

Nuclear Reactions

Hermann Wolter

Ludwig-Maximilians-Universität

München, Germany

National Nuclear Physics Summer School, MSU, June 28 - July 10, 2009

Status of lecture

I. Motivation

types and characterization of Nuclear reactionsargument for transport descriptions

- **II. Heuristic derivation of a transport equationtest particle solution**
- **III. Elementary derivation of Vlasov eq. Relativistic field theory and relativistic transport eq.**
- **IV. Quantum transport theory**
- **V. Characterization and comparison of codes**
	- **Molecular dynamics**
- **VI. Fluctuations and transport theories**

Instabilities and phase transitions

Boltzmann-Langevin eq. and approx. treatments

VI. Overview over important results in heavy ion collisions

III.1 Elementary Derivation of Vlasov Equation (see e.g. Bertsch)

TDHF:Wigner transform of s.p. density $f(r,p) = \frac{1}{(2\pi)^3} \int ds \ e^{-ips} \langle \psi(r+\frac{s}{2}) \psi^+(r-\frac{s}{2}) \rangle = \frac{1}{(2\pi)^3} \int ds \ e^{-ips} \rho(r+\frac{s}{2},r-\frac{s}{2})$ **form time derivative of Wigner transform and use TDHF to express** $\frac{1}{\partial t}$ **.** The kinetic term gives easily $-\frac{\boldsymbol{\mu}}{m}\nabla_{_{\boldsymbol{r}}}f(\boldsymbol{\rho},\boldsymbol{\mathfrak{c}})$ **The potential term for a local potential in coord. space gives U(r,r')**=δ**(r** [−]**r')U(r)** Collect in first order: $\frac{1}{\partial t} + \frac{1}{m}V_rI - V_rU(I\prime)V_pI(I\prime,P) = 0$ Vlasov equation **II.2 Derivation of Vlasov Equation (2)**<u>∂ρ</u> $-\frac{\rho}{m}\nabla_r$ $\frac{\rho}{2}$ Uf ds e^{-1ps} $(U(r+\frac{s}{2})-U(r-\frac{s}{2}))$ $\rho(r+\frac{s}{2},r-\frac{s}{2})=\nabla_rU\,\nabla_p f+...=2$ sin **f() p** $(\frac{s}{2}) = \nabla_r U \nabla_p f + ... = 2 \sin \frac{\nabla_r^{(U)}}{2}$ $\frac{s}{2}$, $\mathbf{r} - \frac{s}{2}$ $\frac{s}{2}$)) ρ (r + $\frac{s}{2}$) $\frac{s}{2}$) – U(r – $\frac{s}{2}$) $\frac{1}{(2\pi)^3}$ ds e^{-ips} $(U(r+\frac{s}{2}))$ **1 i** $\frac{1}{i}$ $\frac{1}{(2\pi)^3}$ $\frac{1}{(\pi)^3}\int ds\ e^{-ips}\left(\frac{U(r+\frac{s}{2})-U(r-\frac{s}{2})\right)\rho(r+\frac{s}{2},r-\frac{s}{2})=\nabla_r U\nabla_p f+...=2\sin\frac{\nabla_r^{(U)}\nabla_p}{2}\right)$ **expand** $U(r) + \frac{1}{2} s \nabla_r U(r) + ...$ $\frac{r}{m}\nabla_{r}f-\nabla_{r}U(r)\nabla_{\rho}f(r,\mathbf{p})=0$ **p tf** $\frac{\partial f}{\partial t} + \frac{\boldsymbol{\rho}}{m} \nabla_r f - \nabla_r \boldsymbol{U(r)} \nabla_{\rho} f(r,\boldsymbol{\rho}) =$ $\frac{\partial}{\partial t}\rho(1,2)=\frac{1}{i}\{h,\rho\}_{1,2}$ $h(1,2)=T(1,2)+\sum_{3,4}(V_{13,24}-V_{14,23})\rho_{3,4}$

Remarks:

- \bullet **1st order gradient expansion gives a classical equation, since lhs already containeda term [~] O(** h **)**
- •**collision term has to be added "by hand" as before**
- • **quantum statistics only contained in initial condition, but is preserved by theevolution (for Vlasov-> Liouville theorem; for coll. term explicitely via blocking terms)**

