

Renormalization group methods in nuclear few- and many-body problems

Lecture 1

S.K. Bogner (NSCL/MSU)

2011 National Nuclear Physics Summer School University of North Carolina at Chapel Hill

Useful readings for these lectures

"From low-momentum interactions to nuclear structure"
S. K. Bogner, R. J. Furnstahl and A. Schwenk
Prog. Part. Nucl. Phys. 65, 94 (2010) [arXiv:0912.3688 [nucl-th]] SPIRES entry

"How to renormalize the Schrodinger equation" G. P. Lepage

arXiv:nucl-th/9706029 SPIRES entry Lectures given at 8th Jorge Andre Swieca Summer School on Nuclear Physics, Sao Paulo, Brazil, 26 Jan - 7 Feb 1997

"Modern Theory of Nuclear Forces" E. Epelbaum, H. W. Hammer and U. G. Meissner Rev. Mod. Phys. 81, 1773 (2009) [arXiv:0811.1338 [nucl-th]] SPIRES entry

"Toward ab initio density functional theory for nuclei" J. E. Drut, R. J. Furnstahl and L. Platter Prog. Part. Nucl. Phys. 64, 120 (2010) [arXiv:0906.1463 [nucl-th]] SPIRES entry

Lecture 1 outline

Objective: Give an overview of how renormalization group methods can be used to simplify microscopic few- and many-body calculations in low energy nuclear structure and reactions.

Technical details and selected results for nuclei and nuclear matter will be revisited in lectures 2 and 3.

1) Overview

2) Nuclear interactions

3) Motivation for RG in nuclear physics

4) Simplifications at low resolution

5) Take-away points and preview of lectures 2,3

Global investment in RIBs over next decade ~\$4B (OECD)

Questions that drive low-energy nuclear physics

- How do protons and neutrons make stable nuclei and rare isotopes? Where are the limits?
- What are the heaviest nuclei that can exist?
- What is the equation of state of nucleonic matter?
- What is the origin of simple patterns in complex nuclei?
- How do we describe fission, fusion, reactions, ...?
- How did the elements from iron to uranium originate?
- How do stars explode?
- What is the nature of neutron star matter?
- How can our knowledge of nuclei and our ability to produce them benefit humankind? Life Sciences, Material Sciences, Nuclear Energy, Security

Physics of Nuclei

Nuclear Astrophysics

Applications of Nuclei

What are the relevant degrees of freedom?

RG/EFT methods tailor-made to develop systematic effective theories that focus on a limited range of scales/DOF at a time.

Nucleonic matter (our domain in nuclear structure)

The nuclear landscape

• no 1-size fits all method

• Density functional theory covers the most ground, but is the most phenomenological.

Ultimate goal: Bottom-up approach to nuclear structure

Nuclear Interactions

Choosing the right DOF: The effective NN interaction

How to get it?

- Ideally, from lattice QCD
- effective field theory + phase shifts

(or phenomenological meson-exchange models)

NN central potential V_C(r) for m_{π} = 530 MeV from lattice QCD

- Ishii, Aoki & T.Hatsuda., Phys. Rev. Lett. 99, 022001 (2007).
- Nemura, Ishii, Aoki & T.Hatsuda, arXiv:0710.3622 [hep-lat]
- Aoki, Ishii & T.Hatsuda, arXiv:0805.2462 [hep-ph]

NN Scattering review

- Relative motion with total P = 0: $\psi(r) \xrightarrow{r \to \infty} e^{i\mathbf{k}\cdot\mathbf{r}} + f(\mathbf{k},\theta)\frac{e^{i\mathbf{k}\cdot\mathbf{r}}}{r}$ where $k^2 = {k'}^2 = ME_k$ and $\cos \theta = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}'}$
- Differential cross section is $d\sigma/d\Omega = |f(k, \theta)|^2$
- Central $V \Longrightarrow$ partial waves: $f(k, \theta) = \sum_{l} (2l+1) f_{l}(k) P_{l}(\cos \theta)$ where $f_{l}(k) = \frac{e^{i\delta_{l}(k)} \sin \delta_{l}(k)}{k} = \frac{1}{k \cot \delta_{l}(k) - ik}$

and the S-wave phase shift is defined by

 $u_0(r) \stackrel{r \to \infty}{\longrightarrow} sin[kr + \delta_0(k)] \implies \delta_0(k) = -kR$ for hard sphere

