Relativistic Heavy Ions II - Soft physics

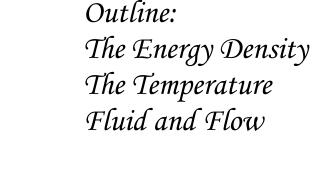
RHI Physics

The US National Nuclear
Physics Summer School &
TRIUMF Summer Institute

Vancouver, Canada

Helen Caines - Yale University

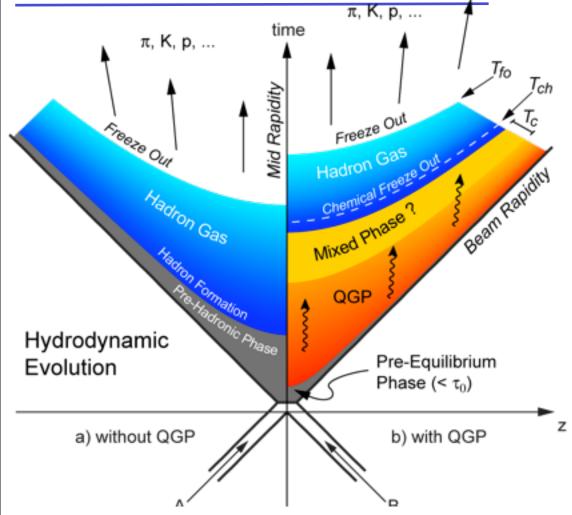
June 2010



Recap of first lecture

- Looking for evidence of a new state of matter → QGP
- Predicted by QCD to occur, due to screening of colour charge, at high T and/or density
 - T_c ~ 160 MeV
- Create in laboratory by colliding ultra-relativistic heavy-ions
- Large multi-purpose experiments necessary to sift through all the data produced

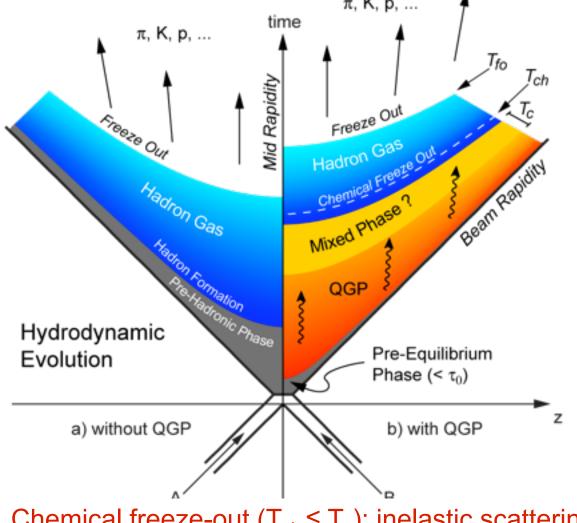
The phase transition in the laboratory



Chemical freeze-out (T_{ch} ≤ T_c): inelastic scattering ceases

Kinetic freeze-out ($T_{fo} \le T_{ch}$): elastic scattering ceases

The phase transition in the laboratory



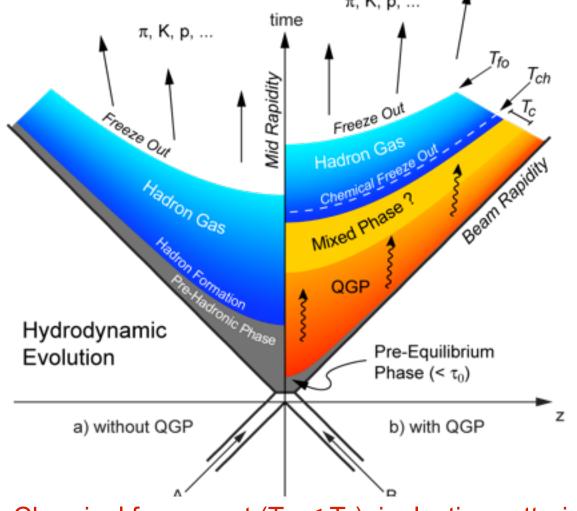
Lattice (2-flavor): $T_C \approx 173\pm8 \text{ MeV}$ $\epsilon_C \approx (6\pm2) T^4 \approx 0.70 \text{ GeV/fm}^3$

Remember: cold nuclear matter $\varepsilon_{cold} \approx u / \sqrt[4]{_3} \pi r_0^3 \approx 0.13 \text{ GeV/fm}^3$

Chemical freeze-out (T_{ch} ≤ T_c): inelastic scattering ceases

Kinetic freeze-out ($T_{fo} \le T_{ch}$): elastic scattering ceases

The phase transition in the laboratory



Lattice (2-flavor): $T_C \approx 173\pm8 \text{ MeV}$ $\epsilon_C \approx (6\pm2) T^4 \approx 0.70 \text{ GeV/fm}^3$

Remember: cold nuclear matter $\varepsilon_{cold} \approx u / {}^4/_3 \pi r_0{}^3 \approx 0.13 \text{ GeV/fm}^3$

Necessary but **not** sufficient condition

Tevatron (Fermilab) $\varepsilon(\sqrt{s} = 1.8 \text{TeV pp}) >> \varepsilon(\sqrt{s} = 200 \text{GeV Au+Au RHIC})$

Thermal Equilibrium ⇒ many constitutents

Chemical freeze-out $(T_{ch} \le T_c)$: inelastic scattering ceases

Size matters !!!

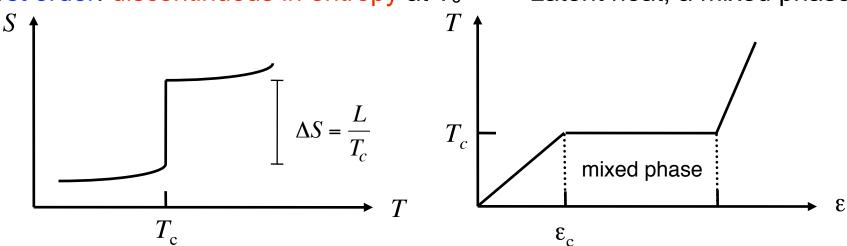
Kinetic freeze-out ($T_{fo} \le T_{ch}$): elastic scattering ceases

Thermodynamics - phase transitions

Phase transition or a crossover?

Signs of a phase transition:

1st order: discontinuous in entropy at T_c → Latent heat, a mixed phase



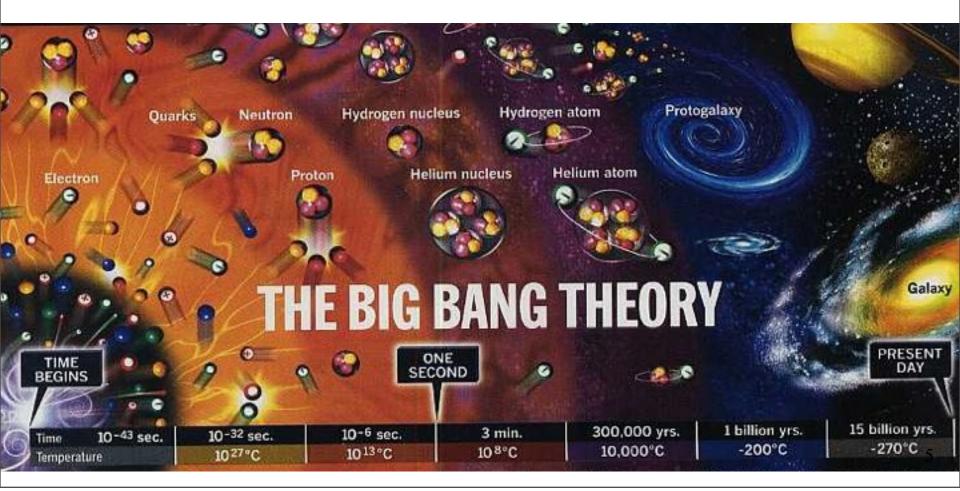
Higher order: discontinuous in higher derivatives of $\delta^n S/\delta T^n \rightarrow no$ mixed phase - system passed smoothly and uniformly into new state (ferromagnet)

Temperature
$$\Leftrightarrow$$
 transverse momentum $T \propto \langle p_T \rangle$ Energy density \Leftrightarrow transverse energy $\varepsilon \propto dE_T/dy \cong \langle m_T \rangle dN/dy$ Entropy \Leftrightarrow multiplicity $S \propto dN/dy$

