

Nuclear Reactions

Hermann Wolter

Ludwig-Maximilians-Universität

München, Germany

Lecture 3 updated July 13, 09

National Nuclear Physics Summer School, MSU, June 28 - July 10, 2009

Status of lecture

I. Motivation

types and characterization of Nuclear reactions argument for transport descriptions

- II. Heuristic derivation of a transport equation test particle solution
- III. Elementary derivation of Vlasov eq.Relativistic field theory and relativistic transport eq.
- IV. Quantum transport theory
- V. Characterization and comparison of codes
 - Molecular dynamics
- VI. Fluctuations and transport theories
 Instabilities and phase transitions
 Boltzmann-Langevin eq. and approx. treatments
 VI. Overview over important results in heavy ion collisions

Instabilities, Fluctuation and Fragmentation

Van-der-Waals-like EOS

Evidence of Phase Transitions in Calculations

BNV calculation in a box (periodic bounday conditions) with initial conditions in side the instability region: $\rho = \rho_0/3$, T=5 MeV, $\beta = 0$

→ Formation of "clusters (fragments)", starting from small (numerical" fluctuations in the density. Time scale shows the growth time of the instable modes

other example as fct. Of initial density

Signatures of phase transition in experiment

→ Many examples in Sherry's lecture

Bimodality of the Fragment distribution as a signature of phase transition;

B. Tamain, F. Rivet, GANIL

Fluctuations in Phase Space

VI.4

elementary consideration:

Brownian motion with friction and random force R(t)

$$m\frac{\mathrm{d}v}{\mathrm{d}t}=-\gamma v+R(t)\,,$$

having the properties

$$\langle R(t) \rangle = 0 ,$$

 $\langle R(t)R(t') \rangle = I_R \delta(t - t') ,$

Solution for average kinetik energy is

$$\frac{1}{2}m\langle v^2\rangle = I_R/4\beta + e^{-\beta t}\langle v(0)^2\rangle \, \cdot \, \xrightarrow{t=\infty} \frac{1}{2}T$$

Then

$$\langle R(t)R(t')\rangle = 2\gamma T \,\delta(t-t')$$
.

Fluctuation-Dissipation theorem (Einstein relation)

→ Dissipation (collisions) and Fluctuations necessarily connected!

Boltzmann-Langevin Equation

Application of considereations to the Boltzmann transport equation.

Collision term split into average term \overline{K} and a fluctuation term δK

$$\dot{f} \equiv \frac{\partial}{\partial t} f - \{h[f], f\} = K[f] = \bar{K}[f] + \delta K[f] ,$$

Boltzmann-Langevin equation

The average term is as before

$$\bar{K}(\boldsymbol{r}, \boldsymbol{p}_1) = g \sum_{234} W(12; 34) [\bar{f}_1 \bar{f}_2 f_3 f_4 - f_1 f_2 \bar{f}_3 \bar{f}_4] ,$$
$$W(12; 34) = v_{12} \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{12 \to 34} \delta(\boldsymbol{p}_1 + \boldsymbol{p}_2 - \boldsymbol{p}_3 - \boldsymbol{p}_4) ,$$

The fluctuating term has the properties

$$\langle \delta K(\mathbf{r},\mathbf{p},t) \rangle \succ = \mathbf{0}$$

$$\langle \delta K(\mathbf{r},\mathbf{p},t) \delta K(\mathbf{r}',\mathbf{p}',t') \rangle \succ = C(\mathbf{p},\mathbf{p}',\mathbf{r},t) \delta(\mathbf{r}-\mathbf{r}') \delta(t-t') ,$$

$$C(\mathbf{p}_{a},\mathbf{p}_{b},\mathbf{r},t) = \delta_{ab} \sum_{234} W(a2;34)F(a2;34)$$

$$+ \sum_{34} \left[W(ab;34)F(ab;34) - 2W(a3;b4)F(a3;b4) \right] ,$$

Implementations of BL Equation

Ref.:

- Abe, Ayik, Reinhard, Suraud, Phys.Rep. 275, 49 (96)
- P. Chomaz, M. Colonna, J. Randrup, Phys. Rep. 389, 263 (2004)
- A. Ono, J. Randrup, Eur. Phys. J. A 30, 109 (2006) (WCI-Book)

Exact studies (on a lattice) only in 2D: Randrup, Burgio, NPA 529 (1991)

Approximate studies:

- 1. BOB: replace fluctuation term by fluctuating force, gaged to most unstable mode Colonna, Guarnera
- 2. Stochastic MF dynamics: introduce locally statistical fluctuations ito the phase space distribution at certain times $\sigma^2 = f(1-f)$: Colonna, DiToro,...Wolter
- 3. Numerical fluctuations: gauge numerical fluctuations to instability of most unstable mode: Colonna, Di Toro,..
- Molecular dynamics a priori has many body corrlations.
 QMD: Aichelin, Hartnack: study of formation time of clusters CoMD: Bonasera, Papa, improve treatment of Pauli principle AMD: Ono, fluctuation due to splitting of wave packet.
- 5. Studies within BUU an percolation model: W. Bauer, S. Pratt

A wide field!!

What have we learned about the Phase diagram?

Compression, particle production, temperature.

modification of hadron properties (i.e.hadron spectral functions)!

