Introduction to High Energy Nuclear Collisions II (QCD at high gluon density)

Jamal Jalilian-Marian Baruch College, City University of New York

pQCD: a success story

but bulk of QCD phenomena happens at low Q

so far we have considered PQCD in the Bjorken limit $Q^2, S \to \infty x_{Bj} \equiv \frac{Q^2}{S}$ fixed

DGLAP evolution of partons number of partons increases with Q² but parton number density decreases hadron becomes more dilute

Excellent tool for high Q² inclusive observables higher twists become important at low Q²

Not designed to treat collective phenomena: shadowing multiple scattering diffraction impact parameter dependence

Extension beyond leading twist is very difficult many-body dynamics hidden in parameters

QCD in the Regge-Gribov limit

recall $X_{Bj} \equiv \frac{Q^2}{\varsigma}$ $\mathbf{S} \to \infty, \, \mathbf{Q}^2 \, \mathbf{fixed} : \mathbf{X}_{\mathbf{Bi}} \to \mathbf{0}$

Regge Gribov why QCD at high energy/small x?

why QCD at small x?

many formal as well as practical reasons

QCD dynamics at high energy

beyond partons: collective dynamics in a hadron/nucleus wave function

initial state/early stage of high energy nuclear collisions

cosmic rays/ultra high energy neutrinos

Remember the light cone variables

$$\mathbf{P^+} \equiv rac{\mathbf{E} + \mathbf{P_z}}{\sqrt{2}} \ , \mathbf{P^-} \equiv rac{\mathbf{E} - \mathbf{P_z}}{\sqrt{2}} \ , \mathbf{P_t} = \mathbf{P_t}$$

- Define rapidity $\mathbf{y} \equiv \frac{1}{2} \ln \frac{\mathbf{P}^+}{\mathbf{P}^-} = \frac{1}{2} \ln \frac{\mathbf{E} + \mathbf{P_z}}{\mathbf{E} \mathbf{P_z}} \rightarrow \mathbf{v_z}$
- Under boosts: $\mathbf{y} \rightarrow \mathbf{y} + \mathbf{\Psi}$

Define pseudo-rapidity
$$\eta \equiv -\ln an rac{ heta}{2}$$

$$\mathbf{y} = \mathbf{ln} rac{\sqrt{\mathbf{m^2} + \mathbf{p_t^2} \cosh^2 \eta} + \mathbf{p_t} \sinh \eta}{\sqrt{\mathbf{p_t^2} + \mathbf{m^2}}}$$

pp collisions at LHC

Nucleus-nucleus collisions at LHC

 $rac{\mathrm{dN_{ch}}}{\mathrm{d}\eta}\sim 1600$ at LHC

 $rac{\mathrm{dN_{ch}}}{\mathrm{d}\eta}\sim$ 700at~RHIC

Ultra-High Energy Neutrinos

total cross section dominated by Q ~ M_z

High Energy Cosmic Rays

Energies and rates of the cosmic-ray particles CAPRICE ASS91 10⁴ AMS H protons IMAX + BESS98 Ryan et al. JACEE 10² all +ions electrons Akeno E²dN/dE (GeV m⁻²sr⁻¹s⁻¹) **Tien Shan** MSU KASCADE $\mathbf{p} \mathbf{A} \to \mathbf{X}$ positrons CASA-BLANCA 10⁰ HEGRA CasaMia Tibet Fly Eye Haverah AGASA $\sqrt{\mathrm{S}} \sim 10^{2-3} \mathrm{TeV}$ 10⁻² antiprotons -10⁻⁴ Fixed target HERA **TEVATRON** RHIC LHC 10⁻⁶ 10⁰ 10² 10⁸ 10¹⁰ 10¹² 10⁶ 10⁴ (GeV / particle) Ekin