Low energy limit: Effective range expansion

As first shown by Schwinger, k^{l+1} cot δ_l(k) has a power series expansion. For l = 0:

$$k \cot \delta_0(k) = -\frac{1}{a_0} + \frac{1}{2}r_0k^2 - Pr_0^3k^4 + \cdots$$

defines the scattering length a₀ and the effective range r₀
While r₀ ~ R, the range of the potential, a₀ can be anything
if a₀ ~ R, it is called "natural"

- $|a_0| \gg R$ (unnatural) is particularly interesting \Longrightarrow cold atoms
- The effective range expansion for hard sphere scattering is:

$$k \cot(-kR) = -\frac{1}{R} + \frac{1}{3}Rk^2 + \cdots \implies a_0 = R \quad r_0 = 2R/3$$

so the low-energy effective theory is natural

Nuclear s-wave phase shifts

http://nn-online.org/

Deuteron is a very weakly bound system!

System has one bound state.

Steep decrease from 180 degrees due to large scattering length a = 5.5 fm.

Acts repulsive due to large (positive) scattering length.

System (barely) fails to exhibit bound state.

Steep rise at 0 due to large scattering length a = -18 fm.

Monotonous decrease due to "hard core".

Phenomenological NN Models

From T. Hatsuda (Oslo 2008)

short- and mid-range tuned (~ 20 parameters) to phase shifts and deuteron pole 16

Phenomenological NN Potential Models (CD-Bonn, Argonne v18, Reid93, Nijmeigen I and II,...)

- all share one pion exchange (OPE) at long distances
- model-dependent mid-range attraction and short-distance repulsion
- fit ~ 6000 NN data with $\chi^2/dof \sim 1$ \odot
- many ab-initio successes in light nuclei 😳

but

- difficult to estimate theoretical errors and range of applicability ☺
- no obvious connection to QCD $\ensuremath{\mathfrak{S}}$
- not obvious how to define fully *consistent* 3NF's and operators (e.g., meson-exchange currents) ☺
- hard to work with in most many-body methods ^(B)
 chiral EFT (lecture 2) addresses these shortcomings

Renormalization Group Methods

"The method in its most general form can I think be understood as a way to arrange in various theories that the degrees of freedom that you're talking about are the relevant ones for the problem at hand."

-S. Weinberg

Why is "textbook" nuclear physics is so hard?

Repulsive core & strong tensor force => low and high k modes strongly coupled by the interaction (reminder: typical $k \sim 1 \text{ fm}^{-1}$ in nuclei)

$$V_{l=0}(k,k') = \int d^3r \, j_0(kr) \, V(r) \, j_0(k'r)$$

Repulsive core & strong tensor force => low and high k modes strongly coupled by the interaction (reminder: typical $k \sim 1 \text{ fm}^{-1}$ in nuclei)

Complications: strong correlations, non-perturbative, poorly convergent basis expansions, ...

Many short wavelengths => Large matrices to diagonalize

- Harmonic oscillator basis with N_{max} shells for excitations
- Graphs show convergence for *soft* chiral EFT potential (although not at optimal ħΩ for ⁶Li)

- Factorial growth of basis with A => limits calculations
- Too much resolution from potential \implies mismatch of scales

Suppose we want to compute the ground state E of a nucleus with mass number A by brute force diagonalization. Assume the interaction has a cutoff Λ .

Exercise:

Estimate how the size of the s.p. basis scales with Λ . Given this, estimate the size of the Hamiltonian matrix for ¹⁶O.

Suppose we want to compute the ground state E of a nucleus with mass number A by brute force diagonalization. Assume the interaction has a cutoff Λ .

