} \ g\bar{F}^{\{\mu\nu}\gamma^{\lambda\}}\psi_{q} | P, S \rangle$ $\rightarrow f_{2}(Q^{2}) \rightarrow \text{dynamical twist-4 matrix element}$ $\sum_{NNPSS 2012, \text{ Santa Fe, NM}} \frac{1}{2} \sum_{q} e_{q}^{2} < N | \bar{\psi}_{q} g\tilde{F}^{\mu\nu}\gamma_{\nu}\psi_{q} | N >$

Evolution of first moments of g_{1p} and g_{1d}

First moment of g_1^n ; Γ_1^n

E94-010, PRL 92 (2004) 022301

NNPSS 2012, Santa Fe, NM

Bjorken Sum Q² evolution and higher twists

g_2 and Quark-Gluon Correlations

 $g_2(x,Q^2) = g_2^{WW}(x,Q^2) + \bar{g}_2(x,Q^2)$

• a twist-2 term (Wandzura & Wilczek, 1977):

$$g_2^{WW}(x,Q^2) = -g_1(x,Q^2) + \int_x^1 g_1(x,Q^2) \frac{dy}{y}$$

• a twist-3 term with a suppressed twist-2 piece (Cortes, Pire & Ralston, 1992):

$$\bar{g}_{2}(x,Q^{2}) = -\int_{x}^{1} \frac{\partial}{\partial y} \left[\frac{m_{q}}{M} \frac{h_{T}(y,Q^{2})}{\sqrt{1 + \xi(y,Q^{2})}} + \frac{\xi(y,Q^{2})}{y}\right] \frac{dy}{y}$$
Transversity

7/16/12

Moments of Structure Functions

$$d_2(Q^2) = 3\int_0^1 x^2 \left(g_2(x, Q^2) - g_2^{WW}(x, Q^2)\right) dx$$

$$d_2 S^{[\mu} P^{\{\nu]} P^{\lambda\}} = \frac{1}{8} \sum_q \langle P, S | \bar{\psi}_q \ g \bar{F}^{\{\mu\nu} \gamma^{\lambda\}} \psi_q | P, S \rangle$$

 $d_2(Q^2) \rightarrow$ dynamical twist-3 matrix element

$$d_2(Q^2) = \int_0^1 dx \ x^2 \left[2\mathbf{g_1}(x, Q^2) + 3\mathbf{g_2}(x, Q^2) \right]$$

Color "Polarizabilities"

X.Ji 95, E. Stein et al. 95

How does the gluon field respond when a nucleon is polarized ?

5

B

Define color magnetic and electric polarizabilities (in nucleon rest frame):

$$\begin{split} \chi_{B,E} 2M^2 \vec{S} \; = \; \langle PS | \vec{O}_{B,E} | PS \rangle \\ \text{where} \; \vec{O}_B = \psi^\dagger g \vec{B} \psi \\ \vec{O}_E = \psi^\dagger \vec{\alpha} \times g \vec{E} \psi \end{split}$$

$$d_2 = (\chi_E + 2\chi_B)/8$$
$$f_2 = (\chi_E - \chi_B)/2$$

 d_2 and f_2 represent the response of the color $\vec{\mathsf{B}}$ & $\vec{\mathsf{E}}$ fields to the nucleon polarization

$$\int dx x^2 \bar{g}_2(x) = \frac{1}{3} d_2 = \frac{1}{6MP^{+2}S^x} \left\langle P, S \left| \bar{q}(0)gG^{+y}(0)\gamma^+ q(0) \right| P, S \right\rangle$$

→ d_2 a measure for the color Lorentz force acting on the struck quark in SIDIS in the instant after being hit by the virtual photon $\langle F^y(0) \rangle = -M^2 d_2$ (rest frame; $S^x = 1$)

Interpretation of
$$d_2$$
 with the transverse FSI force in DIS also consistent with $\langle k_{\perp}^y \rangle \equiv \int_0^1 dx \int d^2k_{\perp} k_{\perp}^2 f_{1T}^{\perp}(x, k_{\perp}^2)$ in SIDIS (Qiu,

Sterman)

$$\langle k_{\perp}^{y} \rangle = -\frac{1}{2p^{+}} \left\langle P, S \left| \bar{q}(0) \int_{0}^{\infty} dx^{-} g G^{+y}(x^{-}) \gamma^{+} q(0) \right| P, S \right\rangle$$

semi-classical interpretation: average k_{\perp} in SIDIS obtained by correlating the quark density with the transverse impulse acquired from (color) Lorentz force acting on struck quark along its trajectory to (light-cone) infinity $\frac{7}{16}/12$

T

Models and Lattice evaluations of d_2

Quark Bag Models

M.Stratmann, Z.Phys.C60,763(1993). X.Song,Phys.Rev.D54,1955(1996). X.Ji and P.Unrau, Phys.Lett.B333,228(1994).

Chiral Soliton Model

H.Weigel and L.Gamberg, Nucl. Phys. A680, 48 (2000). M.Wakamatsu, Phys. Lett. B487,118(2000).

Lattice QCD

M.Gockeler et al., Phys.Rev.D72:054507, (2005)

Q^2 evolution of the neutron" d_2 "

Expected precision in Experiment E06-114

Floor layout for Hall C

<u>Hall C</u>

- One beam energy 11 GeV
- Each arm measures a total cross section independent of the other arm.
- Experiment split into three pairs of 200 hour runs with spectrometer motion in between.
- SHMS collects data at Θ = 11°, 13.3° and 15.5° for 200 hrs each data from each setting divided into 4 bins
- HMS collects data at Θ = 13.5°, 16.4° and 20.0° for 200 hrs each

Kinematics for Hall C

Projected $x^2g_2(x,Q^2)$ results for Hall C

Projected points are vertically offset from zero along lines that reflect different (roughly) constant Q^2 values from 2.5-6 GeV².

- g₂ for ³He is extracted directly from L and T spin-dependent cross sections measured within the same experiment.
 - Strength of SHMS/HMS:

nearly constant Q^2 (but less coverage for x < 0.3)

٠

g_2 in CLAS 12 Hall B

g₂ at JLab with 11 GeV

Forward Spin Polarizabilities

New Data on the Neutron Polarizabilities

Large discrepency with $\delta_{\mbox{\tiny LT}}$ remains

Plots courtesy of V. Sulkosky

- The spin contribution of quarks to the spin of the proton is about **30 %**
- The gluons spin contribution seem small leaving room for a large orbital contribution of both quarks and gluons
- The quark orbital angular momentum should be accessible through DVCS experiments at 12 GeV. The gluon angular momentum will require an Electron-Ion Collider.
- Precision measurements of g_1 and g_2 in the range $1 < Q^2 < 4 \text{ GeV}^2$ are crucial for an improved extraction of the
 - Average color Lorentz force
 - "Color polarizabilities"
- Results from two recently performed experiments at Jefferson Lab, SANE in Hall C (proton) and JLab-E06-14 in Hall A (neutron).
- The non-singlet combination $(d_2^p d_2^n)$ should provide a benchmark test for present lattice QCD calculations since no disconnected diagrams are needed.
- This program will be pursued at JLab 11 GeV for higher precision and greater Q² and x coverage.

