

Introduction to Relativistic Heavy Ion Physics

Lecture 2: Experimental Discoveries

W.A. Zajc Columbia University

- General arguments suggest that for temperatures T ~ 200 MeV, nuclear matter will undergo a *deconfining* phase transition.
- Similar arguments suggest the required energy density is of order

$$\varepsilon \sim ndf \, \frac{\pi^2}{30} \left(200 \, MeV\right)^4 \sim 37 \, \frac{1}{3} \, \frac{(0.2 \, GeV)}{fm^3} \sim 2.4 \, GeV \, / \, fm^3$$

Note 1: normal nuclear density ε₀ ~ 0.16 GeV/fm³
 Note 2: Also true near T = 0, i.e., cold nuclear matter

• How to create study experimentally ?

Exploring the QCD Phase Diagram

- Hot nuclear matter:
- Study Temperature T [MeV] 200 Early universe experimentally Quarks and Gluons by colliding Critical point? Deconfinem heaviest nuclei Hadrons 100 at highest energies: olor Super-Neutron stars nductor? Cold nuclear matter: Nuclei Net Baryon Density Study by observation of neutron stars and other exotic objects (Not covered in these lectures)

Expectations circa 2000

RHIC and Its Experiments

RHIC Specifications

RHIC

- 3.83 km circumference
- Two independent rings
 - 120 bunches/ring
 - 106 ns crossing time
- Capable of colliding ~any nuclear species on ~any other species
- Energy: • 500 GeV for p-p• 200 GeV for Au-Au(per N-N collision) • Luminosity • Au-Au: $2 \times 10^{26} \text{ cm}^2 \text{ s}^{-1}$ • $p-p: 2 \times 10^{32} \text{ cm}^2 \text{ s}^{-1}$ (polarized)

Alternating Gradient Synchrotron

> Tandem Van de Graaf

- Different from p-p, e-p colliders
 Atomic weight A introduces new scale Q² ~ A^{1/3} Q₀²
- Different from previous (fixed target) heavy ion facilities
 - E_{CM} increased by order-of-magnitude
 - Accessible x (parton momentum fraction) decreases by ~ same factor

$$x \sim \frac{2 p_T}{\sqrt{s}}$$

- →Access to perturbative phenomena
 - Jets
 - Non-linear dE/dx

Jargon Alert: \sqrt{s} = Center-of-mass energy (per nucleon collision) p_T = transverse momentum = $|p| \sin \theta$ Q^2 = (momentum transfer)²

• Its detectors are <u>comprehensive</u>

All final state species measured with a suite of detectors that nonetheless have significant overlap for comparisons

01-Jul-09

The Plan circa 2000

Use RHIC's unprecedented capabilities

□ Large √s ⇒

- Access to reliable pQCD probes
- Clear separation of valence baryon number and glue
- To provide definitive experimental evidence for/against Quark Gluon Plasma (QGP)
- Polarized p+p collisions
- Two small detectors, two large detectors
 - Complementary capabilities
 - Small detectors envisioned to have 3-5 year lifetime
 - Large detectors ~ facilities
 - Major capital investments
 - Longer lifetimes
 - Potential for upgrades in response to discoveries

- Accelerator complex
 - Routine operation at 2-4 x design luminosity (Au+Au)
 - Extraordinary variety of operational modes
 - Species: Au+Au, d+Au, Cu+Cu, p↑+p↑
 - Energies: 22 GeV (Au+Au, Cu+Cu, p↑), 56 GeV (Au+Au), 62 GeV (Au+Au,Cu+Cu, p↑+p↑), 130 GeV (Au+Au), 200 GeV (Au+Au, Cu+Cu, d+Au, p↑+p↑), 410 GeV (p↑), 500 GeV (p↑)
- Experiments:
 - Worked !
- Science
 - More than 200 refereed publications, among them 100+ PRL's
 - Major discoveries
- Future
 - Demonstrated ability to upgrade
 - Key science questions identified
- Accelerator and experimental upgrades underway for that science

9

W.A. Zajc

Outline

Will present *sample* of results from various points of the collision process:

