

The 2010 NNPSS-TSI A. Richter 3rd Lecture

Nuclear Structure in Astrophysics Studied with Electromagnetic Probes – Some Examples

• The S-DALINAC and its experimental setups

TU DARMSTADT

- E1 excitations around the particle threshold: the PDR (TUD / U Giessen / RCNP + U Osaka / iThemba Labs / U Wits)
- \bullet Electron scattering on ¹²C and the structure of the Hoyle state
- Deuteron electrodisintegration under 180° and its importance for the primordial nucleosynthesis of the lightest nuclei

Supported by DFG under SFB 634

Key References for 3rd Lecture

• Pygmy Dipole Resonance:

N. Ryezayeva et al., Phys. Rev. Lett. **89**, 272502 (2002)

- U. Kneissl, N. Pietralla and A. Zilges, J. Phys. G **32**, R 217 (2006)
- N. Paar , D. Vretenar , E. Khan and G. Colò, Rep. Prog. Phys. **70**, 691 (2007)

Primordial Nucleosynthesis and Deuteron Photodesintegration: G. Steigman, Annu. Rev. Nucl. Part. Phys. **57**, 463 (2007) N. Ryezayeva et al., Phys. Rev. Lett. **100**, 172501 (2008)

Structure of the Hoyle State in 12C and Carbon Production in Stars: S. M. Austin. Nucl. Phys. A **758**, 375c (2005) M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel and A. Richter, Phys. Rev. Lett. **98**, 032501 (2007) M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel and A. Richter, arXiv:1004.3877

Experiments at the S-DALINAC

Status

- Nuclear resonance fluorescence
- (e,e') and 180° experiments
- High-resolution (e,e') experiments

SFB

- Polarized electron source
- 14 MeV bremsstrahlung
- 100 MeV bremsstrahlung for polarizability of the nucleon
- Photon tagger

QCLAM Spectrometer

Lintott Spectrometer

Energy resolution 1.5x10-4

The Photoresponse of Atomic Nuclei

Considerable E1 strength is predicted and also observed below the 1 $\hbar\omega$ region

E1 Excitations around the Particle Threshold

• Nuclear structure phenomenon

Fundamental E1 mode below the GDR called Pygmy Dipole Resonance (PDR)

• Importance for understanding of exotic nuclei

Will E1 strength be shifted to lower energies in neutron rich systems?

Impact on nucleosynthesis \bullet

Gamow window for photo-induced reactions in explosive stellar events

Impact on Nucleosynthesis

NEUTRONS \longrightarrow

Origin of the Photons

Cassiopeia A

Temperatures up to $3x10^9$ K ~ 200 keV

The Photon Density: Planck Spectrum

What is the Relevant Energy Range ?

Generation of Planck Spectra at the S-DALINAC

P. Mohr et al., PLB 488 (2000) 127

Photon Scattering off 138Ba

A. Zilges et al., PLB 542 (2002) 43

E1 Strength Distribution in N=82 Nuclei

A. Zilges et al., PLB 542 (2002) 43, D. Savran et al., PLB 100 (2008) 232501

E1 Strength Distributions in Stable Sn Isotopes

+ Coulomb dissociation expt's at GSI on unstable 130Sn and 132Sn

Neutron/Proton "Skin" Excitations in N > Z Nuclei

Oscillations of a neutron or proton rich periphery vs. the core leads to isovector E1 excitations

- $\rightarrow \;$ role of PDR strength for determining the nuclear skin
- Soft Dipole Mode in exotic nuclei
- **Q.** Located around 7 MeV in stable nuclei
- Up to 1% of EWSR in some stable nuclei \rightarrow major contribution to the nuclear dipole polarizability

see e.g.: J. Chambers et al., PRC **50**, R2671 (1994) P. van Isacker et al., PRC **45**, R13 (1992)

What is the Microscopic Structure of the PDR ? Reminder: 208Pb

E1 Response in 208Pb

Excellent agreement of QPM with experiment

Transition Densities

- **PDR largely isoscalar**
- **•** Evidence for neutron density oscillations
- Similar results from the Milano and Munich groups

"Snapshots" of Velocity Distributions in 208Pb

Vibrational mode

- Toroidal (current) mode: zero sound wave \bullet
- Restoring force is not of hydrodynamic nature but elastic