most particles are produced with low pt

 $rac{\mathbf{p_t}}{\sqrt{\mathbf{S}}}
ightarrow \mathbf{0}$

High Energy Cosmic Rays

 ${f p}\,{f A}
ightarrow{f X}$ $\sqrt{f S}\sim 10^{2-3}{f TeV}$

most particles/energy are in the <u>forward</u> <u>rapidity</u> region

 $\frac{\mathbf{p_t}}{\sqrt{\mathbf{S}}}\mathbf{e^{-y}} \to \mathbf{0}$

parton distribution functions at small **x**

QCD at high energy is dominated by <u>gluons</u>

gluon radiation at small x :pQCD

The infrared sensitivity of bremsstrahlung favors the emission of 'soft' (= small-x) gluons $P_{gg}(x) \sim \frac{1}{x}$ for $x \to 0$

$$\mathrm{d}\mathcal{P} \propto \alpha_s \frac{\mathrm{d}k_z}{k_z} = \alpha_s \frac{\mathrm{d}x}{x}$$

The 'price' of an additional gluon:

$$\mathcal{P}(1) \propto \alpha_s \int_x^1 \frac{\mathrm{d}x_1}{x_1} = \alpha_s \ln \frac{1}{x} \qquad n \sim e^{\alpha_s \ln 1/x}$$

x << 1

<u>hadron/nucleus becomes a dense system of gluons:</u> <u>concept of a quasi-free parton is not useful</u>

Physics of strong color fields in QCD, multi-particle productionpossibly discover novel universal properties of theory in this limit

Why does pQCD break down at small x?

"attractive" bremsstrahlung vs. "repulsive" recombination

included in pQCD

not included in pQCD (collinear factorization)

The need to go beyond pQCD

High gluon density: multiple scattering

pQCD (col. fact.) includes single scattering only

High energy: include ln 1/x corrections *pQCD (DGLAP) includes ln Q2 corrections*

we will use an effective action approach

A model of nuclei at high energy

(a system of color charges)

A model of nuclei at high energy

random **color Electric & Magnetic fields** in the plane of the fast moving nucleus

high x partons as static color charges ρ

A model of nuclei at high energy

<u>static</u> color charges p Let's see what kind of color fields they generate Solve the classical equations of motion $\mathbf{D}_{\mu} \mathbf{F}^{\mu u}_{\mathbf{a}} = \mathbf{g} \mathbf{J}^{ u}_{\mathbf{a}}$ can not be inverted **solution** (in light cone gauge $A^+ = 0$): $\begin{array}{rcl} A_{a}^{-} &=& 0 \\ A_{i}^{a} &=& \theta(x^{-}) \, \alpha_{i}^{a}(x_{t}) \end{array} with \begin{array}{rcl} \partial_{i} \alpha_{i}^{a}(x_{t}) &=& g \, \rho^{a}(x_{t}) \\ \alpha_{i} &=& \frac{i}{g} \, U(x_{t}) \partial_{i} U^{\dagger}(x_{t}) \end{array}$ solution is a 2-d pure gauge *it is (LC) time-independent*

the only "physical" color field is $\mathbf{F}^{+i} \sim \delta(\mathbf{x}^{-})\alpha^{i} \neq \mathbf{0} \quad (\mathbf{F}^{ij} = \mathbf{0})$

Small x gluons in a hadron

 $\mathbf{Q_s}(\mathbf{x}, \mathbf{b_t}, \mathbf{A})$ can provide a <u>hard</u> infrared cutoff

what happens if you try to put more gluons in?

