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Outline of Lectures

Standard Model of Electroweak Interactions

Searches for Violations of Discrete Symmetries

Charged Lepton Flavor Violation and Precision Weak 
Neutral Current experiments

Precision Weak Charged Current Experiments & 
Electroweak Probes of Hadron Structure

On Friday, notes will contain comprehensive 
references for all lectures
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Outline of Lecture #3

Lepton Flavor Physics

Lepton Flavor Violation Experiments

Motivation for Precision Weak Neutral 
Current Experiments

Parity-Violating Electron Scattering
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The Case for Multiple 
Neutrino Flavors

Recall: neutrinos and anti-neutrinos have opposite lepton numbers

We are obliged to introduce separate lepton numbers for each flavor. Why?

µ− → e−ν̄eνµ

µ− → e−γ

Consider Is the muon-neutrino distinct?

If not, is allowed

Found to be much smaller than predicted....implies the neutrinos are 
distinct and that leptons do not like to change flavor readily

Branching fraction ~ 10-4
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The Birth of Accelerator 
Neutrino Physics

π− → µ−ν̄µ π+ → µ+νµ

ν̄µp→ µ+n ν̄µp→ e+n

1962 experiment: leads to Nobel Prize

We now know there are 3 distinct light neutrino flavors

electron mode highly suppressed:
pion is spin 0; a right-handed anti-neutrino must 
be accompanied by a right-handed lepton whereas 
the W boson likes to emit a left-chiral lepton
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Charged pion leptonic decays

Lederman, Schwartz and Steinberger

•At Brookhaven National Lab, ~ 10 GeV proton beam was directed to a heavy nuclear target 
•Pions produced were channeled with magnets into a drift region
•At the end of the drift was a bunch of steel and concrete (lots of it!)
•The first accelerator neutrino beam!

observed! not observed!
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Lepton Flavor 
Conservation

Is it exact? No! Neutrino Oscillations!

• !’s have mass!  individual lepton numbers are not conserved

• Therefore Lepton Flavor Violation occurs in Charged Leptons as well 

! anomaly in muon g-2 (?)

Hagiwara et al: hep-ph/0611102
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Searches for Charged 
Lepton Flavor Violation

µ or ! ! e", e+e-e, KL!µe, ...

muon converts to electron in the presence of a nucleus
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Tau Decays at e+e- colliders

Need very high fluxes for 
required statistical reach

Rµe =
Γ(µ− + (A, Z)→ e− + (A, Z) )

Γ(µ− + (A, Z)→ νµ + (A, Z − 1) )µ−N → e−N

Mu2e @ 
Fermilab

Reach:
10-17

New high intensity kaon & muon 
beams and high luminosity e+e- 

colliders all over the world 
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History of CLFV Searches

LHC supersymmetry 

Muon an independent lepton: no µ"e#

Feinberg 1958: µ"e# ~ 10-4--5 or two $

Two neutrinos!
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µ+ → e+γ
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MEG at PSI
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Heavy Neutrinos

Compositeness

Second Higgs Doublet

Λc ~ 3000 TeV
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Anomal. Z Coupling
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Contributions to µe Conversion

 also see Flavour physics of leptons and dipole moments, arXiv:0801.1826
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Muon to Electron Conversion
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Al Nucleus
~4 fm

µ-  in 1s state
µ-  stops in thin Al foil

the Bohr radius is ~ 20 fm, 
so the µ-  sees the nucleus

60% capture
40% decay

!"#$%"&

µ!

!"#$%&'()*%+$%#,-+.

!"#$%&'()"*!(#&+,"'%

µ
!
+ (A, Z)"#µ + (A,Z !1)

µ
!
" e

!
## 

muon capture,
muon “falls into” 

nucleus: 
normalization

Decay in Orbit:
background
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Three Possibilities:

Normalization
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µ

1s

X-Rays from 
cascade

(occurs in psec)

detect these 
for 

normalization

Transition Energy

3d! 2p 66 keV

2p! 1s 356 keV

3d! 1s 423 keV

4p! 1s 446 keV

muon stops
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Normalization to Nuclear Capture
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µ

νµ

Al(27, 13)→ Mg(27, 12)

then compute Rµe =
µN → eN

µ Al(27, 13)→ νµ Mg(27, 12)

Kitano et al. ,Phys.Rev.D66:096002,2002, Erratum-ibid.D76:059902,2007. e-Print: hep-ph/0203110

1) measure stop rate 2) calculate capture rate/stop
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Three Possibilities:

Signal
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µe

coherent recoil of nucleus

off to detector!
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ν̄e
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Three Possibilities:

Background

16

µe

this electron can be background; 
let’s see how
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Decay-In-Orbit: 

Not always Background

• Peak and Endpoint of 
Michel Spectrum is at  

• Detector will be 
insensitive to electrons 
at this energy

• Recall signal at     105 
MeV>>52.8 MeV

17

e

10 20 30 40 50

0.5

1.0

1.5

2.0

νµ

ν̄e

µ

dN

dE
= 2ε2(3− 2ε)

E
max

=
mµ

2 + m
e

2

2mµ

! 52.8 MeV



Krishna Kumar NNPSS Lecture 3

Decay-In-Orbit Background

• Same process as 
before

• But this time, include 
electron recoil off 
nucleus

• If neutrinos are at rest, 
the DIO electron can be 
exactly at conversion 
energy (up to neutrino 
mass)
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νµ

ν̄e

e !

What happens to the 
Michel Spectrum?
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Decay-in-Orbit Shape
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tail from recoil

at the endpoint

Ee (MeV)

Ee(max) =
m2

µ + m2
e

2mµ
≈ 52.8 MeV

Michel spectrum from 
free decay

(E
conversion

! E)
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SINDRUMII Result

20
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• Production: Magnetic bottle traps backward-going % that 

can decay into accepted µ’s

• Decay into muons and 
transport to stopping 
target

• S-curve eliminates backgrounds 
and sign-selects

• Tracking and Calorimeter

Detector and Solenoid
~200 M! Project at Fermilab

Ready around 2016
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Outlook for Rare Decays
Falls under the category of “Intensity 
Frontier” physics

participation of both nuclear and particle 
physicists 

major future muon physics initiatives at 3 
labs: PSI (Switzerland), Fermilab (USA) and 
J-PARC (Japan)

Also a topic at B-Factories and potential Tau-
Charm Factories
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New Contact Flavor 
Diagonal Interactions 

23

However, there are natural mechanisms to suppress “Flavor Changing Neutral Currents”

Need to look separately for Flavor Diagonal Interactions

Any new physics model can be characterized in this way:

 Heavy Z’s, compositeness, extra dimensions…

One goal of neutral current measurements at low energy AND colliders: 

Access " > 10 TeV for as many f1f2 and L,R combinations as possible

Neutral Current Interactions are Flavor Diagonal

Consider
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Colliders vs Fixed Target
Colliders access scales "’s ~ 10 TeV

Window of opportunity for weak neutral current measurements at  Q2<<MZ
2

Tevatron at Fermilab, LEP200 at CERN and HERA at DESY

- L,R combinations accessed are parity-conserving

Z boson production accessed some parity-violating combinations but…

24
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A Classic Paper

25
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Parity Violation in 
Electron Scattering?

Neutron # Decay
Electron-proton

Weak Scattering

Parity-violating

$

E

E’

! 

Q
2

= 4E " E sin
2 #

2

4-momentum transfer
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Observable Parity-
Violating Asymmetry

•One of the incident beams longitudinally polarized
•Change sign of longitudinal polarization
•Measure fractional rate difference

! 

10
"4
#Q

2APV ~ (GeV2)

The idea could not be tested for 2 decades: 
Several circumstances aligned to make this an important measurement
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Weak Interaction Theory

!µ

!µ Z
0
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A Model of Leptons
Steve Weinberg - 1967

The Z boson incorporated Gargamelle finds one 

!µ e
- event in 1973!

(two more by 1976)

CERN

Z Charge

! 

T " qsin
2#W

! 

"qsin
2#W

One free parameter: the weak mixing angle !W introduced

Neutral Current

If !W were strictly zero, W & 

Z bosons would weigh exactly 

the same and right-handed 

particles would not exchange 

Z bosons either 

Neutrino scattering measurements find !W is non-zero
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SLAC E122 Experiment
Parity Violation in Electron Scattering?

29

Parity is violated

Parity is conserved

electron-nucleon scattering

Weinberg model

quarks inside nucleons discovered 

~ mid 60’s

Large cross-section for 

deep inelastic scattering

Final anchor for SU(2)XU(1):
Glashow, Weinberg, Salam awarded the 1979 Nobel Prize
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Summary
Especially after the discovery of neutrino mass, 
searches for charged lepton flavor violation are of 
great importance in the global search for physics 
beyond the standard model

In some cases, the reach of these searches goes 
beyond that of the LHC

Flavor diagonal super-weak neutral current 
interactions must be searched for as well since many 
new physics scenarios have a natural suppression of 
flavor changing neutral currents

We will begin lecture 4 by discussing new such 
experiments that have comparable reach to the LHC
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