

Nuclear Reactions

Hermann Wolter

Ludwig-Maximilians-Universität

München, Germany

Lecture 1Updated 13.7.09

National Nuclear Physics Summer School, MSU, June 28 - July 10, 2009

Sect. O Motivation: Nuclear Reactions – a wide field

Compound nuclear reactions

System equilibrates the degrees of freedom, and then decays statistically (formation and decay well separated).

Direct reactions

reactions involving few or simple degrees of freedom, e.g. single particle or collective.

Heavy Ion collisions:

Seminar by W.Nazarewicz)

nucleus-nucleus collisions, with all degrees of freedom involved, but equilibrium is notreached. Depending on the incident energy one distinguishes roughly:

Deep inelastic collisions (DIC): barrier energies. The reaction is essentiallybinary.

Fermi energy regime (FE): energies of the order of the Fermi energy in nuclei, i.e. about 35 MeV/A.

Relativistic regime (RHIC): energies, where only hadronic dof play a role (100 MeV/A to a few Gev/A).

Ultarrel. Collisions (UrHIC): highest energies to study the deconfinement transition and the Quark-Gluon Plasma. Lecture by B. Zajc

O.1 Compound nuclear reactions

System equilibrates the degrees of freedom, and then decays statistically (formation and decay well separated). Produce well defined excited nuclei and observe statistical properties, slow ¹⁰-16 sec

CN: statistical decay of excited nucleus, by sequential emission of light particlesMF multifragmentation (later): simultaneous decay into many fragments higher excitation energies in HIC

O.2 Direct Reactions

Reactions involving few or simple degrees of freedom, e.g. single particle orcollective, e.g. ¹⁶O(d,p)¹⁷O, usually using light probes. Treated quantummechanically with scattering theory, e.g. optial model, transfer reactions withDWBA.

$$
\psi^{+}(r) \longrightarrow e^{-ikz}\Phi_{A} + f_{(elast)}(\Omega_{d})\frac{e^{ikr}}{r}\Phi_{A} + f_{(d,p)}(\Omega_{p})\frac{e^{ikr}}{r}\Phi_{A+n}
$$

Today of interest to study structure of exotic, weakly bound nuclei, where thecloseness of the continuum play an important role (seminar Nazarewicz).

O.3 Heavy Ion Collisions: Deep Inelastic Collisions (DIC)

At barrier energies the reaction is essentially binary with small transfer of energy **and mass. Expressed in terms of transport coefficients (dissipation)**

O.4 Heavy Ion Collisions: Fermi Energy Regime

Energies of the order of the Fermi energy in nuclei, i.e. about 35 MeV/A. Moderate compression, special interest in the expansion phase and phase transitions(NSCL, GANIL, Tamu, future FRIB)

multifragmentation in central participant-spectal
 collisions *peripheral collsio*

O.5 Heavy Ion Collisions: Relativistic Collisions

energies, where only hadronoc dof play a role (100 MeV/A to a few Gev/A). Study of dense nuclear matter and hadron properties in densematter (GSI, Riken)

WCI – "World Consensus Initiative"A good collection of review articlesabout low and intermediate energy HIC

European Physics Journal A - Hadrons and Nuclei, Vol. 30

G W 1

O.6 Heavy Ion Collisions: GSI/FAIR Facility

Cosmic matter in the Lab: FAIR = The International Facility for Antiproton and Ion Research

O.7 Heavy Ion Collisions: Ultra-Relativistic Collisions

highest energies to study the deconfinement transition and theQuark-Gluon Plasma (RHIC, LHC, FAIR)

lecture Zajc

Hydrodynamics (seminar Teaney)

Transport codes with subnucleardegrees of freedom (not discussed here)

O.8 Heavy Ion Collisions: Why study??

