Fundamental Symmetries $-\prod$ **Nuclear Beta Decay**

R. Tribble**Texas A&M University**

SM Interaction for **low energy processes**

• Since W is very massive, can treat nuclear, pion, and muon beta decay as a point interaction

• This reverts to early formulation of nuclear beta decay by Fermi but with only (V-A) in the interaction

Questions to consider

- What is the difference between a 'nuclear' beta decay expressed at the quark level versus the nucleon level?
- What might cause the overlap matrix element in a pure Fermi decay to differ from '1'?
- How do we measure neutrino kinematics in a nuclear beta-decay process? What are the experimental requirements to do this? What recent developments have made this more feasible to do?

Nuclear Beta Decay Form - I

• Recall that weak interaction SM Hamiltonian is a current-current interaction form:

$$
H_W = \frac{G_F}{\sqrt{2}} J_\mu^{\ \ \dagger} J_\mu + H. C.
$$

$$
J_\mu = J_\mu^{\ \ had} + J_\mu^{\ \ lep}
$$

- For nuclear beta decay, general form for decay is
- $H_{\beta} = (\bar{p}n)[\bar{e}(C_{S} + C_{S}\gamma_{5})v] + (\bar{p}\gamma_{\mu}n)[\bar{e}\gamma_{\mu}(C_{V} + C_{V}\gamma_{5})v] +$ $\frac{1}{2}(\bar{p}\sigma_{\lambda\mu}n)[\bar{e}\sigma_{\lambda\mu}(C_T + C_T'\gamma_5)v] - (\bar{p}\gamma_{\mu}\gamma_5n)[\bar{e}\gamma_{\mu}\gamma_5(C_A + C_A'\gamma_5)v] +$ $(\bar{p}\gamma_5 n)[\bar{e}\gamma_5(C_P + C_P'\gamma_5)v]$, with $\sigma_{\lambda\mu} = \frac{i}{2}(\gamma_{\lambda}\gamma_{\mu} - \gamma_{\mu}\gamma_{\lambda})$
- Note interacting fields are associated with nucleons and leptons
- The C's are complex and give interaction amplitude

Nuclear Beta Decay Form – II

• The C and C' are connected to symmetries by

- In the SM, C's are real, $C_V/C_V=1$, $C_A/C_A=1$, and all others are 0
- In extensions of the SM, these values change
- In addition, there are recoil order terms for nuclear beta decay

Nuclear Beta Decay Form – III

- Including recoil order terms in the V and A hadronic part of interaction gives
- $V_{\mu} = \bar{p} \left| g_V(q) \right|$ $\overline{2}$ $\gamma_\mu + f_M(q)$ $^{2})\sigma_{\mu\nu}$ $q_{\pmb{\upsilon}}$ $\frac{qv}{2M}+if_S(q)$ 2) q_μ $m_{\it e}$ \pmb{n}

•
$$
A_{\mu} = \bar{p} \left[g_A(q^2) \gamma_{\mu} \gamma_5 + f_T(q^2) \sigma_{\mu \nu} \gamma_5 \frac{q_{\nu}}{2M} + i f_P(q^2) \frac{q_{\mu}}{m_e} \gamma_5 \right] n
$$

- $\bullet~$ The terms g_V ²) and g_A $²$) are the leading</sup> decay terms associated with Fermi and GT transitions
- A consequence of the SM is the conservation of the vector current $\Rightarrow g_V$ 1 , and it relates the weak magnetism term f_{M} $²$) to an analog</sup> M1 γ decay

Nuclear Beta Decay Form – IV

- The axial current has no electromagnetic analog and is not conserved but PCAC seems to work
- A transformation called G parity is defined by $G = Ce^{i\pi T_2}$
- Strong interaction symmetric under G
- In weak interaction, define 1st and 2nd class currents by G parity operation
- $\bullet~$ SM allows only 1 $^{\rm st}$ class currents
- Generating a decay spectrum from interaction is tedious – early work by Jackson, Treiman and Wyld with follow up work by Holstein

Nuclear beta decay tests of **SM**

- Super-allowed transitions **
- Correlation experiments
	- – $-\beta$ - α angular correlations
	- – $-\beta$ - γ angular correlations
	- β asymmetry from aligned nuclei
	- – $-\beta$ - correlations**
- Neutron lifetime and decay studies***
- $\bullet\,$ Double β decay covered by Boris K.