III.3 Remarks on the BUU Equation: Momentum Dependence

$$
\frac{\partial f}{\partial t} + \frac{\vec{p}}{m} \vec{\nabla}^{(r)} f - \vec{\nabla} U(r) \vec{\nabla}^{(p)} f(\vec{r}, \vec{p}; t) = \int d\vec{v}_2 d\vec{v}_1 d\vec{v}_2 \cdot \mathbf{v}_{21} \sigma_{12}(\Omega) (2\pi)^3 \left[f_{1'} f_{2'} \cdot \vec{f}_1 \cdot \vec{f}_2 - f_{1} f_{2} \cdot \vec{f}_{1'} \cdot \vec{f}_{2'} \right]
$$

Momentum dependence

the mean field is energy dependent for positive energies

 known from the energy dependence of the real part of the optical potential, effect of exchange and correlations (above we assumed U local, i.e. momentum independent.

More generally introduce U(ρ**,p).**

In the above derivation this introduces ^a

momentum dependent term on lhs.

 $\nabla_{\rho} \boldsymbol{U} \, \nabla_{\rho} \boldsymbol{f}(\boldsymbol{r}, \boldsymbol{p})$

choice of U(ρ,**p) later!**

III.4 Remarks on the BUU Equation: Relaxation time approximation

$$
\frac{\partial f}{\partial t} + \frac{\vec{p}}{m} \vec{\nabla}^{(r)} f - \vec{\nabla} U(r) \vec{\nabla}^{(p)} f(\vec{r}, \vec{p}; t) = \int d\vec{v}_2 d\vec{v}_1 d\vec{v}_2 \cdot \mathbf{v}_{21} \sigma_{12}(\Omega) (2\pi)^3 \left[f_{1'} f_{2'} \cdot \vec{f}_1 f_2 - f_{1} f_2 \cdot \vec{f}_1 \cdot \vec{f}_2 \cdot \right]
$$

1. Relaxation time approximation:

Write collision term in terms of in- and out-scattering transition rates

$$
\textbf{W}^{\pm}
$$

w

ww tot tot w $\frac{1}{2}$ W^{tot} $\frac{1}{2}$ **w^{tot} (f** - f_w); $w^{tot} = w^+ + w^-$; $f_w = \frac{W}{w^{tot}}$; **2** $\frac{1}{2}$ W $^+$ $\mathsf{f}\ \frac{1}{2}$ **:=(1−f)** $\frac{1}{2}$ **w**⁺ −**f** $\frac{1}{2}$ **w**[−]; **2** $\tau = \frac{1}{16}$ **:**= $-\frac{f-f}{f}$ $\mathbf{f} = -\frac{1}{2} \mathbf{W}^{\text{tot}} (\mathbf{f} - \mathbf{f}_{w})$; $\mathbf{W}^{\text{tot}} = \mathbf{W}^{+} + \mathbf{W}^{-}$; $\mathbf{f}_{w} = -\frac{1}{2}$ =−=−——": τ =−−=+= $^+$ + w $^{\prime}$; f = $\frac{W^+}{W}$

tot

- **i..e. the distribution approaches the distribution fw given by the total rate, ten sum of in- and out-transition rates (which, however, is not with a relaxation time, which is constant!)**
- **To take it as a constant is an approximation to the BUU eq. in the neighborhood of thermal equlilibrium. In thermal equlilibrium the solution (without potential) are theFermion/Bose occupation probabilities**

$$
f_o(p) = 1/(1 \pm \exp(\frac{E-\mu}{T}))
$$

w

τ

III.4 Relativistic transport formulation

1. Traditionally nuclear physics formulated in the Hamiltonian formalism, i.e. non-relativistically.

simple reason ^ε **F~35 MeV << mc²~1000MeV**

- **2. About 20 years ago, starting with Walecka, a relativistic formulation has been employed. I will very briefly explain this to set the context, but it wouldreally require another complete lecture.**
- **3. From this, just like before, we can then derive a relativistic transportequation, which displays some new features.**
- **4. All this has to be very brief**

References:

- **1. Relativistic mean field model**
	- **B. Serot, J.D. Walecka, Adv. Nucl. Phys. 15, 1 (1986)**
- **2. Relativistic transport theory**
	- **B. Blaettel, V. Koch, U. Mosel, Rep. Prog. Phys. 56, 1 (1993) material**

III.5 CONSUMING MANUS, **Quantenhadrodynamics**"