Exercise:

Estimate how the size of the s.p. basis scales with Λ . Given this, estimate the size of the Hamiltonian matrix for ¹⁶O.

Hints: 1) The basis must be sufficiently extended in space to capture the size of the nucleus ($R \sim 1.2A^{1/3}$ fm).

2) The basis must be sufficiently extended in momentum to capture the size of the cutoff Λ in the Hamiltonian.

3) Use a phase space argument to get # of sp states

Suppose we want to compute the ground state E of a nucleus with mass number A by brute force diagonalization. Assume the interaction has a cutoff Λ .

Exercise:

Estimate how the size of the s.p. basis scales with Λ . Given this, estimate the size of the Hamiltonian matrix for ¹⁶O.

Answer: # of s.p. states D ~ Λ^3 A

Dim(H) = # of A-body Slater determinants = D!/(D-A)!/A!

e.g., for Λ = 4.0 fm⁻¹ Dim(H) ~ 10¹⁴

Suppose we want to compute the ground state E of a nucleus with mass number A by brute force diagonalization. Assume the interaction has a cutoff Λ .

Moral:

Easiest way to extend the reach of ab-initio to heavier nuclei is to use lower resolutions (Λ)

"physical" scales k_F and $m_{\pi} \sim 1 \text{ fm}^{-1} \dots$

Arguments for using "low-resolution" interactions

NN models share same long-distance physics (V $_{\pi}$) Phase shifts to $E_{lab} \sim 350 \text{ MeV} (k_{rel} \sim 2.1 \text{ fm}^{-1})$; beyond this, totally model-dependent

Most H(Λ) have $\Lambda >> \Lambda_{data} \sim 2.1 \text{ fm}^{-1}$

 $k_F \sim 1.35 \ fm^{-1}, \ m_\pi \sim 0.7 \ fm^{-1}$

Why work so hard to treat high k modes that are unconstrained by NN data?

Low-pass filter on fourier transform of a 2d-image

Much less information needed

BUT

Long-wavelength info preserved

Try a naive "low-pass" filter on V:

$$V_{filter}(k',k) \equiv 0 \quad k,k' > 2.2 \text{ fm}^{-1}$$

Now calculate low E observables (e.g., NN scattering) and see what happens...

Try a naive "low-pass" filter on V:

Try a naive "low-pass" filter on V:

Why did the low-pass filter fail?

Low and high k are coupled by quantum fluctuations (virtual states)

$$\langle k|V|k'\rangle + \sum_{q=0}^{\Lambda} \frac{\langle k|V|q\rangle\langle q|V|k'\rangle}{\epsilon_{k'} - \epsilon_q} + \sum_{q=\Lambda}^{\infty} \frac{\langle k|V|q\rangle\langle q|V|k'\rangle}{\epsilon_{k'} - \epsilon_q}$$

Can't simply drop high q without changing low k observables.

But the effect of short-distance physics on low-energy physics can be absorbed by adjustments in the basic forces

⇒ "Renormalization Group"

$$\alpha(0) \approx \frac{1}{137}; \quad \alpha(M_W) \approx \frac{1}{128}$$

2 Types of Renormalization Group Transformations

"V_{low k}" integrate-out high k states preserves observables for $k < \Lambda$

"Similarity RG" eliminate far off-diagonal coupling preserves "all" observables

Very similar consequences despite differences in appearance!

Integrating out high-momentum modes (" $V_{low k}$ ")

• Demand
$$\frac{d}{d\Lambda}T=0$$

=> RGE's for "running" of V_{Λ} w/ Λ

$$\frac{d}{d\Lambda} V^{\Lambda}_{\log k}(k',k) = \frac{2}{\pi} \frac{V^{\Lambda}_{\log k}(k',\Lambda) T^{\Lambda}(\Lambda,k;\Lambda^2)}{1-(k/\Lambda)^2}$$

Solve coupled RGE's given input V_{NN} as large Λ initial condition

Integrating out high-momentum modes (" $V_{low k}$ ")

