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Useful readings for these lectures
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Lecture 1 outline
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Objective: Give an overview of how renormalization group methods
can be used to simplify microscopic few- and many-body calculations
in low energy nuclear structure and reactions. 

Technical details and selected results for nuclei and nuclear matter will be 
revisited in lectures 2 and 3.

1) Overview 

2) Nuclear interactions 

3) Motivation for RG in nuclear physics

4) Simplifications at low resolution

5) Take-away points and preview of lectures 2,3
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Frontiers in low E nuclear theory



What are the relevant degrees of freedom?
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Nucleonic matter
(our domain in 
nuclear structure)

RG/EFT methods tailor-made to 
develop systematic effective theories  
that focus on a limited range of
scales/DOF at a time.



The nuclear landscape
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• no 1-size fits all method
• Density functional theory covers the most ground, but is 
the most phenomenological. 
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Ultimate goal: Bottom-up approach to nuclear structure 

DFT

Shell model

Ab-initio

RG

EFT

QCD 
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Nuclear Interactions
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Choosing the right DOF:  The effective NN interaction

How to get it?
• Ideally, from lattice QCD 
• effective field theory + phase shifts

(or phenomenological 
meson-exchange models)
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NN central potential VC(r) for mπ = 530 MeV from lattice QCD 
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NN Scattering review
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Low energy limit: Effective range expansion



Nuclear s-wave phase shifts
http://nn-online.org/

Deuteron is a very weakly bound system!

System has one bound state. 

Steep decrease from 180 degrees due to 
large scattering length a = 5.5 fm.

Acts repulsive due to large (positive) 
scattering length.

System (barely) fails to exhibit bound 
state. 

Steep rise at 0 due to large scattering 
length  a = -18 fm.

Monotonous decrease due to “hard core”.

3S1 1S0 
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Phenomenological NN Models

short- and mid-range tuned (~ 20 parameters) to phase shifts
and deuteron pole 



Phenomenological NN Potential Models

• all share one pion exchange (OPE) at long distances 
• model-dependent mid-range attraction and short-distance 

repulsion
• fit ~ 6000 NN data with χ2/dof ~ 1  ☺
• many ab-initio successes in light nuclei ☺

• difficult to estimate theoretical errors and range of 
applicability ☹

• no obvious connection to QCD ☹
• not obvious how to define fully consistent 3NF’s and 

operators (e.g., meson-exchange currents) ☹
• hard to work with in most many-body methods ☹
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(CD-Bonn, Argonne v18, Reid93, Nijmeigen I and II,...)

but

chiral EFT (lecture 2) addresses these shortcomings
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Renormalization Group
Methods

“The method in its most general form can I think
be understood as a way to arrange in various theories
that the degrees of freedom that you’re talking about
are the relevant ones for the problem at hand.”

-S. Weinberg



Vl=0(k, k′) =
∫

d3r j0(kr) V (r) j0(k′r′)
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Why is “textbook” nuclear physics is so hard?

Repulsive core & strong tensor force => low and high k modes 
strongly coupled by the interaction (reminder: typical k ~ 1 fm-1 in nuclei)
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Repulsive core & strong tensor force => low and high k modes 
strongly coupled by the interaction (reminder: typical k ~ 1 fm-1 in nuclei)

Complications: strong correlations, non-perturbative, poorly 
convergent basis expansions, ...

Why is “textbook” nuclear physics is so hard?
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Many short wavelengths => Large matrices to diagonalize



Why large Λ’s are painful
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Suppose we want to compute the ground state E of a nucleus with
mass number A by brute force diagonalization.  Assume the interaction
has a cutoff Λ.

Estimate how the size of the s.p. basis scales with Λ. Given 
this, estimate the size of the Hamiltonian matrix for 16O.            

Exercise:



Why large Λ’s are painful
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Suppose we want to compute the ground state E of a nucleus with
mass number A by brute force diagonalization.  Assume the interaction
has a cutoff Λ.

Estimate how the size of the s.p. basis scales with Λ. Given 
this, estimate the size of the Hamiltonian matrix for 16O.            