Electric Dipole Strength and Vorticity

Vorticity density: measure for the strength of the transverse current

Structure of Low-Energy E1 Modes

- How can we elucidate the structure of the low-energy E1 modes ?
- Proton scattering at 0° \bullet
	- intermediate energy (300 MeV optimal)
	- high resolution
	- angular distribution (E1/M1 separation)
	- polarisation observables (spinflip / non-spinflip separation)
- Electron scattering (preferentially at 180°) \bullet
	- high resolution
	- transverse form factors needed
	- very sensitive to structure of the different modes

Proton Scattering at 0° on 208Pb

Spectrum (magnified)

Measurement of Spin Observables

Decomposition of the Cross Section into Spinflip / Non-Spinflip Parts

Multipole Decomposition of Cross Section

$$
\left. \frac{d\sigma(\Theta)}{d\Omega} \right|_{\text{data}} = \sum_{\Delta L} a_{\Delta L} \left. \frac{d\sigma(\Theta)}{d\Omega} \right|_{\text{DWBA}}
$$

- Restrict angular distribution to Θ = 4° \bullet (response at larger angles too complex)
- $\Delta \mathsf{L}$ = 0 \rightarrow isovector spin M1
- Δ L = 1 \rightarrow E1 (Coulomb + nuclear)
- Δ L > 1 \rightarrow only E2 (or E3) considered

Multipole Decomposition of Cross Section: Examples

Comparison of Both Methods

B(E1) Strength: Low-Energy Region

B(E1) Strength: GDR

E1 Response in 208Pb

Status and Outlook

- PDR in ²⁰⁸Pb identified in (γ,γ´) and verified in ($\vec{\bf p}, \vec{\bf p'}$)
- PDR fraction is ~ 1% EWSR and 5% inverse EWSR (large contribution to the nuclear dipole polarizability)
- Polarized intermediate energy proton scattering at 0**°** is established to study B(E1) strength
- **High-resolution study of ²⁰⁸Pb as reference case**
- E1/M1 decomposition
- Detect PDR and toroidal signatures in (e,e²) form factors and $(\vec{\rho}, \vec{\rho}')$ angular distributions and spin-flip observables
- **Importance of PDR in astrophysical processes**

Astrophysical Importance of the Hoyle State

Reaction rate with accuracy $\pm 6\%$ needed \bullet

S.M. Austin, NPA **758**, 375c (2005)

Uncertainties of the Astrophysical Relevant Quantities

• Total uncertainty
$$
\Delta r_{3\alpha}/r_{3\alpha} = \pm 11.6\%
$$
 presently

Transition Form Factor to the Hoyle State

- Extrapolation to zero momentum transfer \bullet
- Fourier-Bessel analysis \bullet
- H. Crannell, data compilation (2005)

Measured Spectra

Model-independent PWBA Analysis

$$
\left(\frac{d\sigma}{d\Omega}\right)_{\text{PWBA}} = 4\pi \left(\frac{e^2}{E_0}\right)^2 f_{rec} \ V_L(\theta) \ B(C0, q)
$$

$$
4\pi B(C0, q) = \left[\langle 0_2^+ \mid \int \hat{\rho}_N j_0(qr) d^3r |0_1^+\rangle \right]^2
$$

$$
\langle r^\lambda \rangle_{tr} = \langle 0_2^+ \mid \int \hat{\rho}_N r^\lambda d^3r |0_1^+\rangle
$$

$$
ME = \langle r^2 \rangle_{tr}, \qquad R_{tr}^2 = \frac{\langle r^4 \rangle_{tr}}{\langle r^2 \rangle_{tr}}
$$

$$
\sqrt{4\pi B(C0, q)} = \frac{q^2}{6} (ME) \left[1 - \frac{q^2}{20} R_{tr}^2 + \cdots \right]
$$

$$
\Gamma_{\pi} \propto (ME)^2
$$

• Model-independent extraction of the partial pair width Γ_{π}

Model-independent PWBA Analysis

Fourier-Bessel Analysis

• Transition form factor is the Fourier-Bessel transform of the transition charge density

$$
F(q) = 4\pi \int_{0}^{\infty} \rho_{tr}(r) j_0(qr) r^2 dr
$$

$$
\rho_{tr}(r) = \begin{cases} \sum_{\mu=1}^{\infty} a_{\mu} j_0(q_{\mu}r) & \text{for } r < R_c \\ 0 & \text{for } r \ge R_c \end{cases}
$$

with $q_{\mu} = \frac{\mu \pi}{R_c}$

- Data should be measured over a broad momentum transfer range
- Uncertainty in the cut-off radius $R_{\rm c}$