What have we learned from $\boldsymbol{\beta}$ **-**- α and β **-**-γ correlations?

- Most work done in '70's and '80's
- No evidence for recoil order second-class currents (<10% of allowed terms)
- CVC confirmed (uncertainties around 10%) in comparing weak magnetism to M1 dipole transitions

$0^+ \rightarrow 0^+$ β decay

•Measure life-time and branching ratio to get

- *f* = statistical function [f(Z,QEC)]
- $-$ t = partial half-life [f(t_{1/2},BR)]
- G_{\lor} = vector coupling constant
- \lt τ > = Fermi Matrix element
- •Include corrections

\mathbf{V}_{ud} and the CKM Matrix

- Cabbibo, Kobayashi, Maskawa Matrix connects weak to mass eigenstates
- \bullet Standard Model \Rightarrow matrix is unitary $[V_{ud}^2 + V_{us}^2 + V_{ub}^2] = 1$

$$
\begin{pmatrix}\n d' \\
s' \\
s'\n\end{pmatrix}\n=\n\begin{pmatrix}\n V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}\n\end{pmatrix}\n\begin{pmatrix}\n d \\
s \\
b\n\end{pmatrix}
$$
\nweak
\nweak
\neigensitates
\neigenstates

 $V_{ud}^2 = G_v^2/G_u^2$

Vus from K decay

V_{ub} from B decay

$0^+ \rightarrow 0^+$ β decay and the SM

As of 2002, there were 9 precision measurements

Extracting $V_{ud}(0.9740)$, with $V_{us}(0.2196)$, and $V_{ub}(0.0036) \Rightarrow$

 $V_{ud}^2 + V_{us}^2 + V_{ub}^2 = 0.9968 \pm 0.0014$

$0^+ \rightarrow 0^+$ β decay and the SM

- •Test δ_c - δ_{Ns} to verify and improve calculations
	- –measure 0⁺→0⁺ decay for A=62 (TAMU)
	- measure 0⁺→0⁺ decays (T_z=-1) for 18≤A≤42 (**TAMU**)
	- measure masses (Penning traps) and new partial halflives for nine known cases (**TAMU** + other locations)

PRECISION DECAY MEASUREMENTS AT TAMU

PRECISION DECAY MEASUREMENTS AT TAMU

PRECISION DECAY MEASUREMENTS AT TAMU

$0^+ \rightarrow 0^+$ β decay Today

1) G_v constant
$$
7t = \frac{K}{2G_v^2(1 + \Delta_R)}
$$

 \checkmark verified to \pm 0.013%

$0^+ \rightarrow 0^+$ β decay Today

1) G_v constant

 $7t = {K \over 2G_v^2 (1 + \Delta_R)}$

 \checkmark verified to \pm 0.013%

2) Correction terms validated \blacktriangledown

$$
0^+ \rightarrow 0^+ \beta \text{ decay Today}
$$
\n
$$
1) G_v \text{ constant} \quad \boxed{7t = \frac{K}{2G_v^2 (1 + \Delta_R)}} \quad \text{V verified to } \pm 0.013\%
$$

2) Correction terms validated V

3) Scalar current zero \checkmark limit, C_s/C_v = 0.0011 (14)

\mathbf{V}_{ud} and CKM Today

- G_v determined by several methods:
- \bullet $0^+ \rightarrow 0^+$ β decay $\phi \leftarrow \textbf{most accurate}, \textbf{ by far}$
- **neutron** β decay
- **pion** β decay
- Mirror nuclear β decay

- Correlations

 $\bullet~$ Pure Fermi decay (0+ \rightarrow 0+)

vector propagator

A closer look ...