The nuclear "oomph" factor

 $\alpha_{\mathbf{s}}$

The Saturation Scale Qs

The classical field

It looks like (in LC gauge) a shock wave

its strength is O(1/g) (dense system of gluons: state with maximum occupation number)

keep in mind gauge fields are gauge dependent

how does the solution look like in another gauge?

solution (in covariant gauge $\partial_{\mu} \tilde{\mathbf{A}}^{\mu} = \mathbf{0}$) :

$$\begin{split} \tilde{\mathbf{A}}_{\mathbf{a}}^{\mu} &= \delta^{\mu +} \tilde{\alpha}_{\mathbf{a}} \quad with \quad \partial_{\mathbf{t}}^{2} \tilde{\alpha}_{\mathbf{a}}(\mathbf{x}_{\mathbf{t}}) = -\mathbf{g} \, \tilde{\rho}_{\mathbf{a}}(\mathbf{x}_{\mathbf{t}}) & \text{this can be} \\ \tilde{\alpha}_{\mathbf{a}}(\mathbf{x}_{\mathbf{t}}) &= -\frac{1}{\partial_{\mathbf{t}}^{2}} \mathbf{g} \, \tilde{\rho}_{\mathbf{a}}(\mathbf{x}_{\mathbf{t}}) \\ \mathbf{A}^{\mu} &= \mathbf{U}[\tilde{\mathbf{A}}^{\mu} + \frac{\mathbf{i}}{\mathbf{g}} \partial^{\mu}] \mathbf{U}^{\dagger} & \\ & with \quad \mathbf{U}^{\dagger} \equiv \hat{\mathbf{P}} \exp\left\{\mathbf{ig} \int_{-\infty}^{\mathbf{x}^{-}} \tilde{\alpha}_{\mathbf{a}} \mathbf{T}_{\mathbf{a}}\right\} \end{split}$$

DIS total cross section

need to generalize the parton model to include high gluon density effects "tree level" first (no quantum corrections yet)

let's consider the amplitude for $\gamma^* \mathbf{T} \to \mathbf{q} \, \bar{\mathbf{q}} \, \mathbf{X}$

F. Gelis, J. Jalilian-Marian PRD67 (2003) 074019

with
$$\mathbf{g} \equiv \vec{\mathbf{x}} \cdot \cdot \cdot \vec{\mathbf{y}} = 2\pi\delta(\mathbf{p}^{-} - \mathbf{q}^{-})\gamma^{-}\int d^{2}\mathbf{x}_{t}e^{-\mathbf{i}(\mathbf{p}_{t} - \mathbf{q}_{t})\cdot\mathbf{x}_{t}}[\mathbf{V}(\mathbf{x}_{t}) - 1]$$

 $U(x_t)$ re-sums multiple scattering of a quark from the target represented by the classical field

DIS total cross section

$$\gamma^* \mathbf{T} \to \mathbf{q} \, \mathbf{\bar{q}} \, \mathbf{X}$$

 $\mathcal{M}^{\mu}(k|q,p) = \frac{i}{2} \int \frac{d^2 l_t}{(2\pi)^2} \int d^2 x_t d^2 y_t e^{i l_t \cdot x_t} e^{i(p_t + q_t - k_t - l_t) \cdot y_t}$
 $\left[V(x_t) V^{\dagger}(y_t) - 1 \right] \overline{u}(q) \, \Gamma^{\mu}(k^{\pm}, k_t | q^-, p^-, q_t - l_t) \, v(p)$

with
$$\Gamma^{\mu} \equiv \frac{\gamma^{-}(\mathcal{Q} - \mathcal{L} + \mathbf{m})\gamma^{\mu}(\mathcal{Q} - \mathcal{K} - \mathcal{L} + \mathbf{m})\gamma^{-}}{\mathbf{p}^{-}[(\mathbf{q_{t}} - \mathbf{l_{t}})^{2} + \mathbf{m}^{2} - 2\mathbf{q}^{-}\mathbf{k}^{+}] + \mathbf{q}^{-}[(\mathbf{q_{t}} - \mathbf{k_{t}} - \mathbf{l_{t}})^{2} + \mathbf{m}^{2}]}$$
$$d\sigma = \frac{d^{3}q}{(2\pi)^{2}2q_{0}} \frac{d^{3}p}{(2\pi)^{3}2p_{0}} \frac{1}{2k^{-}} 2\pi\delta(k^{-} - p^{-} - q^{-})$$
$$\langle \mathcal{M}^{\mu}(k|q, p)\mathcal{M}^{\nu*}(k|q, p) \rangle_{\rho} \epsilon_{\mu}(K)\epsilon_{\nu}^{*}(K)$$

