
A hypothesis or theory is clear, decisive, and positive, 
but it is believed by no one but the person who created it. 
Experimental findings, on the other hand, are messy, inexact 
things, which are believed by everyone except the person 
who did that work.

                                                           Harlow Shapley
                                                Through Rugged Ways to the Stars
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Last Lecture
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The weights of the reactions are given for conditions in the Sun.
The PP chains are the most important energy source in stars with masses less than 1.5 Msun.



An answer to yesterday’s task
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β−decay : n → p + e− + νe

(Z, A) → (Z + 1, A) + e− + νe

β+decay : p → n + e+ + νe

(Z, A) → (Z − 1, A) + e+ + νe

electron capture : p + e− → n + νe

(Z, A) + e− → (Z − 1, A) + νe

positron capture : n + e+
→ p + νe

(Z, A) + e+
→ (Z + 1, A) + νe

Some nomenclature



They showed that the CNO cycle had the 
property that CNO nuclei served only as 
catalysts for the conversion of H into He.

It was independently suggested by Bethe & von Weizsäcker in 1939 
that reactions of protons with carbon and nitrogen would provide 
competition with the PP-chains.

CNO cycles



Summing the particles before and after the cycle one obtains

The first CNO cycle is

12C only plays the role of a catalyst.

12C + 4H→12 C +4 He + 2β+ + 2ν

12C(p, γ)13N(, e+ν)13C
13C(p, γ)14N

14N(p, γ)15O(, e+ν)15N

15N(p, α)12C
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The energy generated is related to the reciprocal of the time it takes 
to go around the cycle multiplied by (4MH - MHe4)c2 minus the 
energy loss in the two neutrinos. 

The cycle occurs with any of the four nuclei 12C, 13C, 14N, 15N as 
catalyst, or any mixture of them.

In fact, a mixture of those nuclei soon 
results regardless of the initial composition.
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It was later realized that all the stable oxygen isotopes 
provide additional cycles.



12C

13N

13C 14N

15O

15N

Cycle 1

(p, )

(p, )

(p, )(,e+ )

(,e+ )

(p, )

17O

17F

16O

18F

18O 19F

Cycle 2 Cycle 3

Cycle 4

(p, )

(p, )

(p, )

(p, )

(,e+ )

(,e+ )

(p, )

(p, )
(p, )

14O 18Ne

(p, )

(p, )

(,e+ )
(,e+ )

(p, )

( ,p)

We have been assuming the β decay lifetimes are negligible. 
For 0.2 < T9 < 0.5, the “hot” or “β-limited” CNO cycles dominate.
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If T9 > 0.5, then one breaks out of the β-limited CNO cycles 
and begins a journey on the rapid-proton capture process.



This brought about a reversal in the roles thought to be played by 
the two hydrogen burning mechanisms in the Sun.

Prior to 1952 it was thought the CNO cycles generated most of the 
energy in the Sun. Edwin Salpeter showed the p(p,e+ν)d reaction 
was about an order of magnitude larger than previously believed.
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Download, compile, and run the CNO cycle code from 
www.cococubed.com/code_pages/burn.shtml 

Verify the ODEs for the first CNO cycle.

Run the code for T = 30x106 K, ρ = 100 g/cm3, and an initial 
composition of X(12C)=X(16O)=0.1. 
Plot the abundance evolution. 
What isotope is most abundant when the cycle is in equilibrium? 
How long does it take for hydrogen to be depleted?

Tasks for the day
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The ODEs from nuclear reaction networks are nonlinear and stiff.

Time Integration

This means we’ll be doing an implicit integration, which in turn 
means we’ll be forming a Jacobian matrix and doing linear algebra.

Physically a stiff system of ODEs means some isotopes are 
changing on much faster timescales than other isotopes. 
The hydrogen burning PPI chain is an excellent example.

P P NP e++ + +
1010 years

P P
P
NP

P
NP

PN
NP+ + +

106 years

PNP
P
NP+ +

6 sec
 ray



Mathematically, stiffness means the ratio of the maximum to the 
minimum eigenvalues λj of the Jacobian matrix are large.