Helen Caines - NNPSS-TSI -June 2010

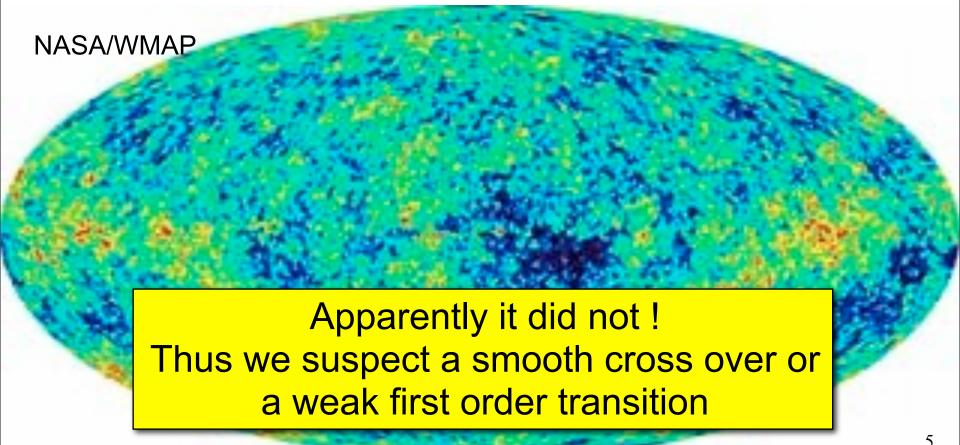
The order of the phase transition

"A first-order QCD phase transition that occurred in the early universe would lead to a surprisingly rich cosmological scenario." Ed Witten, Phys. Rev. D (1984)



The order of the phase transition

"A first-order QCD phase transition that occurred in the early universe would lead to a surprisingly rich cosmological scenario." Ed Witten, Phys. Rev. D (1984)



The language of RHI collisions

- Before starting, we need to know some specific terminology used in RHI collisions.
- Relativity: Energy: $E^2 = p^2 + m^2$ or E = T + m or $E = \gamma m$ where: $\gamma = \frac{1}{\sqrt{(1-\beta^2)}}$ and $\beta = \frac{v}{c} = \frac{p}{E}$
- Lorentz Transformations: $E' = \gamma (E + \beta p_z)$ $p_z' = \gamma (p_z + \beta E)$
- Kinematics:

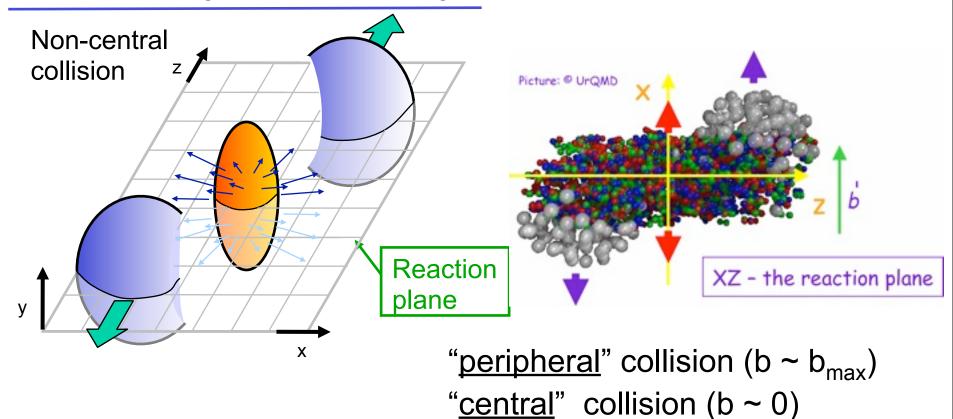
$$p_L=p_z$$

$$p_T=\sqrt(p_x^2+p_y^2)$$

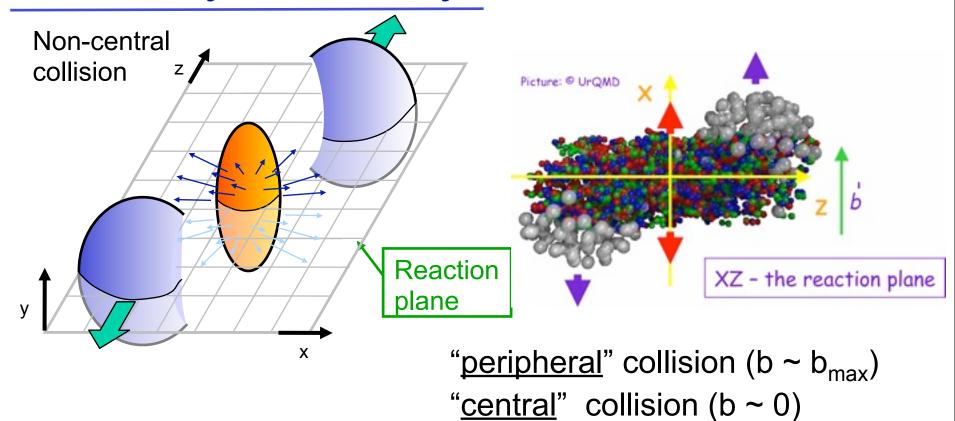
$$m_T=\sqrt(p_T^2+m^2)$$
 Transverse mass

$$y=rac{1}{2}\lnrac{E+p_L}{E-p_L}$$
 Rapidity
$$y'=y+tanh^{-1}eta$$
 $\eta=rac{1}{2}\lnrac{p+p_L}{p-p_L}$ Pseduo-Rapidity (no particle id required)

Geometry of a heavy-ion collision



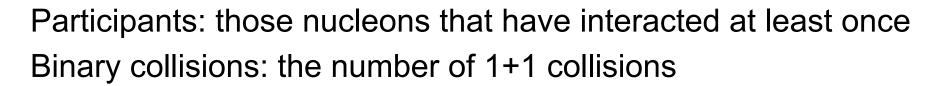
Geometry of a heavy-ion collision



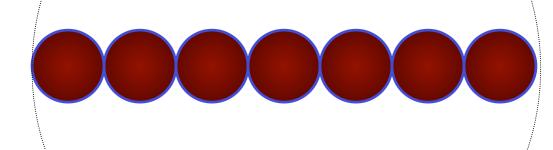
Number of participants (N_{part}): number of incoming nucleons (participants) in the overlap region Number of binary collisions (N_{bin}): number of equivalent inelastic nucleon-nucleon collisions $N_{bin} \ge N_{part}$

p+p: 2 Participants, 1 Binary Collision

p+p: 2 Participants, 1 Binary Collision

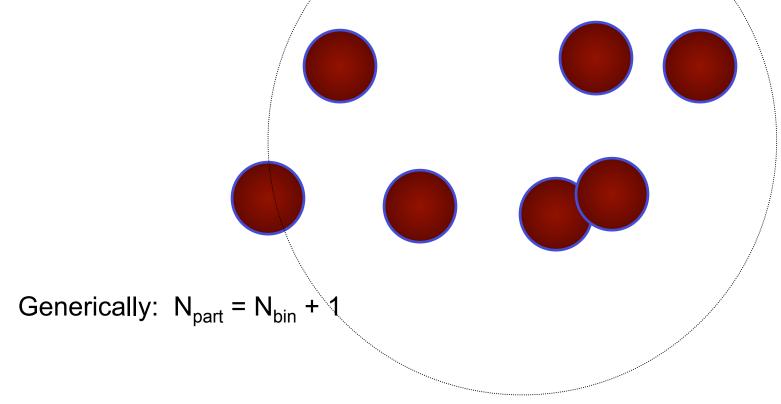


p+A: 8 Participants, 7 Binary Collisions

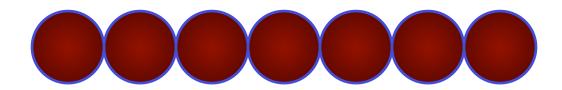


Generically: $N_{part} = N_{bin} + 1$

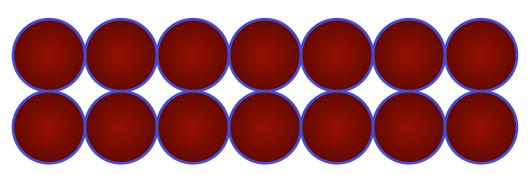
p+A: 8 Participants, 7 Binary Collisions

