Experimental Nuclear Astrophysics

Jeff Blackmon, Louisiana State University

 \gg Nuclear reactions and nuclear properties determine:

- Energy generation
- Nucleosynthesis
 - \rightarrow Origin of the elements
 - → Test between models and observations

2010 National Nuclear Physics Summer School & TRIUMF Summer Institute

Interdisciplinary research New tools drive progress

What are the origins of the elements?

Core-collapse Supernovae

Nuclear reactions in the lab & in space

What you are used to in the lab:

cross section

reaction rate

In astrophysical environments:

$$\frac{reactions}{cm^{3}s} = \int \frac{n_{x}}{cm^{3}} \frac{n_{y}}{cm^{3}} v\sigma(v)\phi(v)dv$$
$$\phi(v) = 4\pi v^{2} \left(\frac{\mu}{2\pi kT}\right)^{3/2} \exp\left(-\frac{\mu v^{2}}{2kT}\right)$$
$$\frac{reactions}{cm^{3}s} = \frac{n_{x}}{cm^{3}} \frac{n_{y}}{cm^{3}} \langle \sigma v \rangle$$
$$\langle \sigma v \rangle = \sqrt{\frac{8}{\pi\mu}} (kT)^{3/2} \int_{0}^{\infty} \sigma E e^{-E/(kT)} dE$$

Reaction	site	Т (10 ⁶ К)	kT (keV)	r _{turn} (fm)	r (fm)	E ₀ (keV)
p+p	sun	15	1.3	1100	2.5	6
p+ ¹⁴ N	CNO	30	2.6	3900	4.3	42
α+ ¹² C	red giant	190	16	1060	4.8	300
p+ ¹⁷ F	nova	300	26	500	4.5	230
α+ ³⁰ S	x-ray burst	1000	86	500	5.9	1800
³ He+ ⁴ He	big bang	2000	170	33	3.8	580

We have a fairly good understanding of hydrogen fusion in stable stars

Good observations (e.g. sun)

The astrophysical environment is not too complicated

We have directly measured most of the reactions in the laboratory

The S-factor

Example: ³He(α , γ)⁷Be

Important for: The sun (v production) **Big Bang (Li production)**

$$\sigma = \frac{S}{E} e^{-\sqrt{E_G/E}}$$

Previous experimental limit

The cataclysmic death of a star

- > Interacting binaries
 - Novae, X-ray bursts, Type Ia Sne
 - Most common stellar explosions
 - Thermonuclear events
- >> Core-collapse Supernovae
 - Site for the r process?
 - p process vp process?
- >> Asymptotic Giant Branch (AGB) stars
 - Site for s process
 - Source of ~half the heavy elements
- > Others?

Core-collapse Supernovae

Novae and X-ray bursts

Ophiuchi 2006 No. 2

> The most common stellar explosions in the Galaxy

- Thermonuclear events
- About 3 dozen novae/year in Milky Way
- Over 100 known Type 1 X-ray bursts

➤ Novae:

- Recur after t >>1000 yr
- Increase in brightness by 10³-10⁶ times
- Usually discovered by amateurs
- Explosion on white dwarf

> X-ray bursts:

white dwarf or

neutron star

hydrogen

- Recur on scale from hours to months
- Don't confuse with gamma-ray bursts

(p, y) cross section measurements

Very powerful experimental techniques have been developed to allow measurements of the weakest rates with minimum incident beam intensity

²¹Na(p, y)²²Na with DRAGON

Classic Example: ¹⁸O(p,α)¹⁵N via (³He,d)

Recent example: ¹⁵O(α , γ)¹⁹Ne reaction

- Direct measurement of the ¹⁵O(α,γ)¹⁹Ne rate would require ~µA beam intensities
- > Crucial quantities are Γ_{α} 's of resonances, particularly state at E_x=4.03 MeV
- > Populate state using another reaction and measure B_{α} $B_{\alpha} = \frac{\Gamma_{\alpha}}{\Gamma}$

The ¹⁵O(α,γ)¹⁹Ne reaction rate produces substantial qualitative changes in the X-ray burst light curve

Somewhat similar measurement about the same time at ANL using the Enge splitpole:

Rehm et al., PRC **67** (2003) 065809. ³He(²⁰Ne,α)¹⁹Ne→¹⁵O+ α B_α< 6x10⁻⁴

Exercise for the student: $^{15}O(\alpha,\gamma)^{19}Ne$

The ¹⁵O(α,γ)¹⁹Ne reaction is one of the most important reactions in X-ray binaries. The ¹⁵O(α,γ)¹⁹Ne reaction rate is dominated by the contribution from a single 4.03 MeV (E_{cm}=504 keV, J^π=3/2⁺) resonance in ¹⁹Ne. Plot the density as a function of temperature where the ¹⁵O(α,γ)¹⁹Ne rate is equal to the beta decay rate. Use the narrow-resonance approximation for the ¹⁵O(α,γ)¹⁹Ne reaction rate:

$$\langle \sigma v \rangle \approx \hbar^2 \left(\frac{2\pi}{\mu kT} \right)^{3/2} (\omega \gamma)_r e^{-E_r/(kT)}$$

The number of alpha particles/cm³, N_{α} , is given by:

$$N_{\alpha} = \rho X_{\alpha} \frac{A}{w_{\alpha}}$$

where ρ is the density (*g/cm*³), *A* is Avogadro's number, and w_{α} is the molecular weight of helium (4 g/mole). Take the mass fraction of ⁴He, X_{α} to be 25%

Assume the alpha-decay branching ratio of the 4.03 MeV resonance to be 4×10^{-4} , about the current upper limit. The ¹⁵O ground state has $J^{\pi}=1/2^{-1}$. What is the orbital angular momentum of the captured alpha particle?