- **ensemble reactions (semi-)classical description possible**
- **time dependent, i.e. non-equilibrium processes**
- **use transport or kinetic theory, dissipation and fluctuation**
- \rightarrow complex, so why study?
- **1. see seminar of Sherry Yennello**
- **2. explore phase diagram of strongly interacting matter in thehadronic world**
- **3. nuclear matter out of saturation point. determine Equation-of-State (EOS) and hadronic properties in dense medium**
- **4. interest in itself, i.e. phase transitions in finite systems**
- **5. importance for astrophysics: supernovae and neutron stars**

O.9 Schematic Phase Diagram of Strongly Interacting Matter

O.9 Schematic Phase Diagram of Strongly Interacting Matter

O.10 Aim of these lectures

- **1. understand theoretical treatment of HIC in this energyrange**
- **2. get an idea of implementations (difference in codes, ingredients, uncertainties)**
- **3. non-relativistic vs. relativistic treatment**
- **4. information gained and how**
- **5. selection of significant results and open questions (butnot complete overview)**

apologies:

rather "theoretical"

imperfect, short time for preparation

O.11 Contents

- **1. Motivation**
- **2. Phenomenology (Thermo, Hydro, Transport)**
- **3. Heuristic motivation of transport equations**
- **4. Solutions: test particle method**
- **5. Derivations of transport equations**

a) elementary (non-relativistic, relativistic)

b) quantum non-equilibrium transport theory

6. Fragmentation, instabilities

Fluctuations in transport theory

- **7. Overview of implementations**
- **8. Selection of inportant results**

may be too much!!

I.1 Descriptions of heavy ion collisons

Levels of description of evolution from initial to final state:

Statistical models, e.g. SMM, Botvina, et al.

Transport models, e.g. BUU, QMG, AMD, etc

Discussed in these lectures

I.2 I.2 Thermodynamical Models

I.2 Hydrodynamical Models

assume local thermal equilibrium, and uses conservationequations for

particle number

momentum

energy

$$
\partial f/\partial t + \nabla \cdot (\rho \mathbf{u}) = 0.
$$

$$
\frac{\partial}{\partial t}(\rho \mathbf{u}) + \nabla \cdot (\rho \mathbf{u} \mathbf{u}) = -\nabla \cdot \mathbf{P} + \frac{\rho}{m} \mathbf{F}.
$$

$$
\frac{\partial}{\partial t}(\rho E) + \nabla \cdot (\rho E \mathbf{u}) = -\nabla \cdot (\mathbf{u} \cdot \mathbf{P}) + \rho \mathbf{u} \cdot \mathbf{F}.
$$

E.g. early prediction of nuclear shock wave phenomena in heavy ioncollisions (Stöcker, Greiner, 1978) Mach cones

assumption of local thermodynamical equilibrium usually, esp. at high energy toosimple transport decriptions

I.3 I.3 Transport Models

Transport theory describes the non-equilibrium aspects of the temporal evolution of a collision. The central quantitiy is the phase space density (coordinate and momentum distribution). This will be discussed in greater detail in the following.

Demonstrate two aspects:

1. Evolution in coordinate space:

movies curtesy T. Gaitanos, T.Chossy

2. Evolution in momentum space

non-equilibrium,

non-shericity of local momentum distributions

II.1 II.1 Heuristic Derivation of Transport

aim: microscopic discription of nucleus-nucleus collisionshere: make plausible without a derivation

main ingredients: individual N-N collisionsnucleons move in mean field

both simultaneously

- **S** → Cascade model
	- **→ Vlasov equation**
- **Boltzmann** equation

and variants

 \bullet

II.2 Cascade Model

simplest and first model: Cascade model (e.g. Cugnon, et al., NPA 532 (1981))

nucleons of nucleus (A,Z) distriuted randomlyin sphere of Radius RA

nucleons interact in a time interval δ**^t if:**

- **they pass their distance of closest approach**

- **and this distance is less than**

$$
b < b_{\text{max}} = \frac{1}{\pi} \sqrt{\sigma^{\text{tot}}(\sqrt{s})}
$$

- **the scattering can be elastic or inelastic**

NN scattering channel

and scattering angle are chosen

randomly from experimental (free)

cross sections or models

no mean field effects!model valid only at very high energies !

