Fundamental Symmetries – III Muons

R. Tribble Texas A&M University

All about muons

Topics:

- Lifetime MuLAN
- Normal decay TWIST
- Exotic decays MEGA, MEG, SINDRUM
- Anomalous Moment (g-2)

Muon Lifetime

• Determines *G_F* by (two loop QED and SM)

$$\tau_{\mu}^{-1} = \frac{G_F^2 m_{\mu}^5}{192\pi^3} F\left(\frac{m_e^2}{m_{\mu}^2}\right) \left(1 + \frac{3m_{\mu}^2}{5m_W^2}\right) \left[1 + \frac{\alpha(m_{\mu})}{2\pi} \left(\frac{25}{4} - \pi^2\right)\right]$$

where
$$F(x) = 1 - 8x + 8x^3 - x^4 - 12x^2 \ln x$$

and

$$\frac{1}{\alpha(m_{\mu})} = \frac{1}{\alpha} - \frac{2}{3\pi} \ln\left(\frac{m_{\mu}}{m_{e}}\right) + \frac{1}{6\pi} \approx 136$$

 MuLAN collaboration recently completed and published new result for lifetime

NI....

MuLan collected two datasets, each containing 10¹² muon decays

- Two (very different) data sets
 - Different blinded clock frequencies used
 - Revealed only after all analyses of both data sets completed
 - Most systematic errors are common

Final Errors and Numbers

ppm units

Effect	2006	2007	Comment
Kicker extinction stability	0.20	0.07	Voltage measurements of plates
Upstream muon stops	0.10	0.10	Upper limit from measurements
Overall gain stability:	0.25	0.25	MPV vs time in fill; includes:
Short time; after a pulse			MPVs in next fill & laser studies
Long time; during full fill			Different by PMT type
Electronic ped fluctuation			Bench-test supported
Unseen small pulses			Uncorrected pileup effect \rightarrow gain
Timing stability	0.12	0.12	Laser with external reference ctr.
Pileup correction	0.20	0.20	Extrapolation to zero ADT
Residual polarization	0.10	0.20	Long relax; quartz spin cancelation
Clock stability	0.03	0.03	Calibration and measurement
Total Systematic	0.42	0.42	Highly correlated for 2006/2007
Total Statistical	1.14	1.68	

τ(R06) = 2 196 979.9 ± 2.5 ± 0.9 ps

 τ (R07) = 2 196 981.2 ± 3.7 ± 0.9 ps

Lifetime "history"

The most precise particle or nuclear or (we believe) atomic lifetime ever measured

New G_F

 $G_{F}(MuLan) = 1.166 378 8(7) \times 10^{-5} \text{ GeV}^{-2}$ (0.6 ppm)

Muon decay spectrum

The energy and angle distributions of positrons following polarized muon decay obey the spectrum:

[Radiative corrections not included]

Muon decay matrix element

• Most general local, derivative-free, lepton-number conserving muon decay matrix element:

$$M = \frac{4G_F}{\sqrt{2}} \sum_{\substack{\gamma=S,V,T\\\varepsilon,\mu=R,L}} g_{\varepsilon\mu}^{\gamma} \left\langle \overline{e}_{\varepsilon} \mid \Gamma^{\gamma} \mid (\nu_e)_n \right\rangle \left\langle (\overline{\nu}_{\mu})_m \mid \Gamma_{\gamma} \mid \mu_{\mu} \right\rangle$$

- In the Standard Model, $g_{LL}^V = 1$, all others are zero
- Pre-*TWIST* global fit results (all 90% c.l.):

$ g_{RR}^{S} < 0.066$	$ g_{RR}^{V} < 0.033$	$ g_{RR}^T \equiv 0$
$ g_{LR}^{S} < 0.125$	$ g_{LR}^V < 0.060$	$ g_{LR}^T < 0.036$
$ g_{RL}^{S} < 0.424$	$ g_{RL}^{V} < 0.110$	$ g_{RL}^T < 0.122$
$ g_{LL}^{S} < 0.550$	$ g_{LL}^V > 0.960$	$ g_{LL}^T \equiv 0$

