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VI. Fluctuations and transport theories
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We start with the Time-dependent HF formalism:

Hamiltonian with two-body interactions

and look for solutions in Slater determinant form 

The central quantity is the 1-body density

with a field operator and the notation in coordinate or
momentum repres. 

The eom for the density matix is the TDHF equation

Where the s.p. HF hamiltonian is

Now one performs a Wigner transform

of the 1-body density matrix

which is a Fourier transform w.r.t to the difference in co ord. resp. mom. space.

It has the variables of a phase space distribution, 

and in fact, integrals over r and p give the density and momentum distribution.

But it is a quantum object, and not positive definite!

On the next page we see that the EOM for f obeys the Vlasov equation! 

III.1               Elementary Derivation of Vlasov Eq uation (see e.g. Bertsch)
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TDHF:

Wigner transform of s.p. density

form time derivative of Wigner transform and use TDHF t o express        .

The kinetic term gives easily ,

The potential term for a local potential in coord. spac e gives

Collect in first order:                                                         Vlasov equation

Remarks: 

• 1st order gradient expansion gives a classical equation , since lhs already contained
a term ~               

• collision term has to be added „by hand“ as before

• quantum statistics only contained in initial condition, but is preserved by the
evolution (for Vlasov-> Liouville theorem; for coll. te rm explicitely via blocking terms)

II.2                             Derivation of Vlas ov Equation (2)
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III.3         Remarks on  the BUU Equation: Momentum De pendence

Momentum dependence

the mean field is energy dependent for positive energies

���� known from the energy dependence of the real part of the op tical potential, effect
of exchange and correlations (above we assumed U local, i.e. momentum independent.

More generally introduce U(ρρρρ,p).

In the above derivation this introduces a 

momentum dependent term on lhs. 

choice of U(ρ,ρ,ρ,ρ,p) later!
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III.4     Remarks on the BUU Equation: Relaxation time approximation

1. Relaxation time approximation:

Write collision term in terms of in- and out-scattering t ransition rates

i..e. the distribution approaches the distribution f w with a relaxation time, which is
given by the total rate, ten sum of in- and out-transiti on rates (which, however, is not
constant!)

To take it as a constant is an approximation to the BUU e q. in the neighborhood of 
thermal equlilibrium. In thermal equlilibrium the sol ution (without potential) are the
Fermion/Bose occupation probabilities
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III.4                          Relativistic transport formulation

1. Traditionally nuclear physics formulated in the Hamilt onian formalism, i.e. 
non-relativistically.

simple reason εεεεF~35 MeV << mc 2~1000MeV

2. About 20 years ago, starting with Walecka, a relativi stic formulation has 
been employed. I will very briefly explain this to set th e context, but it would
really require another complete lecture. 

3. From this, just like before, we can then derive a relat ivistic transport
equation, which displays some new features.

4. All this has to be very brief

References: 

1. Relativistic mean field model

B. Serot, J.D. Walecka, Adv. Nucl. Phys. 15, 1 (198 6)

2. Relativistic transport theory

B. Blaettel, V. Koch, U. Mosel, Rep. Prog. Phys. 56 , 1 (1993) ���� material



III.5                                „Quantenhadrody namics“

Non-relativistic: Hamiltonian,                           ,Vij NN-interaction

Relativistic (field theoretical): Lagrangian

ψ: ψ: ψ: ψ: Fermions: nucleon, ∆, ∆, ∆, ∆, N*,..

φ:φ:φ:φ: Bosons: mesons σ,ω,ρσ,ω,ρσ,ω,ρσ,ω,ρ,...,...,...,...

Simplest (Walecka) model: 

only σ,ωσ,ωσ,ωσ,ω mesons in linear coupling

In the static limit the minimal coupling assumption corre sponds to Yukawa forces, 
suggested long ago by Yukawa, and successful phenomenolo gically
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Semiclassical approximation: meson (Boson) fields are t aken as classical. 

The field eqs. are then:                                                               

scalar source

vector source

In static, homogenious nuclear matter we obtain

shifted „free“ Dirac eq. with

effective momentum with vector self energy

effective mass with scalar self energy

Fitting to saturation density and energy gives

ΣΣΣΣs∼∼∼∼ -400 MeV, ΣΣΣΣ0000∼∼∼∼ 300 MeV,  and „Schrödinger–equivalent“

potential

and Spin-orbit potential 

explains weak and energy dependent central and
strong spin-orbit interaction in nuclear systems; a maj or
problem in the development of the nuclear shell model