II.3 1-body phase space

 c entral quantitiy: 1-body phase space distribution: $\mathsf{f}_\mathsf{i}(\vec{\mathsf{r}},\vec{\mathsf{p}};\mathsf{t})$

= probability to find at time t a particle if type i at point r with momentum p

motion of phase space cell in phase spacedeformation but no change of area (Liouville theorem), phase space density is constant in time (prove it!)theni $df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial p} dp + \frac{\partial f}{\partial t} dt$ **or generally in a potential U(r):(Vlasov equ.)However, collisions will change the phase space density!position ^xvelocity v dxdv 1-dimvf Frf vtf dtdf f dp pf** $\frac{1}{r}$ dr + $\frac{3}{\theta}$ **f** $df = \frac{\partial f}{\partial r} dr + \frac{\partial f}{\partial \rho} dp + \frac{\partial f}{\partial \rho}$ ∂∂ +∂∂+ V -∂∂ =∂ +∂p ' ∂ +∂r ∂ =*f* $\frac{r}{m} \nabla^{(r)} f - \nabla^{(r)} U(r) \nabla^{(p)} f = 0$ **drift termp tf** $\frac{d\mathbf{f}}{d\mathbf{t}} = \frac{\partial \mathbf{f}}{\partial \mathbf{t}} + \frac{\vec{\boldsymbol{p}}}{\textbf{m}} \vec{\nabla}^{(r)} \mathbf{f} - \vec{\nabla}^{(r)} \boldsymbol{U}(\mathbf{r}^{\prime}) \vec{\nabla}^{(p)} \mathbf{f} = 0$ **dtdf acceleration by the field"streaming derivative"**

II.4 Collision term

$$
= \int d\vec{v}_2 \ d\vec{v}_1 \ d\vec{v}_2 \ |v_2 - v_1| \sigma(\Omega) (2\pi)^3 \delta(p_1 + p_2 - p_1 -
$$

$$
[f_1, f_2, (1 - f_1)(1 - f_2) - f_1 f_2 (1 - f_1,)(1 - f_2)]
$$

Transport equation: Boltzmann-Uehling-Uhlenbeck (BUU)

$$
\frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\vec{p}}{m} \vec{\nabla}^{(r)} f - \vec{\nabla} U(r) \vec{\nabla}^{(p)} f = I_{coll}
$$

II.5 Remarks on BUU-Equation

numology: Boltzmann: collision term (without blocking), but no mean field potential

Vlasov: mean field but no collision (rhs)

Nordheim, Ü&U: Pauli plocking factors

Landau: dissipation (collisions, in an approx.)

thus many names: Boltzmann-Uehling-Uhlenbeck (BUU), Landau-Vlasov (LV)

Boltzmann-Nordheim-Vlasov (BNV), VUU Vlasov-UUU

all the same equation, but also different ways to solve (rather simulate) it (later).

assumptions:

- **1. essentially classical (quantum derivation later)**
- **2. quantum aspects only in blocking factors semiclassical**
- **3. only two-body collisions, indep. of previous history: Markov assumption, no memory effects only valid in sufficiently dilute medium (no 3-body collisions)**

ingredients:

- 1. $\,$ mean field potential $\,$ self consistent mf potential (HF), or parametrized as function of mean **density from here obtain the Equation-of-State (EOS), i.e. E(**ρ,**T=0)**
- 2.σ, **cross section in-medium, thus not directly obtainable from experiment, local collisions**

II.6 Solutions of BUU Equation

$$
\frac{\partial f}{\partial t} + \frac{\vec{p}}{m} \vec{\nabla}^{(r)} f - \vec{\nabla} U(r) \vec{\nabla}^{(p)} f(\vec{r}, \vec{p}; t) = \int d\vec{v}_2 d\vec{v}_1 d\vec{v}_2 \cdot \mathbf{v}_{21} \sigma_{12}(\Omega) (2\pi)^3 \delta(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{p}_1 - \mathbf{p}_2)
$$

$$
\left[f_{1} f_{2} (1 - f_{1}) (1 - f_{2}) - f_{1} f_{2} (1 - f_{1}) (1 - f_{2}) \right]
$$

non-linear integro-differential equation, no closed solutions

- **deterministic ! (for later discussion)**
- a) solution on a lattice: has been used for low-dimensional model systems, but too expensive for **realistic casesAN**
- **b**) test particle method (Wong 82) $f(r, p; t) = \frac{1}{N_{TP}} \sum_{i=1}^{N_{TP}}$ == $=\frac{1}{N_{TP}}\sum_{i=1}^{N_{TP}}\delta(r-r_i(t))\delta(p-1)$ **i 1** N_{TP} \leftarrow $O(1 - I_i(\ell))$ $O(N - P_i)$ $f(r, p; t) = \frac{1}{N_{\text{TP}}} \sum_{i} \delta(r - r_i(t)) \delta(p)$ $\bm{p}_i(\bm{t})$