Muon decay parameters and coupling constants

$$\begin{split} \rho &= \frac{3}{4} - \frac{3}{4} [|g_{RL}^{V}|^{2} + |g_{LR}^{V}|^{2} + 2 |g_{RL}^{T}|^{2} + 2 |g_{LR}^{T}|^{2} \\ &+ \mathbb{R}e \left(g_{RL}^{S} g_{RL}^{T*} + g_{LR}^{S} g_{LR}^{T*} \right)] \\ \eta &= \frac{1}{2} \mathbb{R}e [g_{RR}^{V} g_{LL}^{S*} + g_{LL}^{V} g_{RR}^{S*} + g_{RL}^{V} (g_{LR}^{S*} + 6g_{LR}^{T*}) + g_{LR}^{V} (g_{RL}^{S*} + 6g_{RL}^{T*})] \\ \xi &= 1 - \frac{1}{2} |g_{LR}^{S}|^{2} - \frac{1}{2} |g_{RR}^{S}|^{2} - 4 |g_{RL}^{V}|^{2} + 2 |g_{LR}^{V}|^{2} - 2 |g_{RR}^{V}|^{2} \\ &+ 2 |g_{LR}^{T}|^{2} - 8 |g_{RL}^{T}|^{2} + 4 \mathbb{R}e (g_{LR}^{S} g_{LR}^{T*} - g_{RL}^{S} g_{RL}^{T*}) \\ \xi \delta &= \frac{3}{4} - \frac{3}{8} |g_{RR}^{S}|^{2} - \frac{3}{8} |g_{LR}^{S}|^{2} - \frac{3}{2} |g_{RR}^{V}|^{2} - \frac{3}{4} |g_{LR}^{V}|^{2} - \frac{3}{4} |g_{LR}^{V}|^{2} \\ &- \frac{3}{2} |g_{RL}^{T}|^{2} - 3 |g_{LR}^{T}|^{2} + \frac{3}{4} \mathbb{R}e (g_{LR}^{S} g_{LR}^{T*} - g_{RL}^{S} g_{RL}^{T*}) \\ \end{split}$$
Prior to TWIST
$$\begin{array}{c} \rho = 0.7518 \pm 0.0026 & 3/4 \\ \eta = -0.007 \pm 0.013 & 0 \\ \rho_{\mu}\xi = 1.0027 \pm 0.0079 \pm 0.0030 & 1 \\ \delta = 0.7486 \pm 0.0026 \pm 0.0028 & 3/4 \\ \rho_{\mu}(\xi \delta/\rho) > 0.99682 (90\% \text{ c.l.}) & 1 \end{array}$$

 $\prod_{U \in V} \left| \begin{array}{c} TEXAS \\ U \in V \\ U$

Goal of TWIST

• Search for new physics that can be revealed by orderof-magnitude improvements in our knowledge of ρ , δ , and $P_{\mu}\xi$

Two examples

• Model-independent limit on muon handedness

$$Q_R^{\mu} = \frac{1}{2} \left[1 + \frac{1}{3}\xi - \frac{16}{9}\xi\delta \right]$$

• Left-right symmetric models $\frac{3}{4} - \rho = \frac{3}{2}\zeta^{2} \qquad 1 - P_{\mu}\xi = 4\left(\zeta^{2} + \zeta\left(\frac{M_{L}}{M_{R}}\right)^{2} + \left(\frac{M_{L}}{M_{R}}\right)^{4}\right)$

- Determine spectrum shape
 - -- All three parameters
- Understand sources of muon depolarization
 - -- P_{μ} and ξ come as a product
- Measure forward-backward asymmetry
 - -- For $P_{\mu}\xi$ and δ

to within a few parts in 10⁴

TWIST spectrometer

Analysis method

- Extract energy and angle distributions for data:
 - Apply (unbiased) cuts on muon variables.
 - Reject fast decays and backgrounds.
 - Calibrate e^+ energy to kinematic end point at 52.83 MeV.
- Fit to identically derived distributions from simulation:
 - GEANT3 geometry contains virtually all detector components.
 - Simulate chamber response in detail.
 - Realistic, measured beam profile and divergence.
 - Extra muon and beam positron contamination included.
 - Output in digitized format, identical to real data.