Final State

Does the huge abundance of final state particles reflect a *thermal* distribution?:

Origin of the (Hadronic) Species

- Thermal? Apparently:
 - Assume all distributions described by one temperature T and

one (baryon) chemical potential μ :

 $dn \sim e^{-(E-\mu)/T} d^3 p$

One ratio (e.g., p / p) determines

μ/Τ:

$$\frac{\overline{p}}{p} = \frac{e^{-(E+\mu)/T}}{e^{-(E-\mu)/T}} = e^{-2\mu/T}$$

• A second ratio (e.g., K / π)

provides $T \rightarrow \mu$

Exercise 1: Find T and μ from data at right

- Then predict all other hadronic yields and ratios:
- NOTE: Truly thermal implies

 $π^{\pm}$, $π^0$, K^{\pm} , K^{*0} (892), K_s^0 , η, ρ, d, $ρ^0$, φ, Δ,

Λ, Σ*(1385), Λ*(1520), Ξ[±], Ω, D⁰, D[±], J/Ψ's,

(+ anti-particles) ... ➡T ~ 170 MeV ~ 2 x 10¹² K

Locating RHIC on Phase Diagram

Locating RHIC on Phase Diagram

Previous figure → RHIC has net baryon density ~ 0:

Q. How dense is the matter?

A. Do Rutherford scattering on deep interior using "auto-generated" probes: 2. Plasma(?) Probes of

dense matter

16

Transverse Dynamics

Fundamental single-particle observable:

Aside- Estimating Energy Density

- This will be an incredibly crude (wrong) estimate:
 - Take all ~10,000 particles produced in Au+Au collision at RHIC
 - Assume the ~constant <p_T> ~ 0.4 GeV represents "thermalized" energy
 - Initial volume
 - R_{Au} ~ 6.5 fm
 - ∆z ~ 1/T ~ 1 fm
 - Energy density

 ϵ ~ (10⁴ x 0.4 GeV) / (πR_{Au}^2 x 1 fm) ~ 30 GeV/fm³

A. From rapidity density of transverse energy $E_{\tau} \equiv \Sigma_i E_i \sin \theta_i$

- "Highly relativistic nucleus-nucleus collisions: The central rapidity region", J.D. Bjorken, Phys. Rev. <u>D27</u>, 140 (1983). $\frac{dn}{dy}$
- Assumes
 - ~ 1-d hydrodynamic expansion
 - Invariance in y along "central rapidity plateau" (I.e., flat rapidity distribution)
 - Then

$$\varepsilon = \frac{E}{V} \sim \frac{dE_T}{\pi R_T^2 \cdot dz} = \frac{1}{\pi R_T^2 \cdot \tau} \frac{dE_T}{dy}$$

Determining Energy Density

The Danger in Cartoons

Using "Hard Probes"

Systematic approach essential:

□ p+p: BASELINE

□ d+Au: CONTROL

□ Au+Au: NEW EFFECT

Baseline p+p Measurements with pQCD

Systematic Measurement in Au+Au²⁵

 Consider collision of 'A' ions per bunch with 'B' ions per bunch:

 Consider collision of 'A' nucleons per nucleus with 'B' nucleons per nucleus:

Systematizing our Knowledge

- All four RHIC experiments have carefully developed techniques for determining
 - the number of participating nucleons
 N_{PART} in each collision (and thus the impact parameter)
 - The number of binary nucleonnucleon collisions N_{COLL} as a function of impact parameter
- This effort has been essential in making the QCD connection
 - Soft physics ~ N_{PART}
 - Hard physics ~ N_{COLL}
- Often express impact parameter b in terms of "centrality", e.g., 10-20% most central collisions

Systematizing Our Expectations

Describe in terms of *scaled ratio* R_{AA}

Yield in Au + Au Events

 $(A \bullet B)$ (Yield in p + p Events)

- = 1 for "baseline expectations"
- > 1 "Cronin" enhancements (as in proton-nucleus)
- < 1 (at high p_T) "anomalous" suppression

Systematizing Our Expectations

Describe in terms of *scaled ratio* R_{AA}

Yield in Au + Au Events

 $(A \bullet B)$ (Yield in p + p Events)

- = 1 for "baseline expectations"
- > 1 "Cronin" enhancements (as in proton-nucleus)
- < 1 (at high p_T) "anomalous" suppression

Systematic Suppression Pattern

Unique to Heavy Ion Collisions?