Exercise:

Hints: 1) The basis must be sufficiently extended in space
to capture the size of the nucleus (R ~ 1.2A1/3 fm).

2) The basis must be sufficiently extended in 
momentum to capture the size of the cutoff Λ in 
the Hamiltonian.

3) Use a phase space argument to get # of sp states



Why large Λ’s are painful
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Suppose we want to compute the ground state E of a nucleus with
mass number A by brute force diagonalization.  Assume the interaction
has a cutoff Λ.

Estimate how the size of the s.p. basis scales with Λ. Given 
this, estimate the size of the Hamiltonian matrix for 16O.           

Exercise:

Answer: # of s.p. states D ~ Λ3A

Dim(H) = # of A-body Slater determinants 
            = D!/(D-A)!/A!

e.g., for Λ = 4.0 fm-1 Dim(H) ~ 1014



Why large Λ’s are painful
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Suppose we want to compute the ground state E of a nucleus with
mass number A by brute force diagonalization.  Assume the interaction
has a cutoff Λ.

Easiest way to extend the reach of ab-initio to heavier nuclei 
is to use lower resolutions (Λ) 

 “physical” scales kF and mπ  ~ 1 fm-1 ...

Moral:



Arguments for using “low-resolution” interactions
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SKB et al.,arXiv:0912.3688 

NN models share same long-distance physics (Vπ)
Phase shifts to Elab ~ 350 MeV  (krel ~ 2.1 fm-1); 
beyond this, totally model-dependent

Most H(Λ) have Λ >> Λdata ~ 2.1 fm-1

Why work so hard to treat high
k modes that are unconstrained
by NN data?

kF ~ 1.35 fm-1, mπ ~ 0.7 fm-1
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Low-pass filter on fourier transform of a 2d-image 

Long-wavelength info
preserved

Much less information
needed

BUT



Vfilter(k′, k) ≡ 0 k, k′ > 2.2 fm−1

28

Try a naive “low-pass’’ filter on V:

Now calculate low E observables (e.g., NN scattering) and see
what happens...
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Try a naive “low-pass’’ filter on V:

δ(E) totally
wrong with
Vfilter

after low-pass 
filter
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Try a naive “low-pass’’ filter on V:

δ(E) totally
wrong with
Vfilter

after low-pass 
filter



〈k|V |k′〉 +
Λ∑

q=0

〈k|V |q〉〈q|V |k′〉
εk′ − εq

+
∞∑

q=Λ

〈k|V |q〉〈q|V |k′〉
εk′ − εq
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Why did the low-pass filter fail?
Low and high k are coupled by quantum fluctuations (virtual states)

Can’t simply drop high q without changing low k observables.   



Λ0

Λ1

Λ2

k’

k

λ0 λ1 λ2

k’

k
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2 Types of Renormalization Group Transformations

“Vlow k”
integrate-out high k states
preserves observables for k < Λ

“Similarity RG”
 eliminate far off-diagonal coupling
 preserves “all” observables 

Very similar consequences despite differences in appearance!

(technical details in lecture 2)
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Integrating out high-momentum modes (“Vlow k”)

Λ ∼ Λ data

Solve coupled RGE’s given input VNN as large Λ initial condition 
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Integrating out high-momentum modes (“Vlow k”)

Λ ∼ Λ data

2 fm-1 <=> 330 MeV lab 
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The Similarity Renormalization Group
Wegner, Glazek and Wilson

Hλ = U(λ)HU†(λ) ≡ T + Vλ

dHλ

dλ
= [η(λ), Hλ] with η(λ) ≡ dU(λ)

dλ
U†(λ)

Gλ = T ⇒ Hλ driven towards diagonal in k− space

Gλ = PHλP + QHλQ ⇒ Hλ driven to block−diagonal

η(λ) = [Gλ, Hλ]

Unitary transformation on an initial H = T + V

λ = continuous flow parameter

Differentiating with respect to λ:

 Engineer η to do different things as λ => 0 

...
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SRG evolved NN interactions with η = [T,H] 

λ = 10.0 fm-1 
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SRG evolved NN interactions with η = [T,H] 