2-d momentum-angle spectrum

Acceptance of the TWIST spectrometer

Fitting the data distributions

- Decay distribution is linear in ρ, η, P_μξ, and P_μξδ, so a fit to first order expansion is exact.
- Fit data to simulated (MC) base distribution with *hidden assumed parameters*,

 $\lambda_{MC} = (\rho, \eta, P_{\mu}\xi_{|P_{\mu}\xi\delta}, P_{\mu}\xi\delta)$ plus MC-generated distributions from analytic derivatives, times fitting parameters (Δλ) representing deviations from base MC. (η is now fixed to global analysis value)

(graphic thanks to Blair Jamieson)

Results from first two data sets

- From Fall, 2002 run:
 - $\rho = 0.75080 \pm 0.00032 \text{ (stat)} \pm 0.00097 \text{ (syst)} \pm 0.00023 \text{ (}\eta\text{)}$
 - $\delta = 0.74964 \pm 0.00066 \text{ (stat)} \pm 0.00112 \text{ (syst)}$
- From Fall, 2004 run:
 - $-\rho = 0.75014 \pm 0.00017 \text{ (stat)} \pm 0.00044 \text{ (syst)} \pm 0.00011 (\eta)$
 - $-\delta = 0.74964 \pm 0.00030 \text{ (stat)} \pm 0.00067 \text{ (syst)}$

R. McDonald et al., PRD 78, 032010

TEXAS A&N

Use general form of interaction:

$$M = \frac{4G_F}{\sqrt{2}} \sum_{\substack{\gamma=S,V,T\\\varepsilon,\mu=R,L}} g_{\varepsilon\mu}^{\gamma} \langle \overline{e}_{\varepsilon} \mid \Gamma^{\gamma} \mid (\nu_e)_n \rangle \langle (\overline{\nu}_{\mu})_m \mid \Gamma_{\gamma} \mid \mu_{\mu} \rangle$$

 Follow Fetscher, Gerber, Johnson formulation (Phys. Lett. **173B**, 102 (1986))

$$\begin{aligned} Q_{RR} &= \frac{1}{4} |g_{RR}^{S}|^{2} + |g_{RR}^{V}|^{2}, \\ Q_{LR} &= \frac{1}{4} |g_{LR}^{S}|^{2} + |g_{LR}^{V}|^{2} + 3|g_{LR}^{T}|^{2}, \\ Q_{RL} &= \frac{1}{4} |g_{RL}^{S}|^{2} + |g_{RL}^{V}|^{2} + 3|g_{RL}^{T}|^{2}, \\ Q_{LL} &= \frac{1}{4} |g_{LL}^{S}|^{2} + |g_{LL}^{V}|^{2}, \\ Q_{LL} &= \frac{1}{4} |g_{LL}^{S}|^{2} + |g_{LL}^{V}|^{2}, \\ B_{LR} &= \frac{1}{16} |g_{LR}^{S} + 6g_{LR}^{T}|^{2} + |g_{LR}^{V}|^{2}, \\ B_{RL} &= \frac{1}{16} |g_{RL}^{S} + 6g_{RL}^{T}|^{2} + |g_{RL}^{V}|^{2}, \\ I_{\alpha} &= \frac{1}{4} [g_{LR}^{V} (g_{RL}^{S} + 6g_{RL}^{T})^{*} + (g_{RL}^{V})^{*} (g_{LR}^{S} + 6g_{LR}^{T})] \\ &= (\alpha + i\alpha')/2A, \\ I_{\beta} &= \frac{1}{2} [g_{LL}^{V} (g_{RR}^{S})^{*} + (g_{RR}^{V})^{*} g_{LL}^{S}] = -2(\beta + i\beta')/A \end{aligned}$$

Constraints:

 $0 \le Q_{\epsilon\mu} \le 1, \text{ where } \epsilon, \mu = R, L,$ $0 \le B_{\epsilon\mu} \le Q_{\epsilon\mu}, \text{ where } \epsilon\mu = RL, LR,$ $|I_{\alpha}|^2 \le B_{LR}B_{RL}, \qquad |I_{\beta}|^2 \le Q_{LL}Q_{RR},$

Normalization: $Q_{RR} + Q_{LR} + Q_{RL} + Q_{LL} = 1$

Note that $Q_{LL} \approx 1$

(from Phys. Lett. 173B)