Non-relativistic: Hamiltonian,
$$
H = \sum_{i} T_{i} + \sum_{i \leq j} V_{ij}
$$
, V_{ij} NN-interaction
\nRelativistic (field theoretical): Lagrangian
\n
$$
\psi
$$
: Fermions: nucleon, \triangle , N^{*} ...
\n ϕ : Bosons: mesons σ , ω , ρ ...
\n
$$
\frac{\partial L}{\partial \phi_{i}} - \frac{d}{dx_{\mu}} \frac{\partial L}{\partial \mu \phi_{i}} = 0
$$
\nSimplest (Walecka) model:
\n
$$
L = \overline{\Psi} \left[\gamma_{\mu} \left(i \partial^{\mu} - g_{\omega} \omega^{\mu} \right) - \left(m_{\overline{\mu}} \overline{g_{\sigma}} \overline{g_{\sigma}} \right) \right] \Psi + L^{mes}
$$
\nonly σ , ω mesons in linear coupling
\n
$$
\boxed{L^{mes} = \frac{1}{2} \left(\partial^{\mu} \sigma \partial_{\mu} \sigma - m_{\sigma}^{2} \sigma^{2} \right) - \frac{1}{4} F^{\omega}{}_{\mu\nu} F^{\omega}{}^{\mu\nu} + \frac{1}{2} m_{\omega}^{2} \omega_{\mu} \omega^{\mu}}
$$
\n
$$
F^{\omega}{}^{\mu\nu} = \partial^{\mu} \omega^{\nu} - \partial^{\nu} \omega^{\mu}}
$$

In the static limit the minimal coupling assumption corresponds to Yukawa forces, suggested long ago by Yukawa, and successful phenomenologically

$$
V_{NN} = -\frac{g_{\sigma}}{4\pi} \frac{e^{-m_{\sigma}r}}{r} + \frac{g_{\omega}}{4\pi} \frac{e^{-m_{\omega}r}}{r}
$$

attractive repulsive

III.6 Semiclassical approximation: Relativistic Mean Field (RMF)

Semiclassical approximation: meson (Boson) fields are taken as classical.

The field eqs. are then: \bm{g}_{σ}^{-} *)* $\bm{\sigma}$ *=* $\bm{g}_{\sigma}\langle\bm{\psi}\bm{\psi}\rangle$ *=* \bm{g}_{σ} ρ_{s} $\;$ *scalar source w* i^ν vector source $v_{\omega}^{\;\;\;\;\;\alpha} = \mathbf{g}_{\omega}\langle\overline{\psi}\gamma^{\nu} \rangle$ $\partial_{\mu}F^{\mu\nu}+m_{\omega}^{\ \ 2}=g_{\omega}\langle\overline{\psi}\gamma^{\nu}\psi\rangle=g_{\omega}$ j $(\partial_{\mu}\partial^{\mu} + m_{\sigma}^{\ \ 2})\sigma = g_{\sigma}\langle\overline{\psi}\psi\rangle = g_{\sigma}\rho$ $\int \gamma_\mu (\mathbf{i}\partial_\mu - \mathbf{g}_\omega \omega_\mu) - (\mathbf{m} - \mathbf{g}_\sigma) \mathbf{j}\psi = \mathbf{0}$ **s** $\partial_{\mu}\partial^{\mu}+m_{\sigma}^{\;\;2}$) $\sigma= g_{\sigma}\langle\overline{\psi}\psi\rangle=$

In static, homogenious nuclear matter we obtain

shifted "free" Dirac eq. with

effective momentum with vector self energy

effective mass with scalar self energy

$$
(\gamma_{\mu} \mathbf{p}^{*\mu} + \mathbf{m}^{*})\mathbf{u} = 0;
$$

$$
\mathbf{p}^{*\mu} = \mathbf{p}^{\mu} - \frac{g_{\omega}}{m_{\omega}^{2}} \rho_{0} \delta_{\mu 0} = \mathbf{p}^{\mu} - \Sigma^{\mu}
$$

$$
\mathbf{m}^{*} = \mathbf{m} - \frac{g_{\sigma}}{m_{\sigma}^{2}} \rho_{s} = \mathbf{m} - \Sigma_{s}
$$