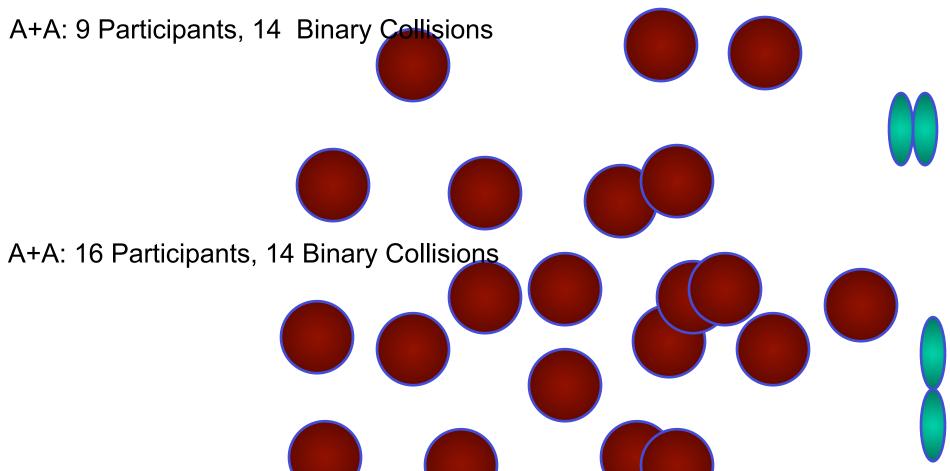


A+A: 9 Participants, 14 Binary Collisions



A+A: 16 Participants, 14 Binary Collisions





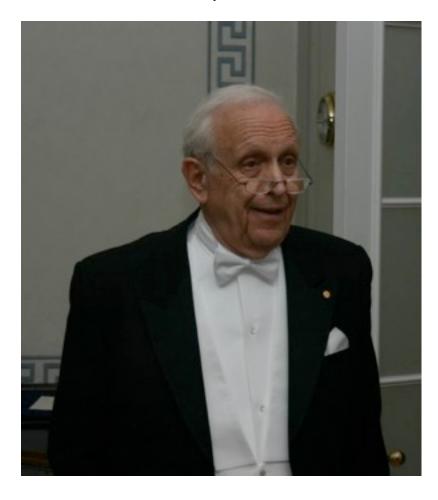
Participants: those nucleons that have interacted at least once Binary collisions: the number of 1+1 collisions

Helen Caines - NNPSS-TSI -June 2010

Glauber calculations

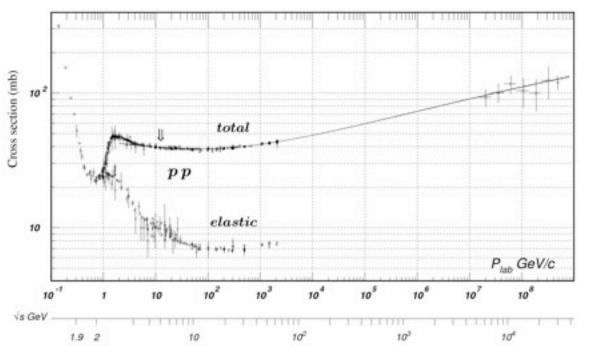
Use a Glauber calculation to estimate N_{bin} and N_{part}

- Roy Glauber: Nobel prize in physics 2005 for "his contribution to the quantum theory of optical coherence"
- Application of Glauber theory to heavy ion collisions does not use the full sophistication of these methods. Two simple assumptions:
 - Eikonal: constituents of nuclei proceed in straight-line trajectories
 - Interactions determined by initialstate shape of overlapping nuclei

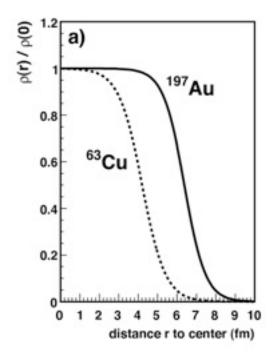


Ingredients for Glauber calculations

Particle Data Book: W.-M. Yao et al., J. Phys. G 33,1 (2006) Fig 40.11



M. Miller et al, nucl-ex/0701025



- Assumptions: superposition of straight-line interactions of colliding nucleons
- Need nucleon-nucleon interaction cross section

Most use inelastic: 42 mb at \sqrt{s} =200 GeV Other choices: Non-singly-diffractive, 30 mb at \sqrt{s} = 200 GeV

Need probability density for nucleons:

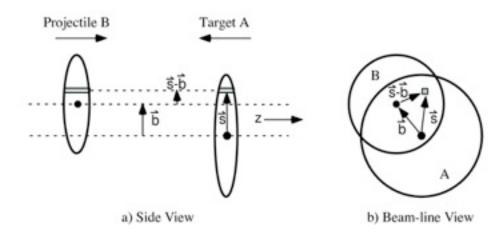
'Wood-Saxon' from electron scattering experiments

Implementations of Glauber

M. Miller et al, nucl-ex/0701025

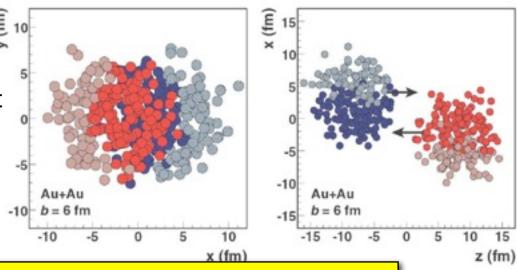
Optical Glauber

- Smooth distribution assumed
- Analytic overlap calculation from integration over nuclear shape functions, weighted with appropriate N-N cross-section



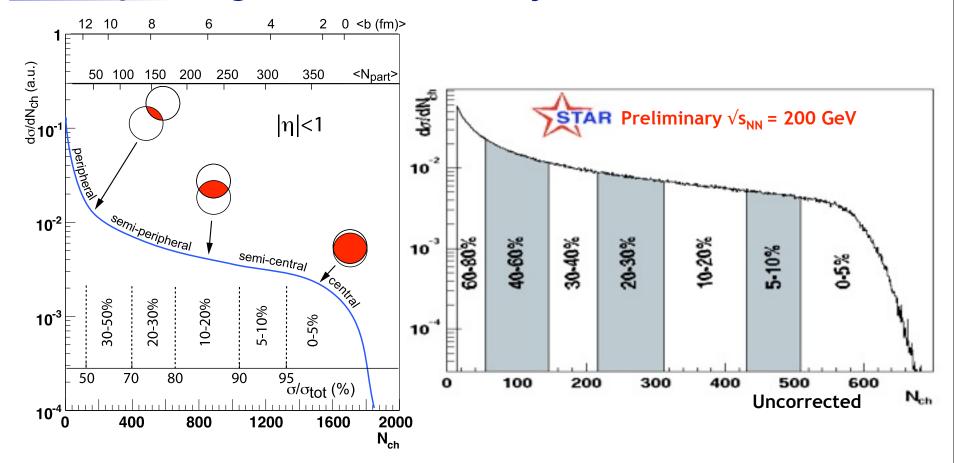
Monte Carlo Glauber

- Randomly initialize nucleons sampling nuclear shape
- At randomly selected impact parameter, allow nuclei to interact
- Randomly sample probability of nucleons to interact from interaction cross-section
 - e.g. if distance d between nucleons is $<\sqrt{\sigma_{\rm int}/\pi}$



Calculate probability that N_{part} or N_{bin} occurs per event

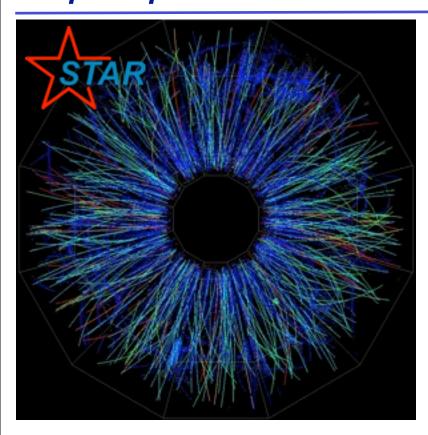
Comparing to data heavy-ion collision



Good agreement between data and calculation

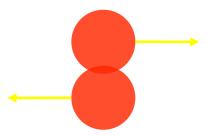
Measured mid-rapidity particle yield can be related to size of overlap region