Relation to muon decay observables:

$$\begin{split} \rho &= \frac{3}{4} + \frac{1}{4}(Q_{LR} + Q_{RL}) - (B_{LR} + B_{RL}), \\ \xi &= 1 - 2Q_{RR} - \frac{10}{3}Q_{LR} + \frac{4}{3}Q_{RL} + \frac{16}{3}(B_{LR} - B_{RL}), \\ \xi \delta &= \frac{3}{4} - \frac{3}{2}Q_{RR} - \frac{7}{4}Q_{LR} + \frac{1}{4}Q_{RL} + (B_{LR} - B_{RL}), \\ \xi' &= 1 - 2Q_{RR} - 2Q_{RL}, \\ \epsilon^{+}_{L} \begin{cases} \xi'' &= 1 - \frac{10}{3}(Q_{LR} + Q_{RL}) + \frac{16}{3}(B_{LR} + B_{RL}), \\ \xi'' &= 1 - \frac{10}{3}(Q_{LR} + Q_{RL}) + \frac{2}{3}(B_{LR} + B_{RL}), \\ \epsilon^{+}_{T} \{ \eta = (\alpha - 2\beta)/A, \quad \eta'' = (3\alpha + 2\beta)/A. \end{cases} \end{split}$$

2005 Input:

Parameter	Value		
ρ	0.7518 ± 0.0026		
	$0.75080\pm 0.00105^{\rm a}$		
δ	0.7486 ± 0.0038		PRD 72 , 073002
	0.74964 ± 0.00130		
$P_{\mu}\xi$	$1.0027 \pm 0.0085^{\mathrm{b}}$	2005 Output:	
$P_{\mu}\xi\delta/ ho$	$0.99787\pm 0.00082^{\mathrm{b}}$	Parameter	Fit Result ($\times 10^3$)
ξ'	1.00 ± 0.04	0	$<114(0.60 \pm 0.38)$
$\xi^{\prime\prime}$	0.65 ± 0.36	\mathcal{Q}_{RR}	$< 1.14(0.00 \pm 0.58)$ $< 1.04(1.22 \pm 0.53)$
$ar\eta$	0.02 ± 0.08	\mathcal{Q}_{LR}	$<1.94(1.22 \pm 0.33)$ $<1.27(0.72 \pm 0.40)$
α/A	$0.015 \pm 0.052^{\rm c}$	D_{LR}	$<1.27(0.72\pm0.40)$
β/A	$0.002 \pm 0.018^{ m c}$	Q_{RL}	$<44(20 \pm 13)$
n	$0.071 \pm 0.037^{\rm d}$	B_{RL}	$<10.9(0.4 \pm 5.3)$
n''	0.105 ± 0.052^{d}	Q_{LL}	>955(973 ± 13)
η'' / Λ	-0.047 ± 0.052^{e}	α/A	0.3 ± 2.1
α / A	-0.047 ± 0.032	β/A	2.0 ± 3.1
	$-0.0034 \pm 0.0219^{\circ}$	lpha'/A	-0.1 ± 2.2
β'/A	$0.017 \pm 0.018^{\circ}$	eta'/A	-0.8 ± 3.2
	$-0.0005 \pm 0.0080^{ m i}$		

Final TWIST Results

Final Global Analysis Results

- Include new results with other muon decay observables to restrict coupling constants
 - summary of all terms (pre-TWIST in parentheses)

$$\begin{split} |g^S_{RR}| &< 0.035 \; (0.066) \qquad |g^V_{RR}| < 0.017 \; (0.033) \qquad |g^T_{RR}| \equiv 0 \\ |g^S_{LR}| &< 0.050 \; (0.125) \qquad |g^V_{LR}| < 0.023 \; (0.060) \qquad |g^T_{LR}| < 0.015 \; (0.036) \\ |g^S_{RL}| &< 0.420 \; (0.424) \qquad |g^V_{RL}| < 0.105 \; (0.110) \qquad |g^T_{RL}| < 0.105 \; (0.122) \\ |g^S_{LL}| &< 0.550 \; (0.550) \qquad |g^V_{LL}| > 0.960 \; (0.960) \qquad |g^T_{LL}| \equiv 0 \end{split}$$

influences mostly right-handed muon terms

$$egin{aligned} Q^{\mu}_{R} &=& rac{1}{4} |g^{S}_{LR}|^{2} + rac{1}{4} |g^{S}_{RR}|^{2} + |g^{V}_{LR}|^{2} + |g^{V}_{RR}|^{2} + 3|g^{T}_{LR}|^{2} \ &=& rac{1}{2} [1 + rac{1}{3} oldsymbol{\xi} - rac{16}{9} oldsymbol{\xi} \delta] \ &<& 8.2 imes 10^{-4} \quad (90\% ext{C.L.}) \end{aligned}$$