integrate over the quark and anti-quark momenta to get the total cross section

DIS total cross section

$$\sigma_{\text{DIS}}^{\text{total}} = 2 \int_{0}^{1} d\mathbf{z} \int d^{2} \mathbf{x}_{t} d^{2} \mathbf{y}_{t} \left| \Psi(\mathbf{k}^{\pm}, \mathbf{k}_{t} | \mathbf{z}, \mathbf{x}_{t}, \mathbf{y}_{t}) \right|^{2} \sigma_{\text{dipole}}(\mathbf{x}_{t}, \mathbf{y}_{t})$$
can be written in closed form in terms of Bessel functions K_{o}, K_{1}

$$\sigma_{\text{dipole}}(\mathbf{x}_{t}, \mathbf{y}_{t}) \equiv \frac{1}{N_{c}} \text{Tr} \left\langle 1 - \mathbf{U}(\mathbf{x}_{t}) \mathbf{U}^{\dagger}(\mathbf{y}_{t}) \right\rangle$$

total cross section =

probability of photon decaying into a quark anti-quark pair QED probability of the quark anti-quark "dipole" scattering on the target QCD

DIS total cross section: energy dependence

recall the parton model was scale invariant, scaling violation (dependence on Q^2) came after quantum corrections - $O(\alpha_s)$

what we have done so far is to include high gluon density effects but no energy dependence yet

to include the energy dependence, need quantum corrections - $O(\alpha_s)$

Energy dependence

radiation vertex (LC gauge)

coordinates of the quark and gluon)

 $\begin{array}{ll} sum \ over \ physical \\ gluon \ polarizations \end{array} \qquad \begin{array}{ll} \lambda \\ \Sigma \end{array} \epsilon^{\mathbf{i}}_{\lambda} \ \epsilon^{\mathbf{j}}_{\lambda} \ = -\mathbf{g}^{\mathbf{ij}} \end{array}$

Energy dependence

Energy dependence

$$sum of all O(\alpha_{s}) corrections gives-\frac{N_{c}^{2} \alpha_{s} Y}{2\pi^{2}} |\Psi(x_{t}, y_{t})|^{2} \int d^{2}z_{t} \frac{(x_{t} - y_{t})^{2}}{(x_{t} - z_{t})^{2} (y_{t} - z_{t})^{2}} \{S(x_{t} - y_{t}) - S(x_{t}, z_{t}) S(z_{t}, y_{t})\}$$

where the S(cattering) matrix is defined as $\mathbf{S}(\mathbf{x_t},\mathbf{y_t}) \equiv \frac{1}{N_c} \, \mathbf{Tr} \big[\mathbf{V}(\mathbf{x_t}) \, \mathbf{V}^\dagger(\mathbf{y_t}) \big]$

recall we started with

$$|\Psi(\mathbf{x_t},\mathbf{y_t})|^2 \, \mathbf{N_c} \, \mathbf{S}(\mathbf{x_t},\mathbf{y_t})$$

then the change (evolution) after one gluon radiation is

(BK) Evolution equation

this equation describes evolution of the cross section with <u>energy (rapidity) and includes multiple scatterings</u>

remember DGLAP gives Q² evolution of structure functions

(BK) Evolution equation

let's consider the limit when gluon density is not high, define the T matrix

 $\mathbf{T}(\mathbf{x_t},\mathbf{y_t}) \equiv \mathbf{1} - \mathbf{S}(\mathbf{x_t},\mathbf{y_t})$

then our non-linear equations becomes

$$\frac{\partial T(x_t, y_t)}{\partial Y} = \frac{N_c \alpha_s}{2\pi^2} \int d^2 z_t \frac{(x_t - y_t)^2}{(x_t - z_t)^2 (y_t - z_t)^2}$$

$$\left\{ T(x_t, z_t) + T(z_t, y_t) - T(x_t, y_t) - T(x_t, z_t) T(z_t, y_t) \right\}$$
linear (BFKL) non-linear
both T = 0 and T = 1 are fixed points
unstable stable