• Demand
$$\frac{d}{d\Lambda}T = 0$$

=> RGE's for "running" of V_{Λ} w/

- Integrate RGE's to smaller Λ
 => decouples high k modes
- Low momentum universality $\Lambda \sim \Lambda_{
 m data}$ 2 fm⁻¹ <=> 330 MeV lab

UV cutoff Λ

The Similarity Renormalization Group Wegner, Glazek and Wilson

Unitary transformation on an initial H = T + V

$$H_{\lambda} = U(\lambda)HU^{\dagger}(\lambda) \equiv T + V_{\lambda}$$

 λ = continuous flow parameter

Differentiating with respect to λ :

$$\frac{dH_{\lambda}}{d\lambda} = [\eta(\lambda), H_{\lambda}] \quad \text{with} \quad \eta(\lambda) \equiv \frac{dU(\lambda)}{d\lambda} U^{\dagger}(\lambda)$$

Engineer η to do different things as $\lambda => 0$

 $\eta(\lambda) = [\mathcal{G}_{\lambda}, H_{\lambda}]$

 $\mathcal{G}_{\lambda} = T \Rightarrow H_{\lambda}$ driven towards diagonal in k – space $\mathcal{G}_{\lambda} = PH_{\lambda}P + QH_{\lambda}Q \Rightarrow H_{\lambda}$ driven to block – diagonal

- •
- •
- •

SRG evolved NN interactions with $\eta = [T,H]$

 $\lambda = 10.0 \text{ fm}^{-1}$

SRG evolved NN interactions with $\eta = [T,H]$

 $\lambda = 3.0 \text{ fm}^{-1}$

SRG evolved NN interactions with $\eta = [T,H]$

 $\lambda = 2.0 \text{ fm}^{-1}$

Our low-pass filter now works. If you do things right, (i.e., RG/SRG transformations) problematic high-k modes can be eliminated! High momentum modes **decouple**.

Initially very different-looking chiral EFT potentials at N³LO ...

Low-momentum universality like for Vlowk

Note, however, the model-dependent modes at high k along the diagonal

Simplifications at low resolution

Simplifications from lowering Λ

weaker short-range correlations, more effective variational calcs., efficient basis expansions (SM, coupled cluster, etc.), more perturbative

Weinberg Eigenvalue Analysis of Convergence

Born series:

$$T(E) = V + V \frac{1}{E - H_0} V + V \frac{1}{E - H_0} V \frac{1}{E - H_0} V + \dots = V + V \frac{1}{E - H} V$$

• If bound state E_b , series must diverge at $E = E_b$ where

$$(H_0 + V)|b\rangle = E_b|b\rangle \implies V|b\rangle = (E_b - H_0)|b\rangle$$

• For any E, generalize to find the eigenvalue of the kernel (Weinberg, 1962)

$$\frac{1}{E_b - H_0} V |b\rangle = |b\rangle \quad \Longrightarrow \quad \frac{1}{E - H_0} V |\Gamma_\nu\rangle = \eta_\nu |\Gamma_\nu\rangle$$

• Acting with T(E) on any Γ_{ν} gives

$$T(E)|\Gamma_{\nu}\rangle = V|\Gamma_{\nu}\rangle \left(1 + \eta_{\nu} + \eta_{\nu}^{2} + \cdots\right)$$

series diverges at E if any $|\eta_{\nu}(E)| \ge 1$

- Deuteron ⇒ attractive eigenvalue η_ν = 1
 Λ ↓ ⇒ unchanged
- But η_{ν} can be negative, so $V/\eta_{\nu} \Longrightarrow$ flip potential

11

• Consider
$$\eta_{\nu}(E = -2.22 \text{ MeV})$$

• Deuteron \Longrightarrow attractive
eigenvalue $\eta_{\nu} = 1$
• $\Lambda \downarrow \Longrightarrow$ unchanged
• But η_{ν} can be negative, so
 $V/\eta_{\nu} \Longrightarrow$ flip potential
 $\frac{1}{E - H_0} V |\Gamma_{\nu}\rangle = \eta_{\nu} |\Gamma_{\nu}\rangle$
 $\Rightarrow (H_0 + \frac{V}{\eta_{\nu}}) |\Gamma_{\nu}\rangle = E |\Gamma_{\nu}\rangle$