$$
b_F = \frac{-2\Re e(C_S^* C_V + C_S'^* C_V')}{|C_V|^2 + |C_V'|^2 + |C_S'|^2 + |C_S'|^2} = 0
$$

A case study: **38mK**

 $\bullet\,$ 0+ to 0+ transition – capture K in ion trap

^{38m}K decay in the back-to-back geometry:

TEXAS A&N

• Decay can occur with v in two orientations

Results

Current limits on a scalar interaction (allowing $\Im m$ couplings):

Mixed **F/GT** decays

Angular distribution of the decay:

$$
dW \sim 1 + a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + b \Gamma \frac{m}{E_e} + \frac{\vec{I}}{I} \cdot \left[A_\beta \frac{\vec{p}_e}{E_e} + B_\nu \frac{\vec{p}_\nu}{E_\nu} + D \frac{\vec{p}_e \times \vec{p}_\nu}{E_e E_\nu} \right]
$$

\n(+ alignment term)
\n(+ β - polarization terms)
\n
$$
A_\beta = \frac{-2\rho}{1+\rho^2} \left(\sqrt{\frac{3}{5}} - \frac{\rho}{5} \right)
$$

\nwhere $\rho = \frac{G_A M_{GT}}{G_V M_F}$
\n
$$
B_\nu = \frac{-2\rho}{1+\rho^2} \left(\sqrt{\frac{3}{5}} + \frac{\rho}{5} \right)
$$

D is T violating term and should be 0 in SM

RHCs would affect correlation parameters

In the presence of **new physics**, the **angular**
\n**distribution of**
$$
\beta
$$
 decay will be affected.
\n
$$
A_{\beta} = \frac{-2\rho}{1+\rho^2} \left(\sqrt{\frac{3}{5}} - \frac{\rho}{5} \right) \rightarrow \frac{-2\rho}{1+\rho^2} \left[(1 - xy)\sqrt{\frac{3(1+x^2)}{5(1+y^2)}} - \frac{\rho(1-y^2)}{5(1+y^2)} \right]
$$
\n
$$
B_{\nu} = \frac{-2\rho}{1+\rho^2} \left(\sqrt{\frac{3}{5}} + \frac{\rho}{5} \right) \rightarrow \frac{-2\rho}{1+\rho^2} \left[(1 - xy)\sqrt{\frac{3(1+x^2)}{5(1+y^2)}} + \frac{\rho(1-y^2)}{5(1+y^2)} \right]
$$
\nand\n
$$
R_{\text{slow}} = 0 \rightarrow y^2
$$

where $x \approx (M_L/M_R)^2 - \zeta$ and $y \approx (M_L/M_R)^2 + \zeta$

are RHC parameters that are zero in the SM. Precision measurements test the SM

Goal must be $\lesssim 0.1\%$ (see Profumo, Ramsey-Musolf and Tulin, PRD 75 (2007))

A case study: **37K**

• 3/2+ to 3/2+ transition – again capture K in trap

CP Violation and Baryogenesis

- The combination of BBN and what appears to be a matter dominated world, even though we expect equal amounts of matter and antimatter initially, produces major question
- Need a mechanism to break the matterantimatter symmetry during early phase
- Could occur in quantum gravity but unlikely
- Best option \Rightarrow CP violation beyond the SM
- Has resulted in searches for CP violation in a variety of systems
- Observations in K decay consistent with CKM phase

CP Violation – **EDM**'s

- Non-zero **EDM** could point the way toward the missing physics
- Searches for **EDM** in electron, atoms and particles
- Different sensitivity to new physics for different systems
- SM **EDM** through CKM phase is very small
- Low energy searches underway or planned in
	- radioactive atoms
	- neutron (SM \Rightarrow ~10⁻³² e-cm)
	- deuteron