Solution of (BK) evolution equation

RW, NPA739 (2004) 183

Solution of (BK) evolution equation

G-BMS, PRD65 (2002) 074037

Effective Action + RGE

$$\begin{split} \mathbf{S}[\mathbf{A},\rho] &= -\frac{1}{4} \int \mathbf{d}^4 \mathbf{x} \, \mathbf{F}_{\mu\nu}^2 + \frac{\mathbf{i}}{\mathbf{N_c}} \int \mathbf{d}^2 \mathbf{x_t} \mathbf{d} \mathbf{x}^- \, \delta(\mathbf{x}^-) \mathbf{Tr}[\rho(\mathbf{x_t}) \mathbf{U}(\mathbf{A}^-)] \\ \mathbf{U}(\mathbf{A}^-) &= \hat{\mathbf{P}} \, \mathbf{Exp} \begin{bmatrix} \mathbf{ig} \int \mathbf{d} \mathbf{x}^+ \, \mathbf{A}_{\mathbf{a}}^- \, \mathbf{T_a} \end{bmatrix} & \begin{array}{c} \text{eikonal coupling of fast} \\ \text{and slow modes} \\ \end{array} \end{split}$$

$$\mathbf{Z}[\mathbf{j}] = \int [\mathbf{D}\rho] \, \mathbf{W}_{\mathbf{\Lambda}^+}[\rho] \left[\frac{\int^{\mathbf{\Lambda}^+} [\mathbf{D}\mathbf{A}] \delta(\mathbf{A}^+) \mathbf{e}^{\mathbf{i}\mathbf{S}[\mathbf{A},\rho] - \int \mathbf{j} \cdot \mathbf{A}}}{\int^{\mathbf{\Lambda}^+} [\mathbf{D}\mathbf{A}] \delta(\mathbf{A}^+) \mathbf{e}^{\mathbf{i}\mathbf{S}[\mathbf{A},\rho]}} \right]$$

 $\begin{array}{ll} \text{weight functional:} \\ \mathbf{W}_{\Lambda^+}[\rho] & \text{probability distribution of color charges } \rho \\ & \text{at longitudinal scale } \Lambda^+ \end{array} \end{array}$

invariance under change of $\Lambda^+ \longrightarrow$ RGE for $\mathbf{W}_{\Lambda^+}[
ho]$

QCD at High Energy: Wilsonian RG

JIMWLK eq. describes x evolution of observables

JIMWLK evolution equation

$$\frac{d}{d\ln 1/x} \langle O \rangle = \frac{1}{2} \left\langle \int d^2 x \, d^2 y \, \frac{\delta}{\delta \alpha_x^b} \, \eta_{xy}^{bd} \, \frac{\delta}{\delta \alpha_y^d} \, O \right\rangle$$

$$\eta_{xy}^{bd} = \frac{1}{\pi} \int \frac{d^2z}{(2\pi)^2} \frac{(x-z) \cdot (y-z)}{(x-z)^2 (y-z)^2} \underbrace{\left[1 + U_x^{\dagger} U_y - U_x^{\dagger} U_z - U_z^{\dagger} U_y\right]}_{\text{virtual}}^{bd}$$

U is a Wilson line in adjoint representation

QCD at low x: CGC (a high gluon density environment)

two main effects:

 $\textbf{CGC observables:} < \textbf{Tr} \, V \cdots \cdots \, V^{\dagger} > \text{ with } \mathbf{V}(\mathbf{x_t}) = \mathbf{\hat{P}} \mathbf{e^{ig \int d\mathbf{x}^- \mathbf{A_a^+ t_a}}}$