1.1

- Consider $\eta_{\nu}(E = -2.22 \text{ MeV})$
- Deuteron \implies attractive eigenvalue $\eta_{\nu} = 1$
 - $\Lambda \downarrow \Longrightarrow$ unchanged
- But η_{ν} can be negative, so $V/\eta_{\nu} \Longrightarrow$ flip potential
- Hard core \implies repulsive eigenvalue η_{ν}
 - Λ ↓ ⇒ reduced

Evolving to low resolution increases "perturbativeness"

1) For real $E \le 0$, $Im(\eta) = 0$ 2) "repulsive" eigenvalue for $\eta \le 0$ and visa versa (why?)

Evolving to low resolution increases "perturbativeness"

Any idea why in the 3S1-3D1 channel η doesn't decay as dramatically as 1S0? (HINT: typical q scale of the "hard core" ~ 5-7 fm⁻¹ in both channels.)

Weinberg eigenvalues at finite density

• Weinberg eigenvalue analysis (η_{ν} at -2.22 MeV vs. density)

- Pauli blocking in nuclear matter increases it even more!
 - at Fermi surface, pairing revealed by $|\eta_{\nu}| > 1$

Low resolution \implies MBPT is feasible!

MBPT = Many-Body Perturbation Theory

Low resolution \Longrightarrow MBPT is feasible!

MBPT = Many-Body Perturbation Theory

- Compare high resolution (AV18) to low resolution V_{low k} or SRG
- MBPT converges!
- Need evolved 3-body force for saturation
- More on this in lectures 2 and 3!

Why does MBPT work better at low cutoffs?

Phase space in pp-channel strongly suppressed:

$$\int_{k_{\rm F}}^{\infty} q^2 \, dq \frac{V_{\rm NN}(k',q)V_{\rm NN}(q,k)}{k^2 - q^2}$$

VS.

 Tames hard core, tensor, and bound state

Consequences of a repulsive core revisited

- Transformed potential => no short-range correlations in wf!
- Potential is now non-local: $V(\mathbf{r})\psi(\mathbf{r}) \longrightarrow \int d^3\mathbf{r}' V(\mathbf{r},\mathbf{r}')\psi(\mathbf{r}')$
 - A problem for Green's Function Monte Carlo approach
 - Not a problem for many-body methods using HO matrix elements

Evolution of potential in coordinate space

AV18 ¹S₀ Potential

- Non-diagonal ("nonlocal") potential, so how to plot?
- Calculate integral over off-diagonal ∫dr' V(r, r')
- If local, then equal to V(r)
- Core meltdown!

Faster convergence in HO basis expansions

many-body methods that expand on finite HO basis converge much faster (weaker coupling to high momentum)

variational calculations improve (weaker correlations)

RG-Improved Convergence in ab-initio calculations

RG-Improved Convergence in ab-initio calculations

Take-away points from lecture 1

- Nuclear forces are "resolution-dependent" quantities
- High resolution scales $\Lambda >> k_{data}$ in most interaction models
 - strong coupling of low- and high-k states
 - highly non-perturbative with strong correlations (hard!)
- Strategy: Use RG to evolve to lower resolutions
 - exploits decoupling
 - various implementations available (Vlow k, SRG flow eqns.)
 - faster convergence of many-body problems
 - correlations in wf's reduced dramatically
 - use cutoff dependence as a tool (theoretical uncertainties)
- Lectures 2 and 3 preview
 - EFT ideology, chiral EFT for nuclear potentials
 - details of RG alternatives, 3N (and higher) interactions
 - effective operators and factorization
 - in-medium SRG
 - more results in finite nuclei and nuclear matter
 - towards ab-initio energy density functionals