Neutrino-less Muon Decays

- Three lepton-flavor violating muon decays are possible:
 - $-\mu \rightarrow e + \gamma$
 - $\mu^+ \rightarrow e^+e^+e^-$
 - $-\mu \rightarrow e$ conversion
- These decay modes are not allowed with massless neutrinos
- Highly suppressed in SM with known neutrino masses
- SM extensions affect the decay rates differently

$\mu \rightarrow e + \gamma$ Decay

- History of searches for this decay at LAMPF following preliminary work at TRIUMF and PSI
- Very high flux of muons at LAMPF
- MEGA collaboration most recent $\mu \rightarrow e + \gamma$ experiment (1985-1995)

High energy γ background:

- $\mu \to e \upsilon \bar{\upsilon} \gamma$
- Annihilation in flight
- External bremsstrahlung

Status of $\mu \rightarrow e + \gamma$

• Last results reported in 1999

Place	Year	ΔE_{e}	ΔE_{γ}	$\Delta t_{e\gamma}$	$\Delta \theta_{e \gamma}$	Upper limit	References
TRIUMF	1977	10%	8.7%	6.7 ns		<3.6×10 ⁻⁹	Depommier et al. (1977)
SIN	1980	8.7%	9.3%	1.4 ns		$< 1.0 \times 10^{-9}$	Van der Schaaf et al. (1980)
LANL	1982	8.8%	8%	1.9 ns	37mrad	$< 1.7 \times 10^{-10}$	Kinnison et al. (1982)
LANL	1988	8%	8%	1.8 ns	87mrad	$< 4.9 \times 10^{-11}$	Bolton <i>et al.</i> (1988)
LANL	1999	1.2% ^a	4.5% ^a	1.6 ns	15mrad	$<1.2\times10^{-11}$	Brooks et al. (1999)

- New experiment underway at PSI MEG
- Liquid xenon calorimeter for γ's, solenoid for positrons
- Goal is factor of ≈ 100 below MEGA
- Analysis of results underway invited talk with new results is scheduled for DNP fall meeting!

Status of $\mu^+ \rightarrow e^+e^+e^-$

- Last results reported in 1991
- SINDRUM at PSI has best limit solenoid tracking chamber

Place	Year	90%-C.L. upper limit	Reference
JINR	1976	<1.9×10 ⁻⁹	Korenchenko et al. (1976)
LANL	1984	$< 1.3 \times 10^{-10}$	Bolton et al. (1984)
SIN	1984	$< 1.6 \times 10^{-10}$	Bertl et al. (1984)
SIN	1985	$<\!2.4\! imes\!10^{-12}$	Bertl et al. (1985)
LANL	1988	<3.5×10 ⁻¹¹	Bolton et al. (1988)
SIN	1988	$< 1.0 \times 10^{-12}$	Bellgardt et al. (1988)
JINR	1991	<3.6×10 ⁻¹¹	Baranov et al. (1991)

- No new experiments planned that I know
- A non-zero result for $\mu \rightarrow e + \gamma$ would likely change that

$\mu^{-} \rightarrow e^{-}$ Conversion – I

- Searches for this conversion process carried out in several different nuclei (Cu, S, Ti, Pb)
- Process involves µ capture by atom and then a cascade to 1s atomic orbital
- After cascade, µ orbit overlaps nucleus then have normal muon decay or

 $-\mu^{-}$ + (*A*,*Z*) $\rightarrow \nu_{\mu}$ + (*A*,*Z*-1) (allowed)

 $-\mu^{-}$ + (*A*,*Z*) \rightarrow e⁻ + (*A*,*Z*) (not allowed)

• Ratio \Rightarrow branching ratio for conversion

$\mu^{-} \rightarrow e^{-}$ Conversion – II

- Signal ⇒ mono-energetic e⁻ at end point energy
- Backgrounds: μ decay in orbit, π capture, radiative μ capture with very asymmetric pair creation
- Titanium has high end point so attractive