Physics Beyond the Standard Model

- New physics (e.g. SUSY) often includes additional CP violating phases in couplings $\;\mathop{\mathsf{\scriptstyle\phi_{CP}}}$ should be \sim 1
- Contributions to EDMs depends on masses of new particles $\qquad\qquad$ \qquad \qquad p $\rm M_{\rm p}$ d $\left(\begin{array}{c} M_{n}\end{array}\right)$

$$
1_{n} \propto \left(\frac{M_{p}}{M_{SUSY}}\right) \sin \varphi_{CP}
$$

- In MSSM (Minimal Supersymmetric Standard Model)
	- \bullet d_n ~ 10⁻²⁵ e-cm x sin ϕ_{CP} (200 GeV/M_{SUSY})²

Present limit: d n < 3 x 10-26 e-cm

Slide from B.F.

Why Look for EDMs?

· Existence of EDM implies violation of **Time Reversal Invariance**

but the Standard Model effect is too small!

Quantum Picture - Discrete Symmetries

Change Conjugation:
$$
\hat{C} \cdot \psi_n \Rightarrow \psi_{\bar{n}}
$$

\nParity: $\hat{P} \cdot \psi(x, y, z) \Rightarrow \psi(-x, -y, -z)$

\nTime Reversal: $\hat{T} \cdot \psi(t) \Rightarrow \psi(-t)$

Assume $\vec{\mu} = \mu \frac{\vec{J}}{J}$ and $\vec{d} = (d \frac{\vec{J}}{J})$

Non-Relativistic Hamiltonian

$$
H = \vec{\mu} \cdot \vec{B} + \vec{d} \cdot \vec{E}
$$

 C-even C-even
 P-even P-odd
 T-even T-odd

Non-zero d violates T and CP (Field Theories generally preserve CPT)

How to measure an EDM?

Recall magnetic moment in B field:

$$
\hat{H} = \vec{\mu} \cdot \vec{B};
$$
 $\vec{\mu} = 2 \left(\frac{\mu_{\text{N}}}{\hbar} \right) \vec{S}$; for spin $\frac{1}{2}$

$$
\vec{\tau} = \frac{d\vec{S}}{dt} = \vec{\mu} \times \vec{B} \implies 2\left(\frac{\mu_{\rm N}}{\hbar}\right) \vec{S} \|\vec{B}\|; \text{ if } \vec{S} \perp \vec{B}
$$

Classical Picture:

- . If the spin is not aligned with B there will be a precession due to the torque
- \cdot Precession frequency ω given by

$$
\omega = \frac{d\varphi}{dt} = \frac{1}{S} \frac{dS}{dt}
$$

$$
\frac{d\vec{S}}{S_i} = \frac{2\mu_N B}{\hbar}; \text{ or } \frac{2d_N E}{\hbar} \text{ for a } \vec{d}_N \text{ in } \vec{E}
$$

Simplified Measurement of EDM

Polarized ³He Co-magnetometer

- Use very small amount of polarized ³He in ⁴He (³He/⁴He \sim 10⁻¹⁰)
- $-$ ³He has tiny EDM < 3 x 10⁻⁵ d_n (Dzuba, Flambaum, & Ginges PRA 76, 034501 2007)
- Detect capture via scintillation in ⁴He: $\vec{n} + {}^3\vec{H}e \Rightarrow t + p$ (with $\sigma_{\uparrow \downarrow} >> \sigma_{\uparrow \uparrow}$)
	- UV photons converted to visible (in tetraphenyl butadiene TPB)
	- Measure difference of ω_n and ω_3
- $-$ Can use SQUIDs to measure 3 He precession $-$ calibrates B-field since $\omega_3 \propto |\dot{B}|$
	-
- Independent technique using "dressed" spins suppresses sensitivity to fluctuations in B-field
	- Additional RF field can match ³He and neutron precession frequency

Measurement cycle

Worldwide nEDM experiments

All about muons

Topics:

- Lifetime MuLAN
- Normal decay TWIST
- Exotic decays MEGA, MEG, SINDRUM
- Anomalous Moment (g-2)

Starting point for tomorrow's lecture!