Fitting to saturation density and energy givesDP fit 1 DP fit 2 ∼ **-400 MeV,** Σ0[∼] **300 MeV, and "Schrödinger–equivalent"** Σ **s** $\sum_{s} + \frac{E}{m} \sum_{o} + \frac{(\sum_{s} - \sum_{o})^{2}}{2m}$ $(\Sigma_{\rm s} - \Sigma_{\rm 0})$ $\delta^{\text{EQ}} = -\Sigma_s + \frac{E}{m}\Sigma_o + \frac{(\Sigma_s - \Sigma_s)}{2m}$ **E** $U^{\text{SEQ}} = -\Sigma_{\text{s}} + \frac{E}{m}\Sigma_{0} + \frac{(Z_{\text{s}}-2)}{2m}$ $\bm{U}^{\texttt{SEQ}} = -\bm{\varSigma}_{\texttt{c}} + \bm{\varSigma}$ **m**optical potential
o $\frac{d}{d\mathbf{r}}\left(\mathbf{\Sigma}_\mathbf{s}+\mathbf{\Sigma}_0\right)\ell\cdot\mathbf{s}$ **1dand Spin-orbit potential** $V_{so} = \frac{1}{2m^*} \frac{1}{r} \frac{d}{dr} (\Sigma_s + \Sigma_0)$ $\mathcal{L}_{\mathsf{so}} = \frac{1}{2m^*} \frac{1}{r} \frac{d}{dr} \left(\mathcal{L}_{\mathsf{s}} + \mathcal{L}_{\mathsf{0}} \right) \ell$ **rdrexplains weak and energy dependent central and strong spin-orbit interaction in nuclear systems; a major**200 600 800 1000 **problem in the development of the nuclear shell model** nucleon kinetic energy E_{kin} [MeV]

III.7 Quantenhadrodynamics: Extensions

σω**-model: however, not sufficient for nuclear matter properties: compressibility, effective mass, asymmetry dependence. Various extensions have been proposed**

$$
L = \overline{\Psi} \left[i \gamma_{\mu} \left(\partial^{\mu} + i g_{\omega} \omega^{\mu} + i g_{\rho} \frac{\overline{\tau}}{2} \overline{b^{\mu}} \right) - \left(m - g_{\sigma} \sigma - g_{\delta} \frac{\overline{\tau}}{2} \overline{\delta} \right) \right] \Psi + L^{mes}
$$

\nisovector mesons symmetry energy
\nnon-linear meson self-interactions
\ndensity dependent coupling vertices
\ndensity dependent derivative coupling (D3C)
\nFull Lorentz structure:
\n
$$
\frac{1}{\sigma} \frac{\partial^2}{\partial \rho} \left[\frac{\partial^2}{\partial \rho} \frac{\partial^2}{\partial \rho} - m_{\sigma}^2 \sigma^2 \right] - \frac{b_3}{3} \sigma^3 - \frac{b_4}{4} \sigma^4
$$
\ndensity dependent derivative coupling (D3C)
\nFull Lorentz structure:
\n
$$
\frac{1}{\sigma} \frac{\sigma}{\delta} \frac{\delta}{\delta} = E_{sym} = \frac{1}{6} \frac{k_F^2}{E_F^2} + \frac{1}{2} \left[f_{\rho} - f_{\delta} \left(\frac{M}{E^*} \right)^2 \right] \rho_B
$$
\nAccording as for the
\nisoscalar vector parts in potential

III.8 Representative Results of RMF Models

RMF model well adjusted to properties of nuclear matter, finite nuclei and neutron stars;here some representative results for the density dependent (DD)approach: S. Typel, et al.

binding energies

Masses of neutron stars (NS):

The mass of a NS is determined by integrating the eq. for hydrostatic equil. in a gravitational field (Tolman-Oppenheimer eq.) outwards from a central censity until the pressure equals to zero. The mass of a NS fora given EOS has to be equal or heavier than the heaviest NS's observed. Most NS have masses of 1 to 1.4 solar masses.