Fourier-Bessel Analysis

- $q = 0.2 3.1$ fm⁻¹
- $\mathsf{M}\mathsf{E}$ = 5.55(5) fm 2 $\;\rightarrow$ $\;\Gamma_{\pi}$ = 63.7(12) <code>µeV</code>
- Remember: Crannell et al. (2005): Γ $_{\pi}$ = 52.0(14) μeV

Problems with FB Analysis and Cure

- **Q** Cut-off dependence
- Treatment of *q*-range where there are no data
- Non-physical oscillations of $\rho_{\rm tr}$ at large radii
- **a** Novel approach

$$
F_{tr}(q) = \frac{1}{Z} \cdot e^{-\frac{1}{2}(bq)^2} \cdot \sum_{n=1}^{n_{\text{max}}} c_n \cdot (bq)^{2n}
$$

$$
\rho_{tr}(r) = \frac{1}{b^3} \cdot e^{-\frac{1}{2}(\frac{r}{b})^2} \cdot \sum_{n=0}^{n_{\text{max}}} d_n \cdot \left(\frac{r}{b}\right)^{2n}
$$

Hoyle-State Transition Form Factor

Hoyle-State Transition Density

Integral over $\rho_{\rm tr}\cdot r^4\,\rightarrow\,ME\,\rightarrow\,\Gamma_{\pi}$

Transition Form Factor at low *q*

- Fit to low *q* data very sensitive to experimental uncertainties
- However, global fit describes low *q* data well
- **•** Theoretical descriptions fail to describe the data

Results

 Γ_{π} = 62.3(20) μeV

- Uncertainty improved by a factor of about three
- \bullet Only Γ_{π}/Γ needs still to be improved now

Structure of the Hoyle State in 12 C

- The Hoyle state is a prototype of α -cluster states in light nuclei
- **O** Cannot be described within the shell-model but within α -cluster models
- Some α -cluster models predict the Hoyle state to consist of a dilute gas of weakly interacting α particles with properties of a Bose-Einstein Condensate (BEC)
- Comparison of high-precision electron scattering data with predictions of FMD and α -cluster models
	- Hoyle state cannot be understood as a true BEC

 E_x [MeV]

Some Theoretical Approaches Towards the Hoyle State: FMD model

Antisymmetrized A-body state

$$
|Q\rangle\,=\,{\cal A}(|q_1\rangle\otimes|q_2\rangle\otimes\ldots\otimes|q_A\rangle)
$$

Single-particle states

$$
\langle \mathbf{x} | q \rangle = \sum_i c_i \, \exp\Big[- \frac{(\mathbf{x} - \mathbf{b}_i)^2}{2a_i} \Big] \otimes |\chi_i^{\dagger}, \chi_i^{\downarrow} \rangle \otimes |\xi \rangle
$$

Gaussian wave packets in phase space (a_i is width, complex parameter \mathbf{b}_i encodes mean position and mean momentum), spin is free, isospin is fixed

Describes α -cluster states as well as shell-model–like configurations

• UCOM interaction

Derived form the realistic Argonne V18 interaction

Adjusted to reproduce binding energies and charge radii of some "closed-shell" nuclei

Theoretical Approaches: α**-Cluster and "BEC" Models**

\bullet α -cluster model

FMD wave function restricted to α -cluster triangle configurations only

"BEC" model

System of 3 'He nuclei in 0s state (like α condensate) Hoyle state is a "dilute gas" of α particles

Volkov interaction

Simple central interaction

Parameters adjusted to reproduce α binding energy, radius, α−α scattering data and ground state energy of **¹²** C

Only reasonable for **⁴**He, **8**Be and **12**C nuclei

12C Densities

• Note the depression of the central density

• Electron scattering as test of theoretical predictions

Elastic Form Factor

• Described well by FMD

Transition Form Factor to the Hoyle State

Described better by α -cluster models \bullet

FMD might be improved by taking α - α scattering data into account \bullet

H. Crannell, data compilation (2005)

What is the Actual Structure of the Hoyle State ?