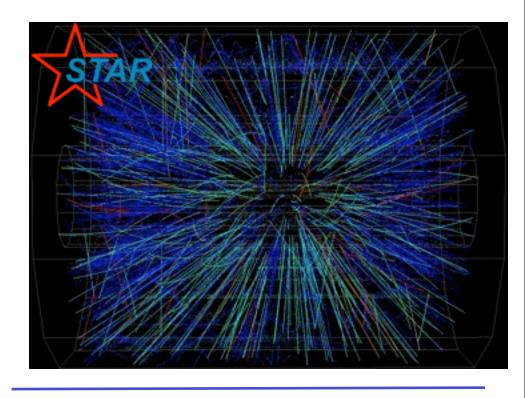
A peripheral Au-Au collision



Color ⇒ Energy loss in TPC gas

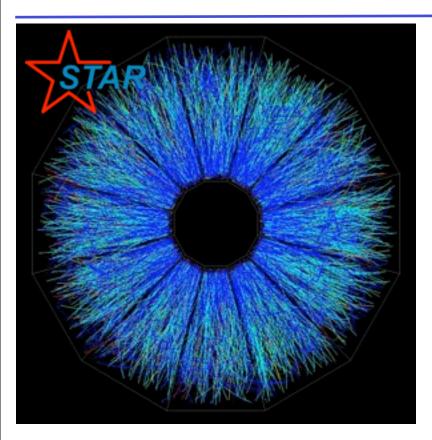
Peripheral Collision





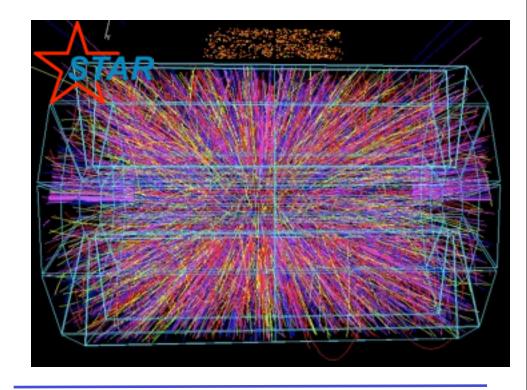
Helen Caines - NNPSS-TSI -June 2010

39.4 TeV in central Au-Au collision

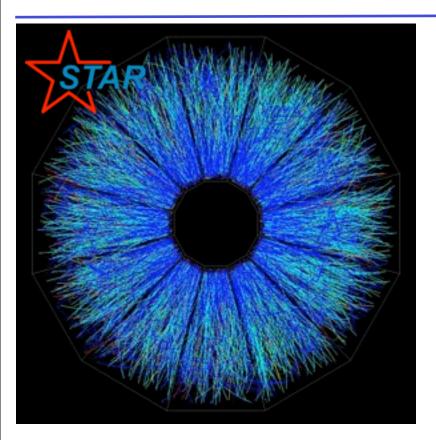


>5000 hadrons and leptons

- Only charged particles shown
- Neutrals don't ionise the TPC's gas so are not "seen" by this detector.



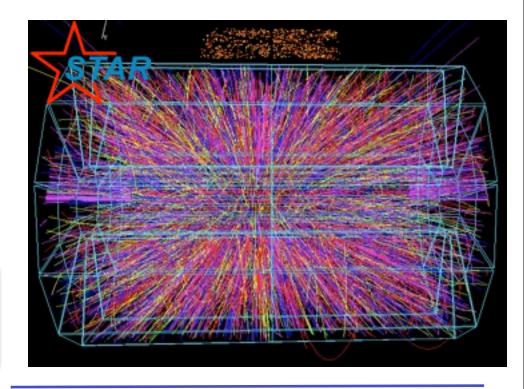
39.4 TeV in central Au-Au collision



>5000 hadrons and leptons

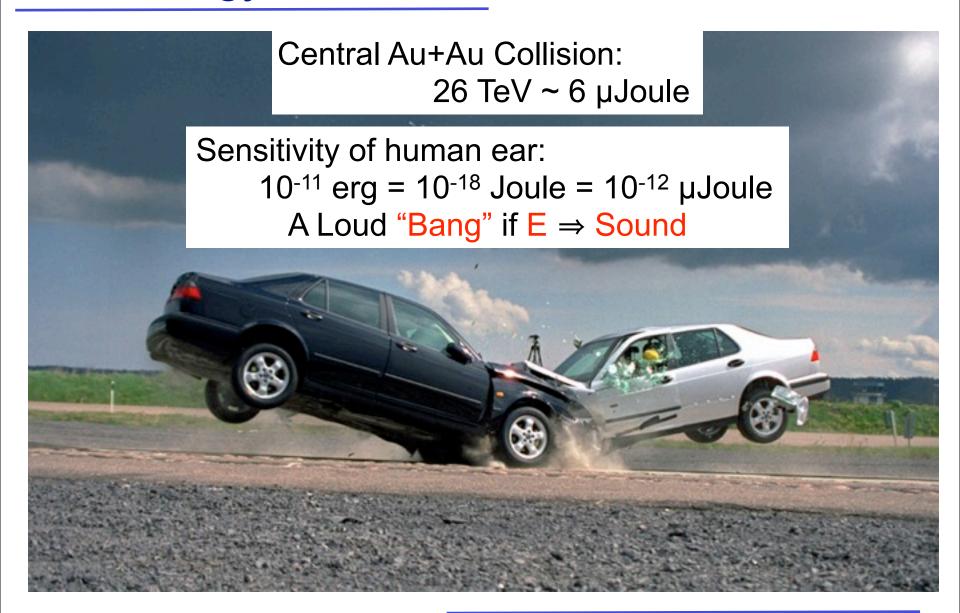
26 TeV is removed from colliding beams.

- Only charged particles shown
- Neutrals don't ionise the TPC's gas so are not "seen" by this detector.

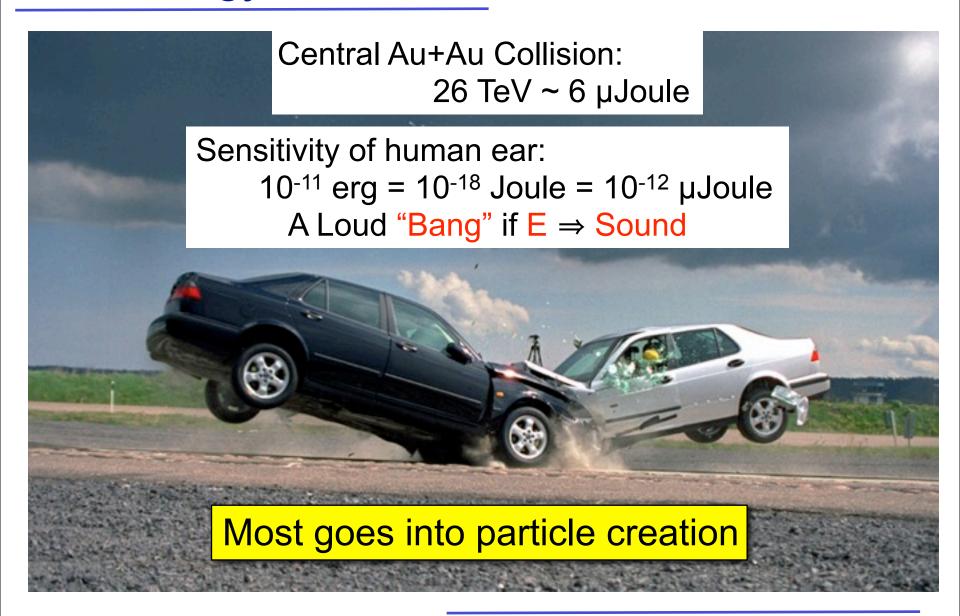


The energy is contained in one collision

The energy is contained in one collision

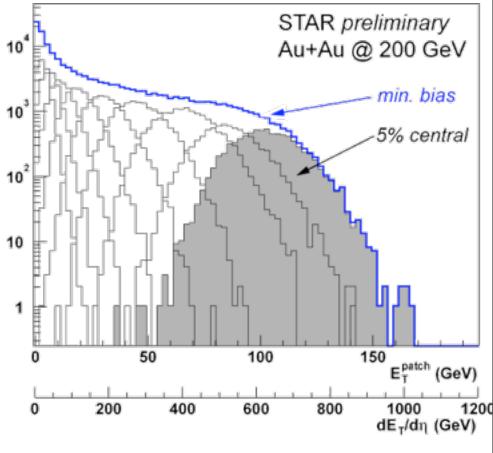


The energy is contained in one collision



Energy density in central Au-Au collisions

 use calorimeters to measure total energy

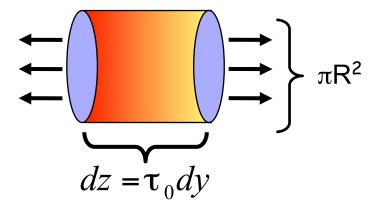


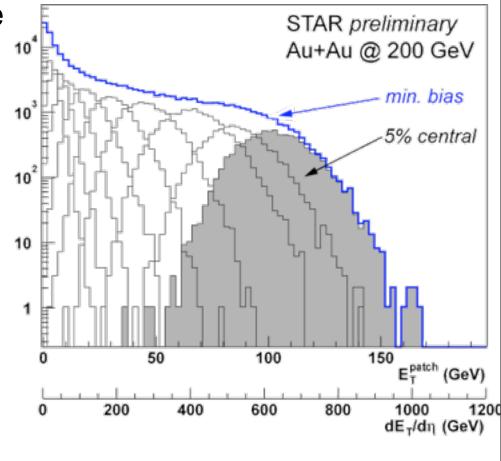
Energy density in central Au-Au collisions