In the figure shows results of this relationship for various nuclear EOS's, among them also RMF models(NLρδ,**DD,D3C,DDF)**

Spin-orbit splitting

III.9 Relativistic BUU Equation

Derived in a similar way, as for Schrödinger approach (using the (σ,ω) **model forsimplicity**)**:**

starting from one-body density

$$
\rho_{\beta\alpha} = \langle \overline{\psi_{\beta}}(r_1) \psi_{\alpha}(r_2) \rangle
$$
; α, β spinor indices

Wigner Transform of the one-body density; i.e. Fourier transform with respect to the relative coordinate ("fast")

$$
F_{\beta\alpha}(r,p) = \frac{1}{(2\pi)^4} \int d^4 s e^{-ip_\mu s^\mu} \left\langle \psi_\beta(r+\frac{s}{2}) \overline{\psi}_\alpha(r-\frac{s}{2}) \right\rangle
$$

$$
r = \frac{1}{2}(r_1+r_2); \quad s = \frac{1}{2}(r_1-r_2)
$$

 $\langle \mathbf{O} \rangle = \int \mathbf{d}^4 \mathbf{x} \, \mathbf{d}^4 \mathbf{p} \mathsf{Tr}(\mathsf{OF})$ **Contains all one-body information, i.e. for 1-body operator O**

Derive equations of motion for $F_{\beta\alpha}$: Using the Dirac eq.; one obtains expressions like

$$
e^{-\frac{i}{2}\hbar\partial_{\mu}^{(r;\Sigma)}\partial^{(p;\Gamma)\mu}}\Sigma(r)F(r,p)=1-\frac{i}{2}\hbar\partial_{\mu}^{(r)}\Sigma(r)\partial^{(p)\mu}F(r,p)
$$

which are evaluated in the semiclassical (gradient) approximation as before(assumption of smooth fields "slow")

III.10 Relativistic BUU Equation (2)

Equations of motion in semiclass. approx. separated into real and imag. partsyield two equations:

1. Mass shell constraint:

$$
(p^{*2} - m^{*2})F(r, p) = 0
$$

(r; p*) \rightarrow (\vec{r} , t ; \vec{p} ^{*}); p^{*}₀ = $\sqrt{\vec{p}^{*2} + m^{*2}}$

reduces phase space from 8- to 7-dimensional, time evolution interpretation

- **2. Kinetic transport) equation**
	- **a. Decomposition of F(x,p) in Lorentz invariants:**

$$
F(r,p) = F_s \otimes 1 + V_{\mu} \otimes \gamma^{\mu} + I_{\mu\nu} \otimes \sigma^{\mu\nu} + \gamma^{\mu} \gamma^5 A_{\mu} + \gamma^5 P
$$

neglect
zero for spin-saturrat. sys

$$
zero for spin-saturrat. systems
$$

b. relation between the components

$$
F_s = m^*f(r, p^*); V_\mu = p^*_{\mu}f(r, p^*)
$$

c. Transport (rel. Vlasov) equation:

$$
m^* = m - \Sigma_s; \qquad F^{\mu\nu} = \partial^{\mu} \Sigma^{\nu} - \partial^{\nu} \Sigma^{\mu}
$$

$$
p^*_{\mu} = p_{\mu} - \Sigma_{\mu}
$$

$$
\left[\boldsymbol{p}^{*\mu}\partial_{\mu}^{(r)}+(\boldsymbol{p}^*_{\nu}\boldsymbol{F}^{\mu\nu}+\boldsymbol{m}^*\partial_{(r)}^{\mu}\boldsymbol{m}^*)\partial_{\mu}^{(\rho^*)}\right]\boldsymbol{f}(\boldsymbol{r},\boldsymbol{p}^*)=\boldsymbol{I}_{\text{coll}}
$$

d. collision term added

$$
I_{coll} = \int \frac{d^3 p_2}{p_{20} *} \frac{d^3 p_3}{p_{30} *} \frac{d^3 p_4}{p_{40} *} (\rho^* + p_2^*)^2 \frac{d\sigma}{d\Omega} \delta(\rho^* + p_2^* - p_3^* - p_1^*) [f_3 f_4 \overline{f_2} - f f_2 \overline{f_3} \overline{f_4}]
$$

**3. New Feature: two potentials: scalar vector → mom.dep. mean field,
Desertz- Like" forces "Lorentz- like" forces**

IV.1 IV.1 Quantum Transport Theory

We had derived the BUU transport eq.

