Relativistic Heavy Ions IV -What's happening right now!

RHI Physics The US National Nuclear Physics Summer School L TRIUMF Summer Institute

Vancouver, Canada Helen Caines - Yale University

June 2010

Outline: The LHC Pb-Pb - outlook p-p - new results

Recap of last lecture

The matter we create at RHIC is the sQGP it is *fantastically hot*

and has an

incredible energy density.

lt

exists for only an instant

yet shows

many signs of being in equilibrium.

It flows like a

nearly "perfect" fluid

and appears to have

quark and gluon degrees of freedom

which causes

significant energy loss to partons passing through

The LHC, CERN

p-p collisions at $\sqrt{s} = 14 \text{ TeV}$, $\mathcal{L}=10^{34} \text{ cm}^{-2}\text{s}^{-1}$, 8 mo/yr Pb-Pb collisions at $\sqrt{s} = 5.5 \text{ TeV}$, $\mathcal{L}=10^{27} \text{ cm}^{-2}\text{s}^{-1}$, 1 mo/yr

Jura

LHC

Helen Caines - NNPSS-TSI - June 2010

Lac Léman

6 major questions for the LHC

1.Mass generation: Does the Higgs boson exist? Is the standard model complete?

2.Hierarchy problem: What is gravity so much weaker than the other forces?

3.Dark Matter: What is the nature 23% of the universe that's almost "invisible"?

4. Why is there so little anti-matter?: Why is there a matter-antimatter asymmetry in the universe?

confined?

6.Cosmic rays: Nature of very high energy cosmic rays?

Helen Caines - NNPSS-TSI - June 2010

The 7 experiments

RHIC vs LHC

RHIC	LHC	
Beams: p to U	Beams: p to Pb	
√s: 5-200 (p-p 500) GeV	√s: 5.5 (p-p 14) TeV	
Central Events:		RHICs higher
T~2T _C	T~4T _C	luminosity and
ε (GeV/fm³) = 5	ε (GeV/fm³) = 15-60	longer running
т(fm/c) = 2-4	т(fm/c) >10	time keep it
HI Running:		competitive
12 weeks/year	4 weeks/year	
Ave. A+A Luminosity		
5x10 ²⁷ cm ⁻¹ s ⁻¹	5x10 ²⁶ cm ⁻¹ s ⁻¹	
20nb ⁻¹ /year (50% up time)	500µb ⁻¹ /year (50% up time)	

The expectation:

LHC plasma hotter, denser, longer lived

Open questions:

same sQGP? different evolution?

Heavy ions at the LHC

What are the initial conditions Is gluon saturation seen?

What is the measured T_{ch} from particle ratios? $T_{ch} \sim T_c$ as at RHIC or higher - thermal models interpretation?

Is $v_{2LHC} < v_{2RHIC}$? Time evolution of the medium

Is QGP still strongly coupled? Behaving like a perfect liquid or more gas like?

Energy loss similar to at RHIC? What is the mass/flavor dependence of the Eloss Heavy flavor copiously produced at LHC

Helen Caines - NNPSS-TSI - June 2010

The LHC is a hard probes machine

- An LHC Pb-Pb year: 1 month ~ 10⁶ seconds
- Need 10^4 "events" in a year to make a measurement: inclusive jets $E_T < 200 \text{ GeV}$ di-jets $E_T < 170 \text{ GeV}$ $\pi^0 p_T < 75 \text{ GeV}$ inclusive $\gamma p_T < 45 \text{ GeV}$ inclusive e $p_T < 30 \text{ GeV}$
- $\sigma_{\rm cc}$ (LHC) ~ 10 $\sigma_{\rm cc}$ (RHIC)
- $\sigma_{\rm bb}$ (LHC) ~ 100 $\sigma_{\rm bb}$ (RHIC)

Helen Caines - NNPSS-TSI - June 2010

Pb-Pb "First Physics"

First 10^5 Pb-Pb events: global properties, unidentified mult, rapidity distribution, p_T spectra, elliptic flow

First 10⁶ Pb-Pb events: PID spectra, resonances, differential flow analyses, particle correlations

First 10⁷ Pb-Pb events: jet quenching and heavy flavor (charm) production and energy loss

Ultimate analyses: energy density, temperature, pressure, entropy, viscosity, energy loss mechanisms

And of course p-p as the baseline, and new basic understanding: mult, baryon transport, PID spectra and cross-sections (including c and b)

First question: how many particles?

Each generation: new extreme of tracking

The LHC starts!

September 2008:

Everything is looking good, the world is watching!

Helen Caines - NNPSS-TSI - June 2010

The LHC stops...

The "Sector 34" incident

LHC magnets are superconducting. Liquid He keeps at T<1.9K

Sept. 19th 2008 - A weld between two superconductor wires "overheated". conductors \rightarrow resistors \rightarrow 8700 amps arced through liquid He, punctured surrounding vacuum vessel.