 $\mathbf{A}_{\mathbf{a}}^{\mu}(\mathbf{x}_{\mathbf{t}},\mathbf{x}^{-}) \sim \delta^{\mu +} \, \delta(\mathbf{x}^{-}) \, \alpha_{\mathbf{a}}(\mathbf{x}_{\mathbf{t}}) \qquad \alpha^{\mathbf{a}}(\mathbf{k}_{\mathbf{t}}) = \mathbf{g} \, \rho^{\mathbf{a}}(\mathbf{k}_{\mathbf{t}}) / \mathbf{k}_{\mathbf{t}}^{\mathbf{2}}$

 $\text{gluon distribution: } \mathbf{x}\mathbf{G}(\mathbf{x},\mathbf{Q^2}) \sim \int^{\mathbf{Q^2}} \frac{\mathbf{d^2k_t}}{\mathbf{k_t^2}} \, \phi(\mathbf{x},\mathbf{k_t}) \quad \text{ with } \ \phi(\mathbf{x},\mathbf{k_t^2}) \sim <\rho_\mathbf{a}^\star(\mathbf{k_t}) \, \rho_\mathbf{a}(\mathbf{k_t}) > \\$

pQCD with collinear factorization:

single scattering evolution with ln Q²

Bjorken/Feynman or Regge/Gribov?

depends on kinematics!

Many-body dynamics of universal gluonic matter

number & density

 $= \ln \frac{1}{x_{Bi}}$

 $\ln Q^2$

number of partons

How does this happen ?

How do correlation functions of these evolve ?

Is there a universal fixed point for the RG evolution of d.o.f

How does the coupling run?

How does saturation transition to chiral symmetry breaking and confinement

Color Glass Condensate

Advantages:

A systematic, first-principle approach to high energy scattering in QCD

Controlled approximations

Same formalism can describe a wide range of phenomena **Disadvantages:**

> Applicable at low x (high x, Q2 missing) Initial conditions

Observables

DIS:

structure functions particle production

dilute-dense (pA, forward pp) collisions: multiplicities p_t spectra di-hadron angular correlations

dense-dense (AA, pp) collisions:

multiplicities, spectra long range rapidity correlations

Spin

DIS total cross section

Recall we can write the DIS cross section as

$$\sigma_{\scriptscriptstyle \rm DIS}^{\rm tot}(\mathbf{Y},\mathbf{Q^2}) = \int d^2 \mathbf{x}_t d^2 \mathbf{y}_t \int_0^1 d\mathbf{z} \left| \Psi(\mathbf{z},\mathbf{x}_t,\mathbf{y}_t,\mathbf{Q^2}) \right|^2 < \mathbf{T}(\mathbf{x}_t,\mathbf{y}_t) >_{\mathbf{Y}}$$

Photon wave function is known

Can use the solution to BK equation to find T need an initial condition (parameterize) Compare the results with data

Structure functions at HERA

AAMQS(2010)

PQCD: DGLAP-based approaches also "work" : need more discriminatory observables

CGC at HERA?

Structure Functions

Extended Scaling

 $\sigma^{diff}/\sigma^{tot}$

CGC applicable at HERA for $x < 10^{-2}$ $Q < 20 \, GeV$

 $\begin{array}{ll} \mbox{Saturation scale of a proton} & Q_s^2(x) = 1 \, GeV^2 \, \left[\frac{x_0}{x} \right]^{0.28} \\ \mbox{with} & x_0 = 3 \times 10^{-4} \end{array}$

RHIC is an extreme QCD machine

BRAHMS

Large Hadron Collider (LHC)

Proton-Nucleus (CGC X CGC) Collisions

Classical (before evolution with x): $R_{pA} = 1 + \dots for P_t >> Q_s$ GJM $R_{pA} < 1 for P_t << Q_s$

With x evolution : **RpA < 1** for all Pt

Di-hadron production in pA: CGC

Di-jet production: pA $q(p) T \rightarrow q(q) g(k)$

disappearance of back to back jets

Recent STAR measurement (arXiv:1008.3989v1):