• Overlap with FMD basis states

- In the FMD and α -cluster model the leading components of the Hoyle state are cluster-like and resemble **8**Be + **⁴**He configurations
- But in the "BEC" model the relative positions of α clusters should be uncorrelated

Model Predictions at Low Momentum Transfer

• Theory systematically overpredicts experiment

Elastic and Transition Form Factorsat Low Momentum Transfer

$$
\bullet \ |F_{el}(q^2)|^2 \approx 1 - \frac{q^2 \langle r^2 \rangle}{6} + \dots
$$

$$
\bullet \ \ F_{tr}(q^2) \propto \frac{q^2 \langle r^2 \rangle_{tr}}{6} - \frac{q^4 \langle r^4 \rangle_{tr}}{120} + \ldots
$$

- Slope is defined by $\langle r^2 \rangle$ term Slope is defined by $\langle r^4 \rangle_{tr}$ term
	- $\Gamma_{\pi} \propto (ME)^2 \propto |F_{tr}(q=0)|^2$ also

Summary and Outlook

o Summary

Hoyle state is very important in astrophysics

Pair width Γ_π for the decay of the Hoyle state has been determined from (e,e´)

Hoyle state is not a true "Bose-Einstein condensate"

 ${}^{8}Be + \alpha$ structure

o Outlook

¹²C: 0**3** and 2**2** states **+ +**

¹⁶O: 6th excited 0**+** state at 15.1 MeV is the "Hoyle" state ? → 16O(e,e´ α) Kyoto/Orsay (2008)

Deuteron Electrodisintegration under 180°

- Astrophysical motivation: Big-Bang nucleosynthesis
- Experiment: 180**°** electron scattering

High selectivity

High energy resolution

• Precision test of theoretical models NN potentials

EFT

• Summary and outlook

N. Ryezayeva et al., PRL **100**, 172501 (2008)

Primordial Nucleosynthesis

D, **³**He, **⁴**He, **7**Li are synthesized

Test of Cosmological Standard Model

- **Abundances depend on** baryon/photon ratio (baryon density)
- Observational constraints: WMAP disagrees with spectroscopic information and/or BBN
- **o** Critical density derived from **4**He and **7**Li is different from D

Adopted from A. Coc *et al.*, ApJ **600**, 544 (2004)

Uncertainty of 7Li Abundance

Largest uncertainty from *p(n,*γ*)d* reaction \bullet

Relevant energy window 15 - 200 keV above threshold \bullet

S. Burles et al., PRL **82**, 4176 (1999)

*d***(**γ**,***ⁿ***)***p***: Data and Predictions**

- Potential model (AV18) calculations by H. Arenhövel \bullet
- EFT calculations (J.-W. Chen and M.J. Savage, S. Ando *et al.*) are very similar
- Scarce data at the threshold
- M1 dominates: *d*(e,e²) at 180[°] \bullet

Why Electron Scattering under 180°?

Scattering at 180**°** is ideal for measuring transverse excitations: M1 enhanced

180° System at the S-DALINAC

Decomposition of the Spectra

Absolute and relative normalization agree within 5 - 6%

Comparison to Potential Model and EFT Calculations

Excellent agreement with potential model (H. Arenhövel) \bullet

Deviations for EFT (H. Griesshammer) at higher *q*

Extraction of the Astrophysical *np* → *d*γ **Cross Section**

$$
\bullet \ \frac{d\sigma}{d\Omega}(\theta=180^\circ,q)\sim F_T^2(q)
$$

$$
\bullet \quad B(M1,q) \sim \frac{1}{q^2} F_T^2(q)
$$

 \bullet For *q* → *k* (photon point) take *q*-dependence of B(*M*1, *q*) from elastic scattering $\rightarrow \Gamma_{\gamma}$

$$
\bullet \quad \sigma(d\gamma\to np) \sim \frac{1}{E_\gamma^2}\,\frac{\Gamma_n\Gamma_\gamma}{(E_\gamma - E_R)^2 + \Gamma^2/4}
$$

 \bullet Detailed balance → ^σ(*np* → *d*γ)

Importance for Big-Bang Nucleosynthesis

• BBN relevant energy window

• Precision test of modern theoretical models (potential model, EFT)

Summary and Outlook

• Summary

180**°** measurements of the M1 deuteron breakup

Precision test of modern theoretical models (potential model, EFT)

Excellent description of the data

Precise prediction for *p(n,* γ*)d* cross section possible in the astrophysically relevant region

Latest BBN calculations use already EFT calculations

o Outlook

⁹Be(e,e´) under 180 **°**