- use calorimeters to measure total energy
- estimate volume of collision

Bjorken-Formula for Energy Density:

$$\epsilon_{Bj} = \frac{\Delta E_T}{\Delta V} = \frac{1}{\pi R^2} \frac{1}{\tau_0} \frac{dE_T}{dy}$$
Time it takes to thermalize system (t₀ ~ 1 fm/c)





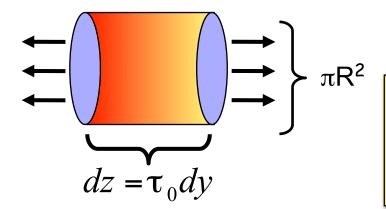
Energy density in central Au-Au collisions

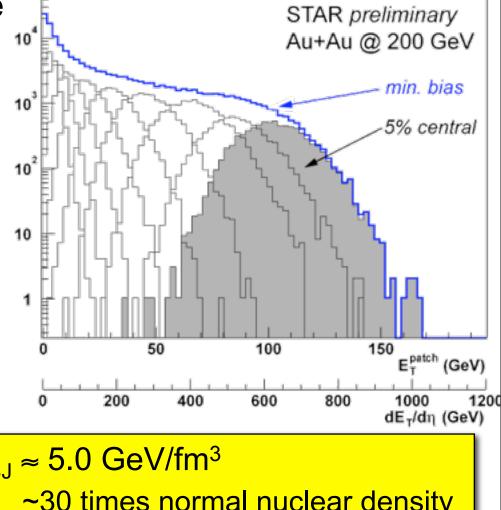
- use calorimeters to measure total energy
- estimate volume of collision

Bjorken-Formula for Energy Density:

$$\varepsilon_{Bj} = \frac{\Delta E_T}{\Delta V} = \frac{1}{\pi R^2} \frac{1}{\tau_0} \frac{dE_T}{dy}$$
Time it tal

Time it takes to thermalize system $(t_0 \sim 1 \text{ fm/c})$





 $\varepsilon_{\rm BJ} \approx 5.0 \; {\rm GeV/fm^3}$

~30 times normal nuclear density

~ 5 times > $\varepsilon_{\text{critical}}$ (lattice QCD)

5 GeV/fm³. Is that a lot?

In a year, the U.S. uses ~100 quadrillion BTUs of energy (1 BTU = 1 burnt match):

$$100 \times 10^{15} BTU \times \frac{1060J}{BTU} \times \frac{1eV}{1.6 \times 10^{-19}J} = 6.6 \times 10^{38} eV$$

5 GeV/fm³. Is that a lot?

In a year, the U.S. uses ~100 quadrillion BTUs of energy (1 BTU = 1 burnt match):

$$100 \times 10^{15} BTU \times \frac{1060J}{BTU} \times \frac{1eV}{1.6 \times 10^{-19}J} = 6.6 \times 10^{38} eV$$

At 5 GeV/fm³, this would fit in a volume of:

$$6.6 \times 10^{38} eV \div \frac{5 \times 10^9 eV}{fm^3} = 1.3 \times 10^{29} fm^3$$

5 GeV/fm³. Is that a lot?

In a year, the U.S. uses ~100 quadrillion BTUs of energy (1 BTU = 1 burnt match):

$$100 \times 10^{15} BTU \times \frac{1060J}{BTU} \times \frac{1eV}{1.6 \times 10^{-19}J} = 6.6 \times 10^{38} eV$$

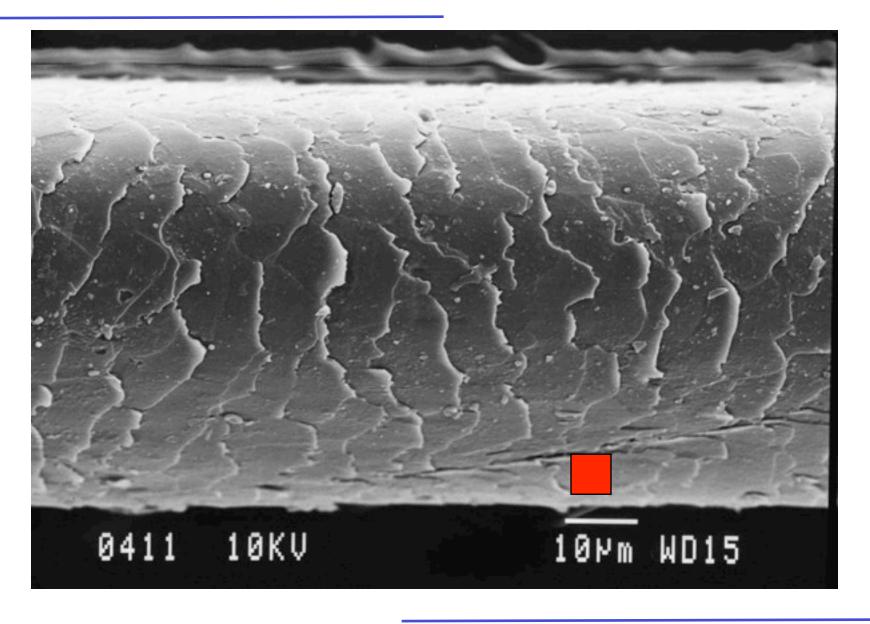
At 5 GeV/fm³, this would fit in a volume of:

$$6.6 \times 10^{38} eV \div \frac{5 \times 10^9 eV}{fm^3} = 1.3 \times 10^{29} fm^3$$

Or, in other words, in a box of the following dimensions:

$$\sqrt[3]{1.3 \times 10^{29} \, fm^3} = 5 \times 10^9 \, fm = 5 \, \mu m$$

A human hair



What is the temperature of the medium?

- Statistical Thermal Models:
 - Assume a system that is thermally (constant T_{ch}) and chemically (constant n_i) equilibrated
 - System composed of non-interacting hadrons and resonances
 - Obey conservation laws: Baryon Number, Strangeness, Isospin
- Given T_{ch} and μ 's (+ system size), n_i 's can be calculated in a grand canonical ensemble

$$n_i = \frac{g}{2\pi^2} \int_0^\infty \frac{p^2 dp}{e^{(E_i(p) - \mu_i)/T} \pm 1}, E_i = \sqrt{p^2 + m_i^2}$$

Fitting the particle ratios

Number of particles of a given species related to temperature

$$dn_i \sim e^{-(E-\mu_B)/T} d^3 p$$

- Assume all particles described by same temperature T and μ_B
- one ratio (e.g., p̄ / p)
 determines μ / T :

$$\frac{\bar{p}}{p} = \frac{e^{-(E + \mu_B)/T}}{e^{-(E - \mu_B)/T}} = e^{-2\mu_B/T}$$

 A second ratio (e.g., K / π) provides T → μ

$$\frac{K}{\pi} = \frac{e^{-E_K/T}}{e^{-E_\pi/T}} = e^{-(E_K - E_\pi)/T}$$

 Then all other hadronic ratios (and yields) defined

Fitting the particle ratios

Number of particles of a given species related to temperature

$$dn_i \sim e^{-(E-\mu_B)/T} d^3 p$$

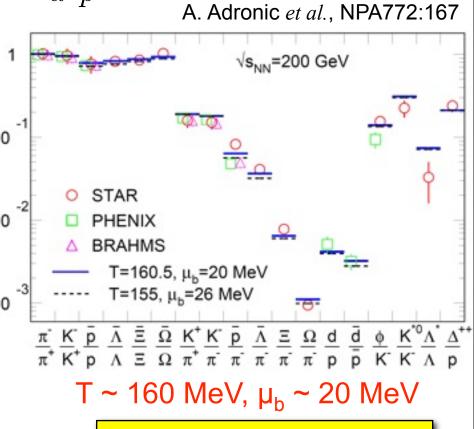
- Assume all particles described by same temperature T and μ_B
- one ratio (e.g., p / p)
 determines μ / T :

$$\frac{\bar{p}}{p} = \frac{e^{-(E + \mu_B)/T}}{e^{-(E - \mu_B)/T}} = e^{-2\mu_B/T}$$
 10