The maximum temperature and density in nova explosions is 4×10^8 K and 10^5 g/cm³. Is this reaction important in novae?

Synthesis of elements heavier than iron

s process

~ 80% of isotopes Most (n,γ) rates known Branch points crucial

r process

~ 70% of isotopes Far from stability Supernovae?

p process

~ 10% of isotopesVery low abundanceSecondary process

Neutron capture on long-lived nuclei

Source	ORELA	Lujan	n TOF	SNS
flight path (m)	40	20	180	20
resolution (ns/m)	0.2	6.2	0.05	18
power (kW)	8	64	45	2000
flux (n/s/cm²)	2x10 ⁴	5x10 ⁶	3x10⁵	2x10 ⁸
FOM (n/s/cm ²)	5x10⁵	6x10 ⁹	5x10 ⁸	9x10 ¹⁰

Experiments now possible with samples of only $\sim 10^{16}$ atoms/cm².

Important's process brach points

High efficiency detector arrays

High segmentation to handle rate from radioactive sources

	status	feasible
⁶³ Ni	•	•
⁷⁹ Se	•	•
⁸¹ Kr	•	•
⁸⁵ Kr	•	•
147Nd	•	•
¹⁴⁷ Pm	•	•
¹⁴⁸ Pm	•	•
¹⁵¹ Sm	•	•
¹⁵⁴ Eu	•	
155Eu	•	•
153Gd	•	•
¹⁶⁰ Tb	•	•
163Ho	•	•
¹⁷⁰ Tm	•	•
¹⁷¹ Tm	•	•
179Ta	•	•
185W	•	•
204T1	•	•

New observations are allowing us to study the early evolution of the heavy elements in the Galactic halo

Stars with: Fe/H < (0.001) solar → very old heavy/Fe = 50 solar Only 2 known in 2000 Now extensive surveys Frebel et al., ApJ 652 (2006) 1585 SEGUE (Sloan DSS) Spectra of >2x10⁵ selected halo stars Expect ~ 1% with Fe/H < 0.001solar</pre>

Usual suspect: Core collapse supernovae

Zegers et al.

The Joint Institute for Nuclear Astrophysics

Z

Charge exchange reactions such as (t,³He) and (p,n) have been measured on some stable nuclei and provide sensitive probes of Gamow-Teller strength at 100 – 200 MeV/u.

Shell model calculations using the best interactions do not do an adequate job in predicting electron capture rates

Measurements on radioactive nuclei are very important, but require new experimental techniques

The LENDA neutron detector array is being developed at the NSCL for measurements of the (p,n) reaction in inverse kinematics

Calculated r process

r process cartoon

> Dynamics: n_n , kT, t from astrophysical model

>> Freezeout is relatively fast, followed by decay to stability

Masses, $t_{1/2}$, and P_n are crucial

Half-life of ⁷⁸Ni measured with 11 events.

t_{1/2}(⁷⁸Ni): 110 ⁺¹⁰⁰-₆₀ ms

Effect of new t_{1/2} on r process abundances

Shorter ⁷⁸Ni half-life leads to greater production of A=190 peak

The properties of neutron-rich nuclei are crucial for understanding the site(s) of the r process and the chemical history of the Galaxy

The Chart of the Nuclides

Nuclear structure and astrophysics

- \gg Not all masses and half-lives can/will be measured.
- > Our understanding of the synthesis of nuclei in the r process must depend upon nuclear theory.
- Measurements of light isotopes have shown surprises, including modifications to the magic numbers.
- > What is expected in heavier nuclei near the r process?
- Nuclear structure studies are crucial to improving the reliability with which nuclear models can extrapolate to more neutron-rich isotopes

Structure around ¹³²Sn

K.L. Jones et al. Nature 465 (2010) 454.

- States populated using the (d,p) neutron-transfer reaction in inverse kinematics at the HRIBF.
- Angular distributions of protons measured in coincidence with recoiling heavy ions.
- States in ¹³³Sn found to be strongly single-particle in nature, showing that ¹³²Sn is a good "doubly-magic" nucleus.

The current frontiers of experimental nuclear astrophysics

- Direct measurements of cross sections with intense stable ion beams deep underground
- Direct measurements of charged particle induced reactions using proton-rich radioactive ion beams
- Innovative indirect approaches using both stable and radioactive ion beams
- Mass and decay property measurements of the most neutron-rich nuclei
- Nuclear structure studies to improve our understanding of the evolution of nuclear structure with isospin
- New capabilities to produce a much larger variety of isotopes are required

2010 National Nuclear Physics Summer School & TRIUMF Summer Institute