III.6      Semiclassical approximation: Relativistic M ean Field (RMF)
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σωσωσωσω-model: however, not sufficient for nuclear matter prop erties: compressibility, 
effective mass, asymmetry dependence. Various extensio ns have been proposed

isovector mesons: symmetry energy

non-linear meson self-interactions

density dependent coupling vertices

density dependent derivative coupling (D3C) )())(( σωωωγ µµννµ
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III.7                         Quantenhadrodynamics: E xtensions
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RMF model well adjusted to properties of nuclear matter , finite nuclei and neutron stars;

here some representative results for the density dependent (DD)approach: S. Typel, et al.

binding energies Spin-orbit splitting

Masses of neutron stars (NS):

The mass of a NS is determined by integrating the eq. 
for hydrostatic equil. in a gravitational field (Tolman -
Oppenheimer eq.) outwards from a central censity
until the pressure equals to zero. The mass of a NS for
a given EOS has to be equal or heavier than the
heaviest NS‘s observed. Most NS have masses of 1 to 
1.4 solar masses. 

In the figure shows results of this relationship for
various nuclear EOS‘s, among them also RMF models
(NLρδ,ρδ,ρδ,ρδ,DD,D3C,DDF)

III.8                        Representative Results of  RMF Models
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Wigner Transform of the one-body density; 
i.e. Fourier transform with respect to the relative coor dinate („fast“)

Contains all one-body information, 
i.e. for 1-body operator O

III.9                                  Relativistic BUU Equation
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Derive equations of motion for F βαβαβαβα: Using the Dirac eq.; one obtains expressions like

which are evaluated in the semiclassical (gradient) appr oximation as before
(assumption of smooth fields „slow“)

Derived in a similar way, as for Schrödinger approach (u sing the ( σ,ωσ,ωσ,ωσ,ω) ) ) ) model for
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Equations of motion in semiclass. approx. separated in to real and imag. parts
yield two equations:

1. Mass shell constraint:

2. Kinetic transport) equation
a. Decomposition of F(x,p) in Lorentz invariants:

b. relation between the components

c. Transport (rel. Vlasov) equation:

III.10                              Relativistic BUU  Equation (2)
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3. New Feature: two potentials: scalar vector ���� mom.dep. mean field, 
„Lorentz- like“ forces



IV.1                                 Quantum Transp ort Theory

We had derived the BUU transport eq.

or its relativistic variant. 

Open questions:

� How can the collision term be derived, instead of intuitiv ely written down.

� What is the deeper relationship between mf and cross secti on

� how does one describe transport of particles with finite w idth (unstabe particles)

Use a many-body approach which takes into account the non-e qulilibrium situation
(Kadanoff-Baym eqs.)

Here only a sketch of the essential ingredients. More in  the following refs. 
L.P.Kadanoff, G. Baym, Quantum statistical mechanics , 1965 
P. Danielewicz, Ann. Phys. 152, 239 (1984)
W. Botermans, R. Malfliet, Phys. Rep. 198 (1990) 11 5
P. Danielewicz, development of lattice methods (Trento , 2009)

or in a lecture by S. Leupold (Giessen)(in the materials o n the website).
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Hierarchy of n-body Green functions (Martin-Schwinger hierarchy)

decouple formally via the self energy Σ,Σ,Σ,Σ, or practically an approximation to it , , , , in 
particular, in  Brueckner theory (BHF)

In non-equilibrium there are two independent 1-body Green functions (GF), since the
propagation forward and backward in time is different. Often one uses the correlation
GFs G> and G< , and a variety of derived GF and self energies.    

F generalized occupation

A spectral function

retarded/advanced GF

For these one obtains with a Wigner transform and a gradi ent approximation the
Kadanoff-Baym equations

IV.2                                 Non-equilibrium Transport
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IV.3                                     The Spectral Function

The spectral function
contains the information
about the decay width of 
a particle in medium.

Even particle which are
stable in vacuum obtain a 
width in-medium due to 
collisions (imaginary part
of self energy)

„Off-shell“ transport has 
only been invest. in a few
cases.

To obtain the usual BUU 
transport eq. one makes
the „Quasipart. 
Approximation (QPA)“, 
replacing the spectral fct. 
by a delta function on the
mass shell.



IV.4                                         The Sel f Energy

The self energy is taken in the
T_Matrix approximation, 
including exchange and two-
body correlations: the
Brueckner HF theory.

With this and the QPA one
obtains BUU-like eqs.

Now the collision term
appears consistently and is
obtained on the same footing
from the Brueckner T-Matrix .

The T-Matrix would have to be
calculated consitently with
the non-equil. phase space
disribution, i.e. in non-eq., 
which is hardly possible. But
there have been approx., like
a two-Fermi sphere approx.

To explain all this in detail needs much more space! 
Main message: Transport theory can be placed on a solid  many-body footing (which, 
however, has not often been employed in real calculatio ns.)