In milliseconds the arc vaporized "significant" fraction of the meter long connection between 2 magnets

6 Tonnes Liquid He flowed through hole into the vacuum container

"The amount of helium released was larger than the valves were designed to handle."

The system was overwhelmed within seconds.

1000 700 V meas (Timber V meas (QPS data) 800 600 T sim [K 600 500 Voltage [mV] 400 400 Ξ 300 200 200 -200 100 -400 -15 -10 -5 0 Time [s]

Voltage & Temp across splice

The LHC stops...

The pressure buildup became so high that the multi-tonne magnets were wrenched off their concrete supports and moved along tunnel.

Helen Caines - NNPSS-TSI - June 2010

The upshot of the incident

- Take all damaged magnets out
 - 53 total, 39 dipoles, 14 SSSs (Short Straight Section quad++)
- Fix the cryogenics supply line
- Fix and clean the beam vacuum
- Repair the magnets
- Test repaired magnets and spares used
- Re-install, Re-interconnect, Cool, Test
- p-p collisions started mid-Nov. 2009 at $\sqrt{s=0.9}$ TeV
- 2010 rising via \sqrt{s} = 2.36 TeV to \sqrt{s} = 7 TeV
- End 2010 and 2011 Pb-Pb 1 month each at $\sqrt{s_{NN}}=2.76$ TeV
- 2012 shut down finish the repairs for full energy running

2013 full energy running 5.5 and 14 TeV

The HC re-starts

Helen Caines - NNPSS-TSI - June 2010

Time passes, the collaboration gathers

First events seen!!

All 4 experiments report that events recorded in their detectors

p-p

√s= 900 GeV

Helen Caines - NNPSS-TSI - June 2010

Spokesman "helped" the young scientists 1 hr after first event: 284 events had been processed

Helen Caines - NNPSS-TSI - June 2010

Thursday, July 1, 2010

First publication

The average number of charged particles created at mid-rapidity in p-p collisions at 900 GeV is: $dN/d\eta = 3.10 \pm 0.13$ (stat) ± 0.22 (syst)

National Geographic News (4 Dec.) '....a machine called ALICE.... found that a (!) proton-proton collision recorded on November 23 created the precise ratio of matter and antimatter particles

predicted from theory..'

It took:

- ⇒ 20 years to built ALICE
- ⇒ 40 minutes to take the first data
- \Rightarrow 1 hour to get the prel. result (±10%)
- ⇒ 2 days for the final result

Charm comes easily

With only a few 10 Million events the charm mesons peaks are easily seen out to $p_T > 2$ GeV/c

Even quarkonia are showing up!

Helen Caines - NNPSS-TSI - June 2010

Even quarkonia are showing up!

Helen Caines - NNPSS-TSI - June 2010

$dN_{ch}/d\eta$ at the LHC

Thursday, July 1, 2010

A closer look at the \sqrt{s} dependence

Multiplicity distributions

- Good agreement with UA5 (p-p at 0.9 TeV)
- Study at different rapidity changes
- Each data set can be fit by a negative binomial distribution physics implications of this are still being investigated
- Also true for 2.36 and 7 TeV

Some events have > 90 particles produced at mid-rapidity

Helen Caines - NNPSS-TSI - June 2010

Modeling the multiplicity

An almost complete disaster!

Event PYTHIA "Atlas-CSC" fails for the large multiplicities

Other PYTHIA not even remotely close

PHOJET good at 900 GeV but totally wrong at 7 TeV

Remember all these models tuned to 1.8 TeV data

dN_{ch}/dp_T at $\sqrt{s}=900$ GeV

<u>dN_{ch}/dp_T across experiments</u>

Thursday, July 1, 2010

dN_{ch}/dp_T as function of N_{ch}

No surprise the models don't work!

All experiments have suite of data for improved modeling

Helen Caines - NNPSS-TSI - June 2010

First jet measurements at ALICE

31

Jets are clearly seen in event displays by all 100 experiments 200 7 TeV (real) LHC10b pass: Full calorimeter not yet in |/N_t dN_{ch}/d∆φ place to allow complete jet 10 GeV/c < $p_{T,lt}$ < 15 GeV/c reconstruction at ALICE ALICE Performance lear near- and away-side peaks servec ALICE Performance 07/05/2010 Data ¹targe underlying eventieven in p-p PYTHIA (Perugia 0) PHOJET D. Miśkowiec Charged Particles: Less "back-to-back" than |η|<0.9, p_>0.5 GeV/c Physics at the LHC2010 10-1 (Statistical error) monte-carlo predicts 10-1 -1 Ω $\Delta \phi$ (w.r.t. leading jet)

b-jets at CMS

Summary

The LHC is up and running successfully

The p-p data is being analyzed and already reveals surprises

The models of p-p collisions need some serious tuning

First Pb-Pb data is scheduled for November 2010

The QGP at the LHC is expected to be longer-lived and hotter than at RHIC

With the LHC and RHIC programs running in parallel the 2010's promise an exciting decade for Relativistic Heavy-Ion Collision Research