 A second ratio (e.g., K / π) provides T → μ

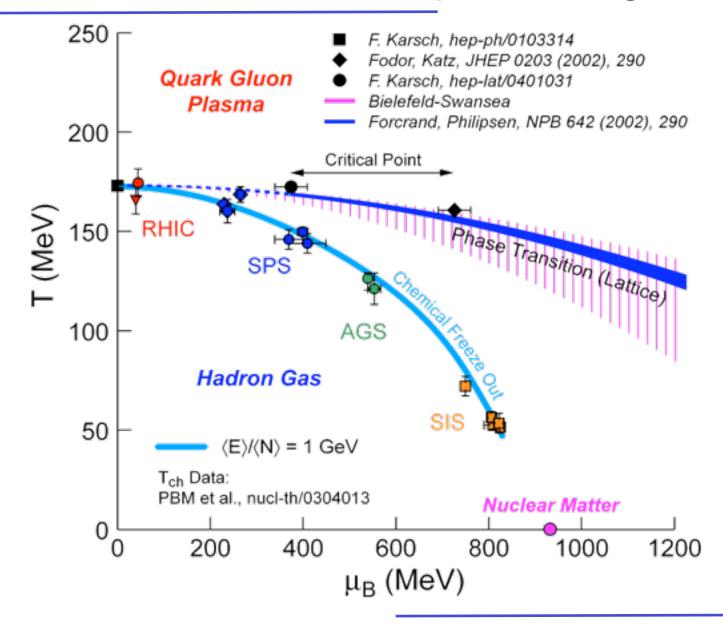
$$\frac{K}{\pi} = \frac{e^{-E_K/T}}{e^{-E_\pi/T}} = e^{-(E_K - E_\pi)/T}$$

 Then all other hadronic ratios (and yields) defined



Initial Temperature probably much higher

Where RHIC sits on the phase diagram



Off on a tangent

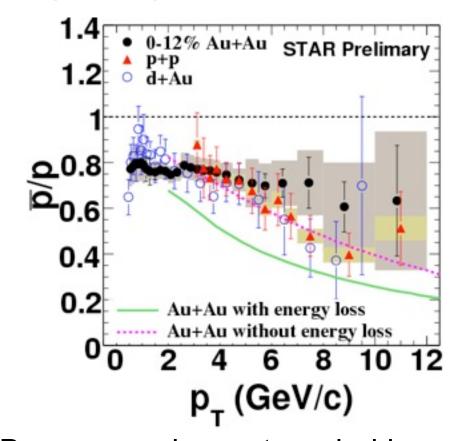
Take a second look at the anti-proton/proton ratio

 $\frac{-}{p}/p \sim 0.8$

There is a net baryon number at mid-rapidity!!

Baryons number is being transported over 6 units of rapidity from the incoming beams to the collision zone!

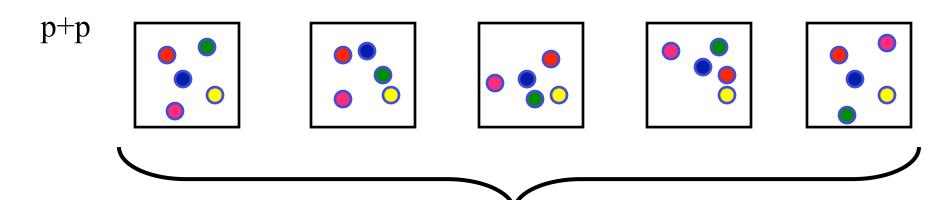
Consider what impulse that must be



Baryon number not carried by quarks

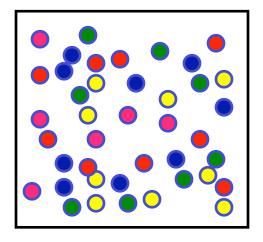
- baryon junctions postulated

Statistics ≠ thermodynamics



Ensemble of events constitutes a statistical ensemble T and μ are simply Lagrange multipliers "Phase Space Dominance"

A+A



One (1) system is already statistical!

- We can talk about pressure
- T and μ are more than Lagrange multipliers

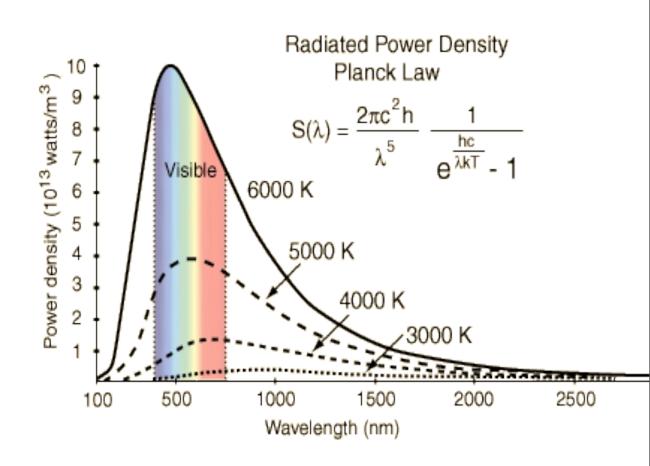
Evidence for thermalization

- Not all processes which lead to multi-particle production are thermal - elementary collisions
- Any mechanism for producing hadrons which evenly populates the free particle phase space will mimic a microcanonical ensemble.
- Relative probability to find n particles is the ratio of the phase-space volumes $P_n/P_{n'} = \varphi_n(E)/\varphi_{n'}(E) \Rightarrow$ given by statistics only.
- Difference between MCE and CE vanishes as the size of the system N increases.
- Such a system is NOT in thermal equilibrium to thermalize need interactions/re-scattering

Need to look for evidence of collective motion

Blackbody radiation

Planck distribution describes intensity as a function of the wavelength of the emitted radiation



Blackbody radiation

Planck distribution describes intensity as a function of the wavelength of the emitted radiation

"Blackbody" radiation is the spectrum of radiation emitted by an object at temperature T

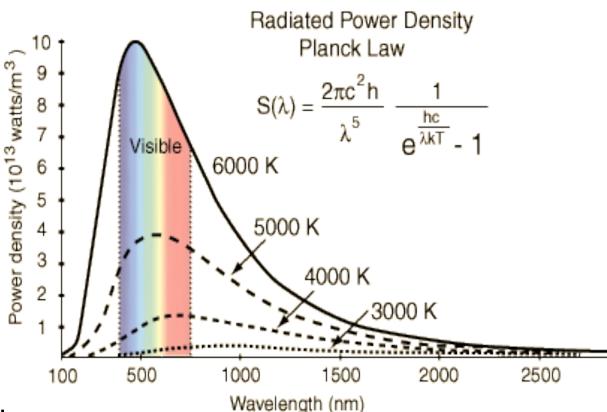
Radiated Power Density Planck Law Power density (10¹³ watts/m³ Visible 6000 K 5000 K 4000 K 3000 K 1000 2000 500 1500 2500 100 Wavelength (nm)

As T increases curve changes

Blackbody radiation

Planck distribution describes intensity as a function of the wavelength of the emitted radiation

"Blackbody" radiation is the spectrum of radiation emitted by an object at temperature T



As T increases curve changes

1/Wavelength ~ Frequency ~ E ~ p

Determining the temperature

600

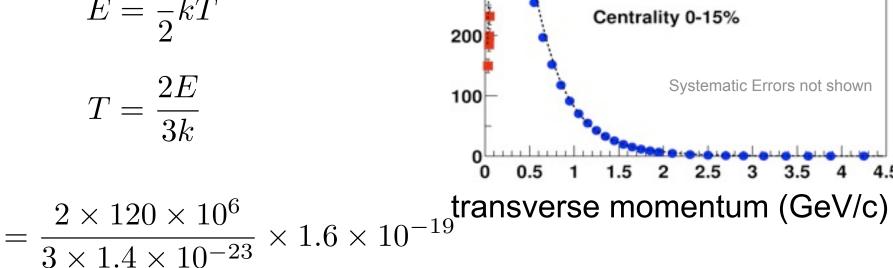
300

intensity

From transverse momentum distribution of pions deduce temperature ~120 MeV

$$E = \frac{3}{2}kT$$

$$T = \frac{2E}{3k}$$



(h+h)/2

 $(\pi^{+} + \pi^{-})/2$

Spectrometer (dE/vs p)

Stopping (dE loss vs Eloss)

$$= \frac{2 \times 120 \times 10^6}{3 \times 1.4 \times 10^{-23}} \times 1.6 \times$$