 $\frac{1}{2}$ **f** $\frac{1}{2}$ **c** $\frac{1}{2}$ *f* $\frac{1}{2}$ **)** are the positions and momenta of the TP as a funct. of time, **and NTP is the number of TP per nucleon (usually around 50 – 100) approximate a (continuous) phase space distribution by a swarm of** δ**-functions if one plugs ansatz into Vlasov eq. (lhs of BUU-eq.), one sees (show!) that the TP centers obeyHamiltonian equations of motion (eom):the rhs (collision term is treated like in cascade (i.e.simulated, stochastic!) ir** $\frac{i}{i} = \frac{\mathbf{p}_i}{i}$; $\frac{\partial \mathbf{p}_i}{\partial \mathbf{p}_i} = -\nabla \mathbf{U}$ **tp ;mp tr** $\frac{\partial f}{\partial t} = \frac{Pf}{m}$; $\frac{\partial f}{\partial t} = -\nabla$ ∂ =∂∂

ex: 1-dim slab movement in phase space

 \rightarrow

II.7 Discussion of TP Method

 $t = 10$ fm/c

 $t = 0$ fm/c

II.8 Simulation of Collision Term

as in cascade model:

nucleons interact in a time interval dt if:

- **a) they pass their distance of closest approach**
- **b) and this distance is less than**

 $\mathsf{b}\! <\! \mathsf{b}_{\mathsf{max}}\! =\! \frac{1}{\pi} \sqrt{\mathsf{\sigma}}^{\mathsf{tot}}(\sqrt{\mathsf{s}})$ **c) select final scattering state and angle according to cross section and angular distribution** $\langle D_{\text{max}} = \frac{1}{\pi} \sqrt{\sigma}$

two strategies:

1) collide test particles (so-called full ensemble method) with cross section ^σ**/NTP**

→ closer to solution of original BUU eq., in part. small fluctuations
→ expensive pumerically, ~(AN_)²

- \rightarrow expensive numerically, \sim (AN_{TP})²
- **2) divide all TP into NTP ensemples, and collide particles only in theirensemble (parallel ensemble method),**

but calculate mean field from all TP

 \rightarrow easier numerically $N_{TP}A^2$
 \rightarrow introduces more fluctuat

introduces more fluctuations into phase space distributio n

("numerical fluctuations")

- $→$ **each ensemble is a separate**
 avent E but cross talk **"event", but cross talk**
- **discuss fluctuations later**

II.9 How to gain information from HIC?

$$
\frac{\partial f}{\partial t} + \frac{\vec{p}}{m} \vec{\nabla}^{(r)} f\left(\vec{\nabla} U(r)\right) \vec{\nabla}^{(p)} f(\vec{r}, \vec{p}; t) = \int d\vec{v}_2 d\vec{v}_1 d\vec{v}_2 \cdot v_2 \cdot \sigma_{12}(\Omega) (2\pi)^3 \delta(p_1 + p_2 - p_1 - p_2)
$$
\n
$$
\left[f_r, f_{2r} (1 - f_1) (1 - f_2) - f_1 f_{2} (1 - f_1) (1 - f_2) \right]
$$

Transport calculation has physical input:

Mean field, U(r), usually parametrized as a function of local density U(ρ**(r)),**

from this obtain Equation-of-state, i.e. energy density of uniform nuclear matter

as∫ ρ $=\langle I\,\rangle +$] $U(\rho\,)$ ap 0E $\angle A$ $\mathcal T$ U $\left(\mathsf{\rho}\right)\mathsf{d}$

the cross sections ^σ12, **which are cross sections in the medium of density** ^ρ**, which**are not obtainable directly from experiment. It is of interest to learn about them.

Compare results of calculations with experimental data (observables see later) Claim to have learned something, if results agree?!

Perhaps, but there are many other uncertainties about the meaning of the input **and the solution of the transport equation. This will be discussed later.**

Next

Sect.II: Heuristic construction of Boltzmann equation

Next to come:

Sect. III: Elementary derivation of transport equation, starting fromquantum mechanics.

In a non-relatistic formalism,

and then relativistically from a hadronic field theory

Sect. IV: Derivation of a quantum transport theory

(from Kadanoff-Baym equations)