Predicted signal and background level for μ - e conversion on Ti

Status of $\mu^- \rightarrow e^-$ Conversion

• Last results reported in 1998

Process	90%-C.L. upper limit	Place	Year	Reference
μ^- + Cu \rightarrow e^- + Cu	$< 1.6 \times 10^{-8}$	SREL	1972	Bryman et al. (1972)
$\mu^- + {}^{32}\mathrm{S} \rightarrow e^- + {}^{32}\mathrm{S}$	$< 7 \times 10^{-11}$	SIN	1982	Badertscher et al. (1982)
μ^- + Ti \rightarrow e^- + Ti	$< 1.6 \times 10^{-11}$	TRIUMF	1985	Bryman et al. (1985)
μ^- + Ti \rightarrow e^- + Ti	$< 4.6 \times 10^{-12}$	TRIUMF	1988	Ahmad et al. (1988)
μ^- + Pb \rightarrow e^- + Pb	$< 4.9 \times 10^{-10}$	TRIUMF	1988	Ahmad et al. (1988)
μ^- + Ti \rightarrow e^- + Ti	$< 4.3 \times 10^{-12}$	PSI	1993	Dohmen et al. (1993)
μ^- + Pb $\rightarrow e^-$ + Pb	$< 4.6 \times 10^{-11}$	PSI	1996	Honecker et al. (1996)
μ^- + Ti \rightarrow e^- + Ti	$< 6.1 \times 10^{-13}$	PSI	1998	Wintz (1998)

- New experiment proposed in U.S. Mu2e to run at FNAL with accelerator upgrade
- Estimates of background suggest 10⁻¹⁶ possible

Measuring the Muon (g-2) Factor

- Like other precision measurements, the determination of g-2 for the muon has a long history
- Most recent results from **BNL E821**
- Store a polarized muon beam in ring and measure precession frequency as a function of time
- AGS provides muons for ring
- Requires precise knowledge of magnetic
- The SM prediction for a non-zero g-2 includes several correction factors – higher order loop diagrams

The Storage Ring for E821

An "event" is an isolated positron above a threshold.

 $a_{\mu} = (g - 2)/2$ is non-zero because of virtual loops, which can be calculated very precisely

 EW
 $152 \pm 2 \pm 1$

 Total SM
 116 591 793 \pm 51

The "g-2 test": Compare experiment to theory. Is SM complete?

$$\delta a_{\mu}^{NewPhysics} = a_{\mu}^{Expt.} - a_{\mu}^{Theory}$$

Historical Evolution

HVP is determined from data

A world-wide effort exists to measure over full range

HVP evaluations by 2 groups, updated Tau'10

Hagiwara, Liao, Martin, Nomura, Teubner (HLMNT)

 $a_{\mu}^{exp} - a_{\mu}^{SM} = (259 \pm 81) \times 10^{-11} \rightarrow 3.2 \sigma$

- M. Davier, A. Hoecker, B. Malaescu, Z. Zhang (DHMZ)
 - (BaBar team with access to preliminary data)

Biggest difference is from high multiplicity states now measured at BaBar; > 1 GeV region → Reduces cross sections

$$a_{\mu}^{exp} - a_{\mu}^{SM} = (296 \pm 81) \times 10^{-11}$$

3.6 σ

The new HVP evaluations also affect α_{QED} running ... and enter the global electroweak fits ...

The values & the new experimental goal

Theory uncertainty = 51 x 10⁻¹¹ (0.44 ppm)

Experimental uncertainty = 63 x 10⁻¹¹ (0.54 ppm)

- 0.46 ppm statistical ← limit was counts
- 0.21 ppm precession systematic
- 0.17 ppm field systematic

$$a_{\mu}^{Expt} = (116\ 592\ 089\ \pm\ 63) \times 10^{-11}$$

$$a_{\mu}^{Thy} = (116\ 591\ 793\ \pm\ 51) \times 10^{-11}$$

Leads to $\Delta a_{\mu}(Expt - Thy) = 297 \pm 81 \times 10^{-11}$ 3.6 σ

Experimental goal: $63 \rightarrow 16 \times 10^{-11}$

Theory uncertainty expect: 51 \rightarrow 30 x 10⁻¹¹

Leads to $\Delta a_{\mu}(Expt - Thy) = XXX \pm 34 \times 10^{-11}$

If central value remained, Δa_{μ} would exceed 8σ

Slide from D. Hertzog

BNL E821

The Storage Ring exists. It will be moved to FNAL

Fundamental Symmetries

- Many experimental avenues to explore
- Much to understand about neutrino's
- Possible signatures for SM deviations from the LHC
- Low-energy SM tests
- A bright future for the field!