CGC fit from Albacete + Marquet, PRL (2010) **multiple scatterings** Also by Tuchin, NPA846 (2010) and **de-correlate the hadrons** A. Stasto, B-W. Xiao, F. Yuan, arXiv:1109.1817

Photon-hadron angular correlation

J. Jalilian-Marian, A. Rezaeian arXiv:1204.1319

Space-Time History of a Heavy Ion Collision

Heavy Ion Collisions at High Energy: Colliding Sheets of Color Glass

before the collision:

$$\mathbf{A^{+} = A^{-} = 0}$$

$$\mathbf{A^{i} = A^{i}_{1} + A^{i}_{2}}$$

$$\mathbf{A^{i}_{1} = \theta(\mathbf{x}^{-})\theta(-\mathbf{x}^{+})\alpha^{i}_{1}}$$

$$\mathbf{A^{i}_{2} = \theta(-\mathbf{x}^{-})\theta(\mathbf{x}^{+})\alpha^{i}_{2}}$$

after the collision:

solve for \mathbf{A}_{μ}

in the forward LC

Colliding Sheets of Color Glass at High Energies

solve the classical eqs. of motion in the forward light cone: subject to initial conditions given by one nucleus solution

GLASMA:strong color fields with occupation number ~ $\frac{1}{\alpha_{\rm s}}$

initial energy and multiplicity of produced gluons depend on Q_s

$$rac{1}{\mathrm{A_{\perp}}}rac{\mathrm{d}\mathrm{E_{\perp}}}{\mathrm{d}\eta} = rac{\mathbf{0.25}}{\mathrm{g^2}} \mathrm{Q_s^3}$$

$$\frac{1}{A_{\perp}}\frac{dN}{d\eta} = \frac{0.3}{g^2}Q_s^2$$

Aspects of low X physics with ep/A at an EIC

Probing extreme QCD:

unitarity, universality, strong color fields

Connection to heavy ion physics at RHIC/LHC

Nuclear structure functions at EIC

Nuclear parton (gluon) distributions are poorly known: severe consequences for RHIC/LHC

Diffractive vector meson production

target dissociation (incoherent): the target undergoes inelastic scattering, dominates at large |t|

breakup into the nucleons \rightarrow slower exp. fall at 0.02 < -t < 0.7 GeV²

breakup of the nucleons → power-law tail at large |t|

Fourier transform of t dependence gives the <u>impact parameter profile</u> of target

The role of initial conditions

how about higher order terms in ρ ?

$$\mathbf{W}[\rho] \simeq \mathbf{e}^{-\int \mathbf{d}^{2}\mathbf{x_{t}} \left[\frac{\rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{a}}(\mathbf{x_{t}})}{2\mu^{2}} - \frac{\mathbf{d}^{\mathbf{abc}} \rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{b}}(\mathbf{x_{t}})\rho^{\mathbf{c}}(\mathbf{x_{t}})}{\kappa_{3}} + \frac{\mathbf{F}^{\mathbf{abcd}} \rho^{\mathbf{a}}(\mathbf{x_{t}})\rho^{\mathbf{b}}(\mathbf{x_{t}})\rho^{\mathbf{c}}(\mathbf{x_{t}})\rho^{\mathbf{d}}(\mathbf{x_{t}})}{\kappa_{4}} \right]}{\kappa_{4}}$$

these higher order terms make the single inclusive spectra steeper

Dumitru-Jalilian-Marian-Petreska, PRD84 (2011) 014018 Dumitru-Petreska,, NPA879 (2012) 59

Summary

CGC is an effective theory of QCD at high energy limited to low-intermediate Pt region

No smoking gun but that may be unrealistic Need to measure as many different processes as possible CGC describes a wide range of phenomena

Large uncertainties at LHC at y =0 Much more robust in forward rapidity

pA@LHC run will constrain CGC significantly Need an EIC for precision studies of CGC