T T

T T



1. Implementation, attempting to simulate the solution o f the BUU/BNV… equation:

���� test particle (TP) method

���� point or finite size test partticles (Gaussians or trian gles)

���� MF often parametrized as Skyrme type with momentum dep. ( next page)

V.1              Characterization of Codes for Transport  Calculations

r~1 fm

First family: Vlasov-type for 1-body phase space densit y
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1. Implementation, attempting to simulate the solution o f the BUU/BNV… equation:

���� test particle (TP) method

���� point or finite size test partticles (Gaussians or trian gles)

���� MF often parametrized as Skyrme type with momentum dep. ( next page)

���� cross section empirical (usually free cross section, is ospin dependent)

���� parallel ensemble method (collisons in sep. ensemble, MF averaged )

2. Relativistic BUU (RBUU)

���� relativistic variant of BUU, often also with gaussian TP

���� MF either from empirical density functional,

i.e. RMF (non-linear or density dependent)

���� or use of Brueckner HF (Dirac-BHF) G-matrix in MF and c ollision term
consistently

����also including non-equlibrium effects in the two-Fermi s phere approximation

V.1               Characterization of Codes for Transport  Calculations

r~1 fm

First family: Vlasov-type for 1-body phase space densit y

Second family: Molecular Dynamics to solve the many-bod y problem



V.2                                        Molecula r Dynamics

Attempt to solve the many-body problem with assumptions: use of 2-body 
interaction instead of MF depending on density

1. Classical Molecular dynamics CMD

point particles, deterministic, 

but possibly chaotic behaviour because

of short range repulsion

2. Quantum molecular dynamics QMD

gausssian particles with large width to smooth fluctuati ons,

not a wave packet, no antisymmetrization

(thus similar to BUU with N TP=1) but event generator.

variant IQMD, isospin dependence in interactions

3. Fermionic MD (FMD), Antisymmetrized MD (AMD)

Gaussian paricles, but antisymmetrization included.

Particle coordinates loose meaning as WP 

approach each other

r~2 fm

r2r1



V.3                                   Molecular Dymn amics (2)

Spreading of wave packet:

Treated differently in the different approaches: 

rr
time

represented by test particles

not included

taken fulls into account, difficulties
in final state

represented by different events

stochastic splitting of wave packet 
into WPs of original size

Important in treatment of fluctuations



V.4                                       Code Comp arison

Workshop on Simulations of Heavy Ion Collisions at Low and Intermediate
Energies, ECT*, Trento, May 11-15, 2009 

Obviously, transport codes are essential to gain inform ation from HIC.

On the other hand they are complicated simulation program s, which contain many
different strategies. It is important, to know the unce rtainties associated with these
implementations.

Thus we organized a workshop (working group)  to attempt to compare the results from
different codes, taking as far as possible the same phy sical input (mean field, cross 
section, etc.) ���� included codes, next page

Show some representative results for observables, which are discussed more later:

y/ybeam

<px>

Transverse flow (compression)

y/ybeam

dN/dy

-1 1

before

after

Rapidity distribution (stopping)

z

zyrapidity
β
β

−
+=

1
1

ln
2
1



V.5                          Codes, included in the c omparison

as requiredas requiredPR160(88)189; PRC44(91)450 & 2095.BUU B.-A. Li
as requiredas required??BUUH. Schade

as requiredas requiredPLB663(08)197; arXiv:0904.2106v1; 
PRC76(07)044909

RBUU-GiessenGiBUU (RMF)

as requiredas requiredgibuu.physik.uni-giessen.deBUU-GiessenGiBUU (SK)

as requiredas requiredNPA714(03)643;NPA741 (04) 209RBUU(Munich)Gaitanos

as requiredas required??BNVPfabe

as requiredas requiredNPA732(04)202; PRC72(05)064609BNV (CT)Giordano

as requiredas requiredPRC73(06)051601; JPG32(06)151UrQMDQ.-F. Li

as requiredas required-BEMDanielewicz

as requiredas requiredPLB664(08)145;  PRC71 (05)024604; 
PRC74(06)014602

ImQMDZhang

own EoSas requiredPR202(91)233BQMDNapolitani

as requiredas requiredEPJA1(98)151IQMDHartnack

own EoSown EoSPRC66(02)014603AMDOno

EoS (hw2)EoS (hw1)ReferencesCodeName

The major codes in use today are included in the comparison



V.6                                    Code Comparis on: Flow

Correlation
between
transverse
flow (abcissa) 
and stopping
(ordinate, 
vartl,) in 
ndifferent
codes (100 
AMeV)



V.7                                Code Comparison: Collisions

Energy distributions of collisions

solid: all attempted collisions, dashed: unblocked co llisions

400 AMeV 100 AMeV

These are preliminary results!

The differences for flow observables are not drastic (even t hough they are sometimes of the
order of physical effects of different EOS‘s). The dif ferences in the collision histories are
large. Here may lie the reason for the difference in the beh aviours of the different codes.

Further studies are forthcoming.