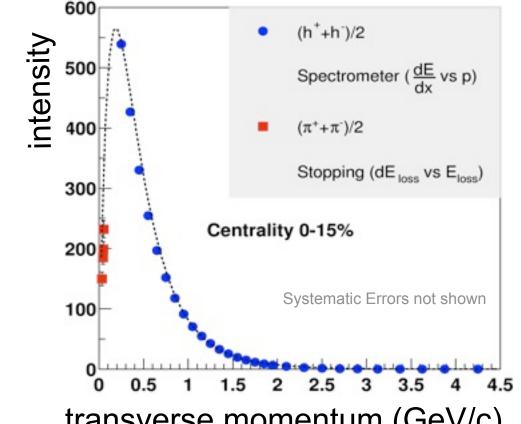
$$\sim 9 \times 10^{11} K$$

Determining the temperature

From transverse
momentum distribution of
pions deduce
temperature ~120 MeV

$$E = \frac{3}{2}kT$$

$$T = \frac{2E}{3k}$$

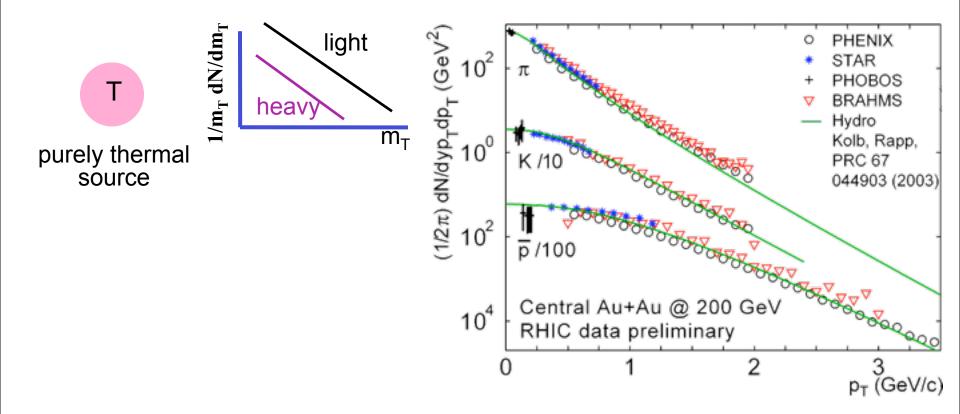


$$=\frac{2\times120\times10^{6}}{3\times1.4\times10^{-23}}\times1.6\times10^{-19} \\ \text{Transverse momentum (GeV/c)} \\ \text{T_{ch}}>\text{T}_{fo}$$

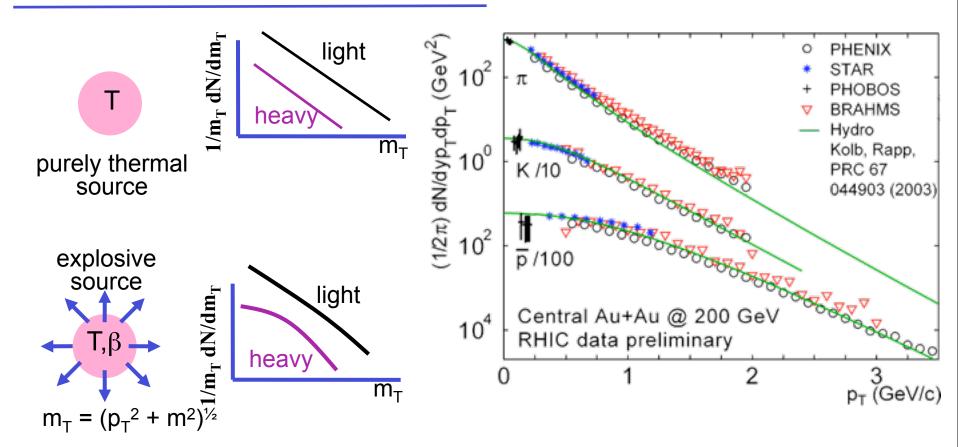
 $\sim 9 \times 10^{11} K$

System exist for time in hadronic phase

Strong collective radial expansion

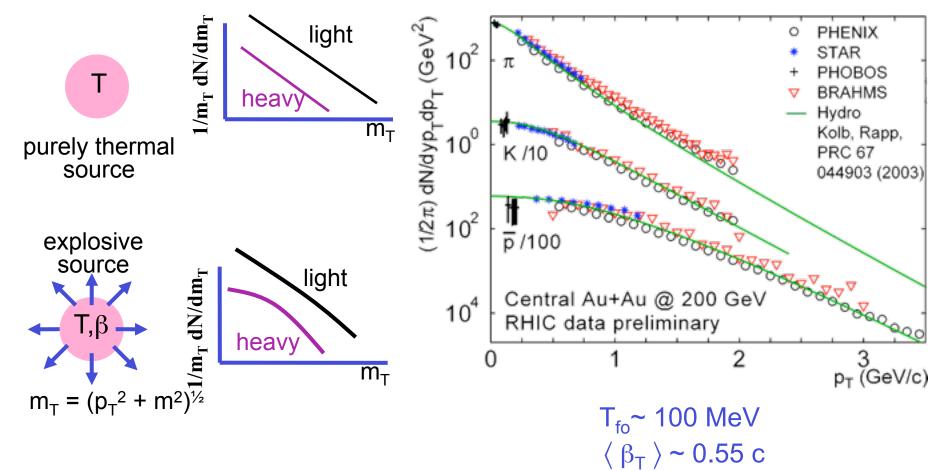


Strong collective radial expansion



- Different spectral shapes for particles of differing mass
 - → strong collective radial flow

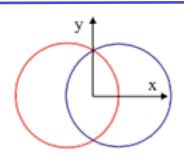
Strong collective radial expansion



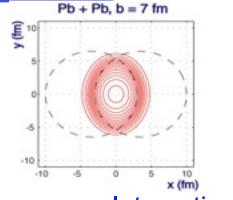
- Different spectral shapes for particles of differing mass
 - → strong collective radial flow

Good agreement with hydrodynamic prediction for soft EOS (QGP+HG)

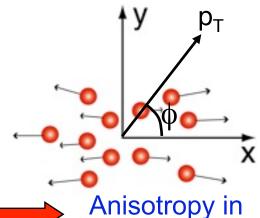
Anisotropic/Elliptic flow



Almond shape overlap region in coordinate space



Interactions/
Rescattering



momentum space

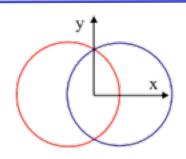
$$v_2 = \langle \cos 2\phi \rangle$$

$$dN/d\phi \sim 1+2 v_2(p_T)\cos(2\phi) + \dots$$

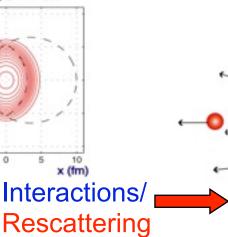
$$\phi$$
=atan(p_y/p_x)

 v_2 : 2nd harmonic Fourier coefficient in dN/d ϕ with respect to the reaction plane

Anisotropic/Elliptic flow



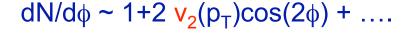
Almond shape overlap region in coordinate space Pb + Pb, b = 7 fm



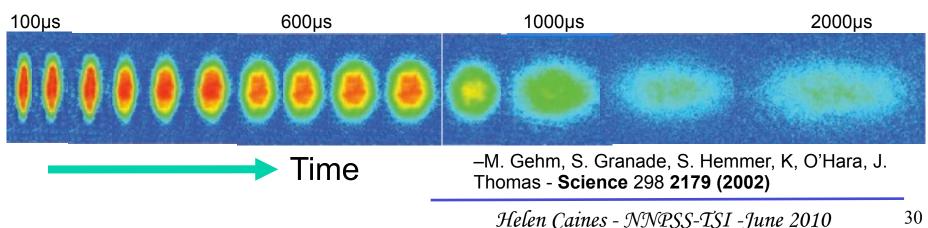
Anisotropy in momentum space

$$\phi$$
=atan(p_y/p_x)

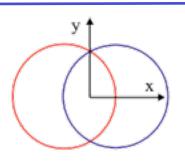
 $v_2 = \langle \cos 2\phi \rangle$

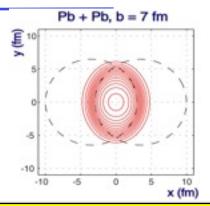


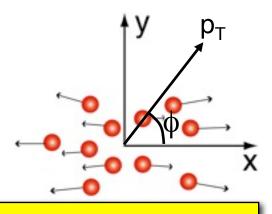
 V_2 : 2nd harmonic Fourier coefficient in dN/d ϕ with respect to the reaction plane