VII.1

transition,

Deep inelastic

Flow Observables

Stopping in HIC

Elliptic Flow

Evolution with impact parameter and energy

Limits for the EOS

Isospin Flow

Frobing the symmetry energy with now in mo. 150-nows

The symmetry energy:

-20

-40

-1.0

-0.5

0.0

y/y_{proj}

0.5

1.0

RMF model with ρ and σ mesons:

Particle Production

What can one learn from different species?

- photons: high energy: first chance pncollisions
- pions: production at all stages of the evolution via the Δ -resonace
- kaons (strange mesons with high mass): subthreshold production, probe of high density phase
- ratios of π^+/π^- and K⁰/K⁺: probe for symmetry energy

 $p, n, d, t, {}^{3,4}He,...,$

 $\pi^+, \pi^-, \pi^0, ..., K^+, K^0, K^-,...$

Inelastic collisions: Production of particles and resonances: Coupled transport equations

e.g. kaon production;

coupling of $\boldsymbol{\Delta}$ and strangeness channels.

$$\frac{d}{dt}f_{N}(\boldsymbol{x}_{\mu}) = I_{coll}(\sigma_{NN \to NN}, f_{N}; \sigma_{NN \to N\Delta}f_{\Delta};....)$$
$$\frac{d}{dt}f_{\Delta}(\boldsymbol{x}_{\mu}) = I_{coll}(\sigma_{\Delta N \to NYK}f_{Y}f_{K};....)$$
etc.

Photons

High energy (hard) photon production in HIC:

Universal curve, when scaled relative to Coulomb barrier:

- → First chance pn collisions
- \rightarrow medium modification of pny cross section

Pions

Pion Ratios and Symmetry Energy

 π^+ / π^- -ratios as a probe for the iso-EOS,

... and comparison with calculations

Fig. 25. Upper left panel: Excitation function of the 4π -integrated ratio of π^-/π^+ yields in central Au+Au collisions. The experimental data are joined by a least squares fit of the function $c_0 + c_{-1}(E/A)^{-1}$ excluding the lowest energy point. The IQMD SM prediction (triangles) is also given. Upper right and lower left panels: the N/Z dependence at 1.5*A*, respectively 0.4*A* GeV of the π^-/π^+ ratio. The solid lines are least squares fits of linear or quadratic (N/Z) dependence. Lower right panel: same as lower left panel, but for filtered data.

VII.10

Strangeness production

Kaon Production:

A good way to determine the symmetric EOS (C. Fuchs et al., PRL 86(01)1974)

VII.13 Neutron Star properties and the Symmetry Energy

Astrophysical Connections, esp. for Iso-Vector EOS

Neutron Star Structure

Constraints on the Equation-of-state

- from neutron stars: maximum mass

Neutron star models

Figure 3.3: Possible novel phases and structures of subatomic matter: (i) a large population of hyperons (Λ, Σ, Ξ), (ii) condensates of negatively charged mesons with and without strange quarks (kaons or pions), (iii) a plasma of up, down, strange quarks and gluons (strange quark matter). Compilation by F. Weber [1].

gravitational mass vs_{Constraints} on the high-density nuclear equation of state from the phenomenology of compact stars and heavy-ion collisions

baryonic mass

direct URCA process

mass-radius relation

- from heavy ion collisions: flow constraint

kaon producton

T. Klähn,^{1,2,*} D. Blaschke,^{3,4,†} S. Typel,³ E.N.E. van Dalen,² A. Faessler,² C. Fuchs,² T. Gaitanos,⁵ H. Grigorian,^{1,6} A. Ho,⁷ E.E. Kolomeitsev,⁸ M.C. Miller,⁹ G. Röpke,¹ J. Trümper,¹⁰ D.N. Voskresensky,^{3,11} F. Weber,⁷ and H.H. Wolter⁵

Phys.Rev. C74 (2006) 035802

Models for Symmetry Energy for NS

 $\mathsf{NL}\rho\delta$

DBHF

DD

 $D^{3}C$

KVR

KVOR

DD-F

0.1459

0.1779

0.1487

0.1510

0.1600

0.1600

0.1469

-16.062

-16.160

-16.021

-15.981

-15.800

-16.000

-16.024

203.3

201.6

240.0

232.5

250.0

275.0

223.1

576.5

507.9

-134.6

-716.8

528.8

422.8

757.8

31.0

33.7

32.0

31.9

28.8

32.9

31.6

92.3

69.4

56.0

59.3

55.8

73.6

56.0

0.603

0.684

0.565

0.541

0.800

0.800

0.556

Equations of State tested:

$$\begin{array}{c}
400 \\
\hline E_{0} \\
\hline$$

$$egin{aligned} &rac{B}{A} = E_0(n) + eta^2 E_S(n): \ &pprox a_V + rac{K}{18} \epsilon^2 - rac{K'}{162} \epsilon^3 + \dots \ &\dots + eta^2 \left(J + rac{L}{3} \epsilon + \dots\right) + \dots \ &\epsilon = (n-n_{sat})/n \ η = (n_n-n_p)/(n_n+n_p) \end{aligned}$$

NS Masses and Cooling

NS masses and cooling behaviour depends on iso-vector EOS

Consistency between HI and NS Data

Flow-Constraint from HIC:

(P.Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002))

Maximum Mass by Flow Constraint

(applied "universal" $eta^2 E_S$ (error bars!))

C

The End

Thank you very much for the interest

-and I hope the lecture was instructive