λ = 3.0 fm-1 
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λ = 2.0 fm-1 

SRG evolved NN interactions with η = [T,H] 
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λ = 2.0 fm-1 

Our low-pass filter now works. If you do things right, 
(i.e., RG/SRG transformations) problematic high-k modes 
can be eliminated! High momentum modes decouple.
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Initially very different-looking chiral 
EFT potentials at N3LO ...
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Low-momentum universality like for Vlowk

Note, however, the model-dependent modes at high k
along the diagonal
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Simplifications at low resolution
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Simplifications from lowering Λ
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pair-distribution g(r)
kF = 1.35 fm-1

weaker short-range correlations, 
more effective variational calcs., 
efficient basis expansions
(SM, coupled cluster, etc.),
 more perturbative



=⇒ series diverges at E if any |ην(E)| ≥ 1

(H0 + V )|b〉 = Eb|b〉 =⇒ V |b〉 = (Eb −H0)|b〉

1
Eb −H0

V |b〉 = |b〉 =⇒ 1
E −H0

V |Γν〉 = ην |Γν〉

T (E)|Γν〉 = V |Γν〉
(
1 + ην + η2

ν + · · ·
)

T (E) = V + V
1

E −H0
V + V

1
E −H0

V
1

E −H0
V + · · · = V + V

1
E −H

V

Weinberg Eigenvalue Analysis of Convergence
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Born series:

• If bound state Eb, series must diverge at E = Eb where

• For any E, generalize to find the eigenvalue of the kernel (Weinberg, 1962)

• Acting with T(E) on any Γν gives 
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1
E −H0

V |Γν〉 = ην |Γν〉

=⇒ (H0 +
V

ην
)|Γν〉 = E|Γν〉
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Evolving to low resolution increases “perturbativeness”
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1) For  real E ≤ 0, Im(η) = 0
2) “repulsive” eigenvalue for η ≤ 0 and visa versa (why?) 

NOTE:

repulsive eigenvalues



Evolving to low resolution increases “perturbativeness”
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NOTE:

Any idea why in the 3S1-3D1 channel η doesn’t decay as dramatically as 1S0? 
(HINT: typical q scale of the “hard core” ~ 5-7 fm-1 in both channels.)    

repulsive eigenvalues



Weinberg eigenvalues at finite density
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More on this in lectures
2 and 3!
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Why does MBPT work better at low cutoffs? 

phase space
for 2-particles
to scatter out
of fermi sea
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Faster convergence in HO basis expansions
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many-body methods that expand on finite HO basis converge
much faster (weaker coupling to high momentum)

variational calculations improve (weaker correlations)
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RG-Improved Convergence in ab-initio calculations

103 states for Nmax = 2 
        versus
107 states for Nmax = 10

Li-6 diagonalization
in HO basis

Helium Halo Nuclei

Ab-initio calculations
of heavier nuclei
accessible...

SKB, Furnstahl, Maris, Schwenk, Vary (2008)

Bacca et al. (2009)
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RG-Improved Convergence in ab-initio calculations
SKB, Furnstahl, Maris, Schwenk, Vary (2008)

Bacca et al. (2009)

Faster convergence,
but λ-dependent answers!

We’ve neglected
3N interactions
induced by RG.

(lecture 2)



Take-away points from lecture 1
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• Nuclear forces are “resolution-dependent” quantities 

• High resolution scales Λ >> kdata in most interaction models
• strong coupling of low- and high-k states
• highly non-perturbative with strong correlations (hard!)

• Strategy: Use RG to evolve to lower resolutions
• exploits decoupling
• various implementations available (Vlow k, SRG flow eqns.)
• faster convergence of many-body problems 
• correlations in wf’s reduced dramatically
• use cutoff dependence as a tool (theoretical uncertainties)

• Lectures 2 and 3 preview
• EFT ideology, chiral EFT for nuclear potentials
• details of RG alternatives, 3N (and higher) interactions
• effective operators and factorization
• in-medium SRG 
• more results in finite nuclei and nuclear matter
• towards ab-initio energy density functionals