.
[$\left[f_{\scriptscriptstyle T} \, f_{\scriptscriptstyle 2} \, \bar{f}_{\scriptscriptstyle 1} \, \bar{f}_{\scriptscriptstyle 2} \, - f_{\scriptscriptstyle 1} \, f_{\scriptscriptstyle 2} \, \bar{f}_{\scriptscriptstyle T} \, \bar{f}_{\scriptscriptstyle 2} \, \right]$ $\hat{\textbf{V}}_{2}$ **dv**₁. **dv**₂. $\textbf{V}_{21}\sigma_{12}(\varOmega) (2\pi)^{3}$ $\int dV_1 dV_2 dV_3 dV_4 dV_5 + \int dV_1 dV_2 dV_5 dV_7 dV_8 + \int dV_1 dV_9 dV_9$ **ffffffff mp** $\frac{\partial f}{\partial t}+\frac{\tilde{\bm{\rho}}}{\bm{m}}\vec{\nabla}^{(r)}f-\vec{\nabla}\bm{\mathsf{U}}(r)\vec{\nabla}^{(p)}f(\vec{r},\vec{p};t)\!=\!\int\!\mathsf{d}\!\vec{\mathsf{V}}_2\;\mathsf{d}\!\vec{\mathsf{V}}_r\;\mathsf{d}\!\vec{\mathsf{V}}_2\;\mathsf{V}_{21}\sigma_{12}(\varOmega)(2\pi)^3\!\left[f_r\,f_2\,\bar{f}_1\bar{f}_2\right] \partial t$ **f** \rightarrow \rightarrow \rightarrow $\nabla (D)$ £/ \vec{u} \rightarrow $\vec{p} \cdot f = \n\begin{bmatrix} \n\frac{\partial f}{\partial x} & \n\end{bmatrix}$ \rightarrow \rightarrow \rightarrow

or its relativistic variant.

Open questions:

- **How can the collision term be derived, instead of intuitively written down.**
- **What is the deeper relationship between mf and cross section**
- **how does one describe transport of particles with finite width (unstabe particles)**

Use a many-body approach which takes into account the non-equlilibrium situation(Kadanoff-Baym eqs.)

Here only a sketch of the essential ingredients. More in the following refs.

L.P.Kadanoff, G. Baym, Quantum statistical mechanics, 1965

P. Danielewicz, Ann. Phys. 152, 239 (1984)

W. Botermans, R. Malfliet, Phys. Rep. 198 (1990) 115

P. Danielewicz, development of lattice methods (Trento, 2009)

or in a lecture by S. Leupold (Giessen)(in the materials on the website).

IV.2 Non-equilibrium Transport

Hierarchy of n-body Green functions (Martin-Schwinger hierarchy)

$$
\frac{(i\gamma^{\mu}\partial_{\mu}-m)G^{(1)}(1,2)=\delta(1-1^{\prime})+(12\,|\nu|)T2^{\prime})G^{(2)}(12,1^{\prime}2^{\prime})}{D(1)}=:\delta(1-1^{\prime})+\Sigma(1,1^{\prime})G^{(1)}(1^{\prime\prime},2)
$$

decouple formally via the self energy Σ, **or practically an approximation to it**, **in particular, in Brueckner theory (BHF)**

In non-equilibrium there are two independent 1-body Green functions (GF), since the propagation forward and backward in time is different. Often one uses the correlationGFs G> and G<, and a variety of derived GF and self energies.

 $G^{(1,2)} = i \langle \overline{\psi}(1) \psi(2) \rangle$ wigner transf \rightarrow (A(r, p) F(x, p) F generalized occupation **A spectral function retarded/advanced GF** $G^-(1,2) = G^{cron} - G$ $\begin{align*} &\langle (1,2)=i\langle \overline{\psi}(1)\psi(2)\rangle \frac{\psi(1)}{\psi(2)} \frac{\psi(1)}{\psi(2)} \rangle \frac{\psi(1)}{\psi(2)} \end{align*} \rightarrow \begin{align*} &\langle (1,2)=i\langle \psi(1)\overline{\psi}(2)\rangle \frac{\psi(1)}{\psi(2)} \frac{\psi(1)}{\psi(2)} \end{align*}$ i A(r, p)(1-
 $\begin{align*} &\langle (1,2)=G^{cron}-G^c \rangle \end{align*}$ retarded/adva $^{-}(1,2)=G^{cron}-G^c \end{align*}$ $G^+(1,2) = G^{cron} - G$ $G^{>}(\mathbf{1,2}) = i\langle \psi(\mathbf{1})\overline{\psi}(\mathbf{2}) \rangle$ \longrightarrow Wigner transf \longrightarrow **i** $A(\mathbf{r},\mathbf{p})(\mathbf{1}-\mathbf{F}(\mathbf{x},\mathbf{p}))$