Anisotropic/Elliptic flow



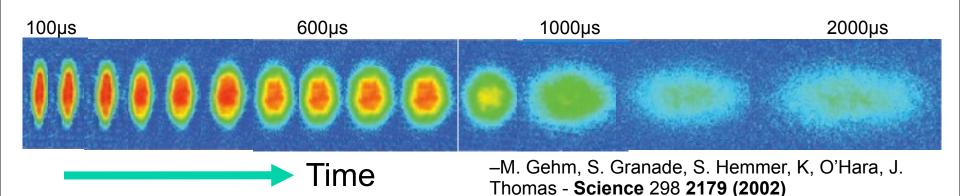




Elliptic flow observable sensitive to early evolution of system

Mechanism is self-quenching

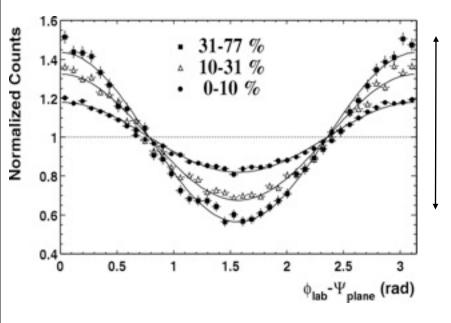
Large v₂ is an indication of early thermalization



Helen Caines - NNPSS-TSI -June 2010

Elliptic flow

Distribution of particles with respect to event plane, ϕ – ψ , p_t>2 GeV; STAR PRL 90 (2003) 032301

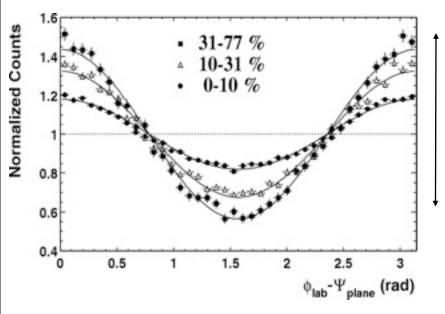


 Very strong elliptic flow → early equilibration

Factor 3:1 peak to valley

Elliptic flow

Distribution of particles with respect to event plane, ϕ – ψ , p_t>2 GeV; STAR PRL 90 (2003) 032301

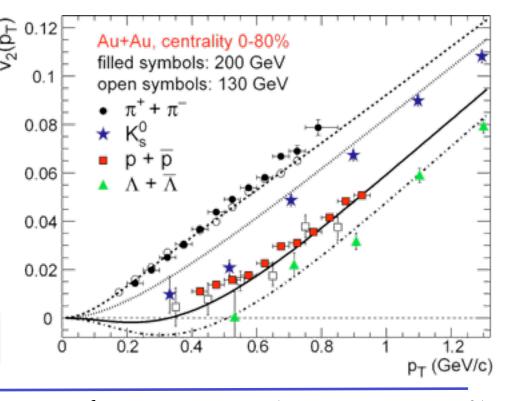


 Pure hydrodynamical models including QGP phase describe elliptic and radial flow for many species

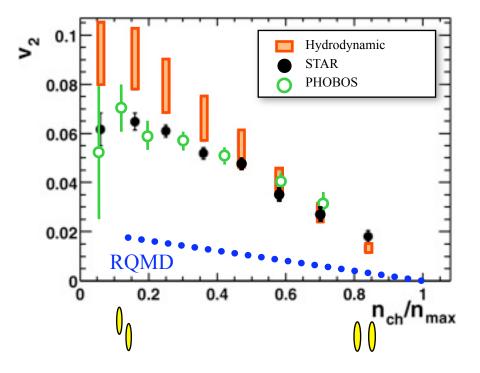
QGP→ almost perfect fluid

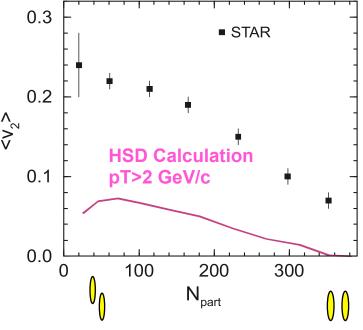
 Very strong elliptic flow → early equilibration

Factor 3:1 peak to valley

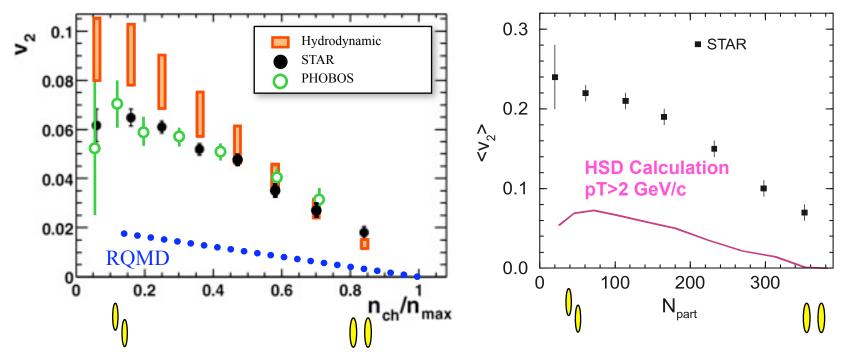


Hadronic transport models (e.g. RQMD, HSD, ...) with hadron formation times ~1 fm/c, fail to describe data.



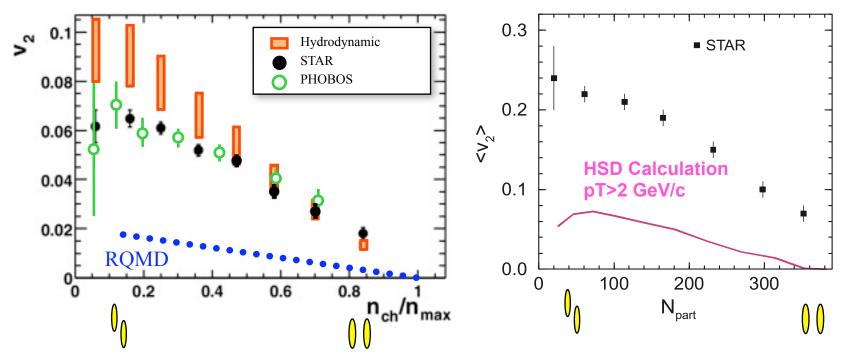


Hadronic transport models (e.g. RQMD, HSD, ...) with hadron formation times ~1 fm/c, fail to describe data.



Clearly the system is not a hadron gas. Not surprising.

Hadronic transport models (e.g. RQMD, HSD, ...) with hadron formation times ~1 fm/c, fail to describe data.



Clearly the system is not a hadron gas. Not surprising.

Hydrodynamical calculations:thermalization time <u>t=0.6 fm/c</u>

What interactions can lead to equilibration in < 1 fm/c?

The constituents "flow"

- Elliptic flow is additive.
- If partons are flowing the *complicated* observed flow pattern in $v_2(p_T)$ for hadrons

$$\frac{d^2N}{dp_T d\phi} \propto 1 + 2 v_2(p_T) \cos(2\phi)$$

should become *simple* at the quark level

$$p_T \rightarrow p_T/n$$

 $v_2 \rightarrow v_2/n$,

$$n = (2, 3)$$
 for (meson, baryon)

$$m_T = \sqrt{p_T^2 + m_0^2}$$

0.3

• π (PHENIX) • p (PHENIX)

• K (PHENIX) • Λ (STAR)

• κ_s^0 (STAR)

• m_s^0 (STAR)

0.1

• m_s^0 (STAR)

• m_s^0 (GeV)

The constituents "flow"

- Elliptic flow is additive.
- If partons are flowing the *complicated* observed flow pattern in $v_2(p_T)$ for hadrons

$$\frac{d^2N}{dp_T d\phi} \propto 1 + 2 v_2(p_T) \cos(2\phi)$$

should become *simple* at the quark level

$$p_T \to p_T/n$$

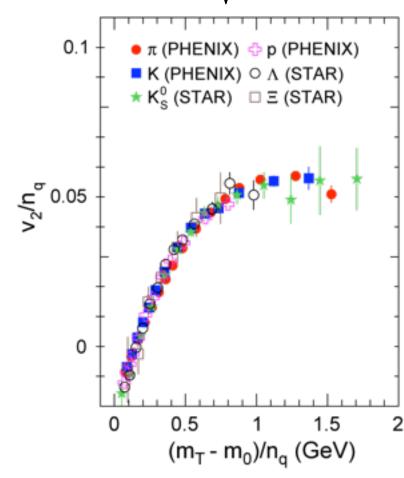
$$v_2 \rightarrow v_2 / n$$
,

n = (2, 3) for (meson, baryon)

Works for p, π , K_s^0 , Λ , Ξ ..

$$v_2^s \sim v_2^{u,d} \sim 7\%$$

$$m_T = \sqrt{p_T^2 + m_0^2}$$



Constituents of QGP are partons

33

Summary of what we learned so far

- Energy density in the collision region is way above that where hadrons can exist
- The initial temperature of collision region is way above that where hadrons can exist
- The medium has quark and gluon degrees of freedom in initial stages

We have created a new state of matter at RHIC - the QGP

The QGP is flowing like an almost "perfect" liquid