• YES! : Run-3: a crucial control measurement via d+Au collisions

W.A. Zajc

01-Jul-09

Unique to Heavy Ion Collisions?

YES! : Run-3: a crucial control measurement via d+Au collisions

Energy Loss of Fast Partons

- Many approaches
 1983: Bjorken
 - 1991: Thoma and Gyulassy (1991)
 - 1993: Brodsky and Hoyer (1993)
 - 1997: BDMPS- depends on path length(!)
 - □ 1998: BDMS
- Numerical values range from
 - ~ 0.1 GeV / fm (Bj, elastic scattering of partons)
 - ~several GeV / fm (BDMPS, non-linear interactions of gluons)

 $\frac{dE}{dx} = \frac{3\sqrt{30}}{4} \alpha_s^2 \sqrt{\varepsilon} \ln\left(\frac{4ET}{M^2}\right) \sim \alpha_s^2 T^2 \ln\left(\frac{4ET}{M^2}\right)$

$$-\frac{dE}{dx}\approx\frac{4\pi}{3}C_F\alpha_S^2T^2\ln\left(\frac{E}{\mu_D}\right)$$

$$-\frac{dE}{dx}\approx\frac{\left\langle \Delta k_{T}^{2}\right\rangle }{2}$$

$$-\frac{dE}{dx} \approx \alpha_{S} \frac{C_{R}}{8} \frac{\mu_{D}^{2}}{\lambda_{g}} L \ln\left(\frac{L}{\lambda_{g}}\right)$$

$$-\frac{dE}{dx} \approx \alpha_s \frac{N_c}{4} \frac{\left< \Delta k_T^2 \right>}{2}$$

The One That Started It All...

FERMILAB-Pub-82/59-THY August, 1982

Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High p_r Jets in Hadron-Hadron Collisions.

> J. D. BJORKEN Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510

Abstract

High energy quarks and gluons propagating through quark-gluon plasma suffer differential energy loss via elastic scattering from quanta in the plasma. This mechanism is very similar in structure to ionization loss of charged particles in ordinary matter. The dE/dx is roughly proportional to the square of the plasma temperature. For hadron-hadron collisions with high associated multiplicity and with transverse energy dE_T/dy in excess of 10 GeV per unit rapidity, it is possible that quark-gluon plasma is produced in the collision. If so, a produced secondary high- p_T quark or gluon might lose tens of GeV of its initial transverse momentum while plowing through quark-gluon plasma produced in its local environment. High energy hadron jet experiments should be analysed as function of associated multiplicity to search for this effect. An interesting signature may be events in which the hard collision occurs near the edge of the overlap region, with one jet escaping without absorption and the other fully absorbed.

The Matter is Opaque

STAR azimuthal correlation function shows ~ complete absence of "away-side" jet

That is, "partner" in hard scatter is *absorbed* in the *dense* medium \Rightarrow Density ~ 50 x normal nuclear ε_0

q

Schematically (Partons)

Scattered partons on the "near side" lose energy but emerge; those on the "far side" are totally absorbed

•

Photons shine, Pions don't

• Rather: shine through consistent with pQCD

Precision Probes

40

Schematically (Photons)

Scattered partons on the "near side" lose energy but emerge; the direct photon always emerges 01-Jul-09

41

W.A. Zajc

RHIC and the Phase "Transition"

• Suppression of high momentum probes requires densities > 50 x ϵ_0 T (MeV)

 Au+Au collisions at top RHIC energy produces thermal matter with energy density

 $\varepsilon >> \varepsilon_0$ and $\varepsilon >> \varepsilon_{QGP}$

- From simple estimates
 From detailed pQCD probes
- Suppression not seen in
 - d+Au control
 - Photons
- Results consistent with the formation of QGP with a temperature T $\sim 2 T_{\rm C}$
- Next time: How fluid is the densest matter ever studied ?