For these one obtains with a Wigner transform and a gradient approximation theKadanoff-Baym equations

$$
\frac{D G^{2}-G^{2}D^{2} - [RZ^{+}G^{2}] - [Z^{2}/RC^{+}] - [(Z^{2}G^{+} - [Z^{+}G^{2}]) - [(Z^{2}G^{+} - [Z^{+}G^{+}]) - [(Z^{2}G^{+} - [Z^{+}G^{+}]) - [(Z^{+}G^{+} - [Z^{+}G^{+}]) - [(Z^{+}G^{+
$$

IV.3 The Spectral Function

The spectral function contains the information about the decay width of a particle in medium.

Even particle which are stable in vacuum obtain ^a width in-medium due to collisions (imaginary partof self energy)

"Off-shell" transport has only been invest. in a fewcases.

To obtain the usual BUU transport eq. one makesthe "Quasipart. Approximation (QPA)", replacing the spectral fct. by a delta function on themass shell.

IV.4 The Self Energy

The self energy is taken in theT_Matrix approximation, including exchange and twobody correlations: theBrueckner HF theory.

With this and the QPA oneobtains BUU-like eqs.

Now the collision term appears consistently and is obtained on the same footingfrom the Brueckner T-Matrix.

The T-Matrix would have to becalculated consitently with the non-equil. phase space disribution, i.e. in non-eq., which is hardly possible. But there have been approx., likea two-Fermi sphere approx.

$$
\times \left[f(x, \mathbf{k}_3) f(x, \mathbf{k}_4) (1 - f(x, \mathbf{k})) (1 - f(x, \mathbf{k}_2)) - f(x, \mathbf{k}_1) f(x, \mathbf{k}_2) (1 - f(x, \mathbf{k}_3)) (1 - f(x, \mathbf{k}_4)) \right]
$$

$$
W(kk_2|k_3k_4) = m^*(x,k)m^*(x,k_2)m^*(x,k_3)m^*(x,k_4)
$$

$$
\times \langle k k_2 | T^+ | k_3 k_4 \rangle \langle k_3 k_4 | T^- | k k_2 \rangle
$$

To explain all this in detail needs much more space! Main message: Transport theory can be placed on a solid many-body footing (which, however, has not often been employed in real calculations.)

V.1 Characterization of Codes for Transport Calculations

First family: Vlasov-type for 1-body phase space density

- **1. Implementation, attempting to simulate the solution of the BUU/BNV… equation:**
	- **test particle (TP) method**
	- **point or finite size test partticles (Gaussians or triangles)**
	- **MF often parametrized as Skyrme type with momentum dep. (next page)**

r

A

N−*Z*

 β =

 \sim 1 fm

Energy density:
$$
\varepsilon = \varepsilon_{kin} + \varepsilon_{pot}^A (rep) + \varepsilon_{pot}^B (attr) + \varepsilon_{pot}^{C,z} (mom.dep)
$$

Generalized Bombaci-Gale-Bertsch-Das Gupta (BGBD) interaction

$$
\mathcal{E}_{A} = \frac{\frac{\text{1}}{A} \frac{\rho^{2}}{\rho_{0}}}{\frac{B}{\rho_{0}} \frac{\rho^{\sigma+1}}{\rho_{0}^{\sigma}}} - \frac{A}{3} \left(\frac{1}{2} + x_{0} \right) \frac{\rho^{2}}{\rho_{0}} \beta^{2}
$$
\n
$$
\mathcal{E}_{C,z} = \frac{8}{5\rho_{0}} (C + 2z) I_{np} + \frac{2}{5\rho_{0}} (3C - 4z)(I_{nn} + I_{pp})
$$
\n
$$
\mathcal{E}_{B} = \frac{\frac{B}{\rho_{0}} \rho^{\sigma+1}}{\frac{B}{\rho_{0}^{\sigma}}} - \frac{2}{3} \frac{B}{\sigma+1} \left(\frac{1}{2} + x_{3} \right) \frac{\rho^{\sigma+1}}{\rho_{0}^{\sigma}} \beta^{2}
$$
\n
$$
I_{n'} = \left[\frac{2}{(2\pi)^{3}} \right]^{2} \int d^{3}kd^{3}k^{r} f_{i}(\vec{r},\vec{k}) f_{i'}(\vec{r},\vec{k}') g(\vec{k},\vec{k}')
$$
\n
$$
\frac{E}{A} (\rho_{0} = 0.16 \text{ fm}^{-3}) = -16 \text{MeV}
$$
\n
$$
K_{NM}(\rho_{0}) = 215 \text{ MeV}, \quad \frac{m^{*}}{m} = 0.67
$$

V.1 Characterization of Codes for Transport Calculations

First family: Vlasov-type for 1-body phase space density

- **1. Implementation, attempting to simulate the solution of the BUU/BNV… equation:**
	- **test particle (TP) method**
	- **point or finite size test partticles (Gaussians or triangles)**
	- **MF often parametrized as Skyrme type with momentum dep. (next page)**
	- **cross section empirical (usually free cross section, isospin dependent)**
	- **parallel ensemble method (collisons in sep. ensemble, MF averaged)**
- **2. Relativistic BUU (RBUU)**
	- **relativistic variant of BUU, often also with gaussian TP**
	- **MF either from empirical density functional,**

i.e. RMF (non-linear or density dependent)

 \sim 1 fm

r

 or use of Brueckner HF (Dirac-BHF) G-matrix in MF and collision term consistently

also including non-equlibrium effects in the two-Fermi sphere approximation

Second family: Molecular Dynamics to solve the many-body problem

V.2 Molecular Dynamics

Attempt to solve the many-body problem with assumptions: use of 2-body interaction instead of MF depending on density

1. Classical Molecular dynamics CMDpoint particles, deterministic, but possibly chaotic behaviour becauseof short range repulsion

$$
\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{r}_i = \{\mathbf{r}_i, \mathcal{H}\}, \qquad \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{p}_i = \{\mathbf{p}_i, \mathcal{H}\},
$$

where the many-body Hamiltonian is of the form

$$
\mathcal{H}\{\boldsymbol{r}_n, \boldsymbol{p}_n\} = \sum_{i=1}^A \frac{\boldsymbol{p}_i^2}{2m_i} + \sum_{i < j} V(|\boldsymbol{r}_i - \boldsymbol{r}_j|) \, .
$$

- **2. Quantum molecular dynamics QMDgausssian particles with large width to smooth fluctuations, not a wave packet, no antisymmetrization(thus similar to BUU with N_{TP}=1) but event generator. variant IQMD, isospin dependence in interactions**
- **3. Fermionic MD (FMD), Antisymmetrized MD (AMD)Gaussian paricles, but antisymmetrization included. Particle coordinates loose meaning as WP approach each other**

 r_{2}

 $r₁$

V.4 Code Comparison

Workshop on Simulations of Heavy Ion Collisions at Low and IntermediateEnergies, ECT*, Trento, May 11-15, 2009

Obviously, transport codes are essential to gain information from HIC.

On the other hand they are complicated simulation programs, which contain many different strategies. It is important, to know the uncertainties associated with theseimplementations.

Thus we organized a workshop (working group) to attempt to compare the results fromdifferent codes, taking as far as possible the same physical input (mean field, cross section, etc.) included codes, next page

Show some representative results for observables, which are discussed more later:

The major codes in use today are included in the comparison

V.6 Code Comparison: Flow

V.7 Code Comparison: Collisions

Energy distributions of collisions

solid: all attempted collisions, dashed: unblocked collisions

Sqrt(s) Distribution, normalized, b=0fm, E=100 MeV Sqrt(s) distribution, b=0fm, $E=400$ MeV all (solid), unblocked (dashed) all (solid); successful (dashed) 100 Danielewicz Danielewicz Giordano Giordano Hartnack Hartnack # coll [per fm/c; energy integrated]
B
B **BALi** BA_Li Napolitani Napolitani No. of coll. [per 0.005 GeV] Ono Ono Schade Schade Zhang Zhang $0,1$ 1.9 $2,1$ 2.2 1,9 \overline{c} $2,1$ sqrt (s) [GeV] sqrt(s) [GeV]

400 AMeV

100 AMeV

These are preliminary results!

The differences for flow observables are not drastic (even though they are sometimes of the **order of physical effects of different EOS's). The differences in the collision histories are**large. Here may lie the reason for the difference in the behaviours of the different codes.

Further studies are forthcoming.