S =
max|Re(λj)|

min|Re(λj)|
! 1

S > 1015 is not uncommon in nuclear astrophysics.

Pragmatically, stiffness means that an implicit time integration is 
typically needed to solve the initial value problem.

This means we’ll be solving (large) systems of linear equations. 
As the linear algebra will generally dominate the time to obtain a 
solution, we’ll want to use efficient solvers.



Our system of ODEs

ẏ = f(y)

may be written in vector form as 

The Jacobian matrix is the derivative of the ODEs with respect to 
their dependent variables

Let’s do an example of forming the Jacobian matrix ...

J̃ =
∂f
∂y

Ẏi =
∑

j

CiRjYj +
∑

jk

Ci

Cj !Ck!
RjkYjYk +

∑

jkl

Ci

Cj !Ck!Cl!
RjkYjYkYl



Ẏ (4He) = −Y (4He) Y (12C) R + . . .

Ẏ (12C) = −Y (4He) Y (12C) R + . . .

Ẏ (16O) = +Y (4He) Y (12C) R + . . .

Consider the 12C(α,γ)16O reaction proceeding at a rate R.

Each right hand side contributes two Jacobian matrix elements:

J(4He,4 He) = ∂Ẏ (4He)/∂Y (4He) = −Y (12C) R + . . .

J(4He,12 C) = ∂Ẏ (4He)/∂Y (12C) = −Y (4He) R + . . .

J(12C,4 He) = ∂Ẏ (12C)/∂Y (4He) = −Y (12C) R + . . .

J(12C,12 C) = ∂Ẏ (12C)/∂Y (12C) = −Y (4He) R + . . .

J(16O,4 He) = ∂Ẏ (16O)/∂Y (4He) = +Y (12C) R + . . .

J(16O,12 C) = ∂Ẏ (16O)/∂Y (12C) = +Y (4He) R + . . .



The Jabobian matrix elements represent flows into (positive) or 
out of (negative) an isotope. 

The matrix is not positive-definite or symmetric as reactions rates 
are not usually equal, but they are typically diagonally dominant.
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N P

N
P

  76 Isotopes

 582 Rates

82.0% Sparse

Flows (#/sec):

  3.05E+13

  3.29E+10

  3.56E+07

  3.84E+04

  4.15E+01

 -2.23E+01

 -2.07E+04

 -1.91E+07

 -1.77E+10

 -1.64E+13

 -1.52E+16

The pattern of nonzeros doesn’t change with time, but each matrix 
element may change in magnitude or sign as the temperature, 
density, or abundances change with time.

The matrices get sparser as the number of isotopes increase.



In principal every species reacts with every other species, resulting 
in a full, dense Jacobian matrix. In practice it is possible to neglect 
most of these reactions. 

Captures of n, p, d, t, 3He and α on heavy nuclei are easier than 
fusions of heavier nuclei because of the Zi Zj dependence of the 
repulsive Coulomb term in the nuclear potential. 

Photodisintegrations tend to eject free nucleons or α-particles.

With the exception of the PP-chains and Big Bang nucleosynthesis, 
reactions involving d, t, and 3He are negligible because their 
abundances are effectively zero. 
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With a few important exceptions, we only need to consider twelve 
reactions linking a nucleus to its neighbors by the capture of an 
n, p, α or γ and release a different one of these four.
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In explicit methods, the state at the next time instant is computed as 
a function of the state at the previous time instant.

Time Integration

In implicit methods, the state at the next time instant is computed as 
a function of the state at the next time instant.

ẏ = −y −→ y(t) = y(0)e−t

∆y

∆t
=

y(t + ∆t)− y(t)
∆t

= −y(t)

∆y

∆t
=

y(t + ∆t)− y(t)
∆t

= −y(t + ∆t)

y(t + ∆t) = y(t)(1−∆t) −→ −∞ as ∆t→∞

y(t + ∆t) =
y(t)

1 + ∆t
−→ 0 as ∆t→∞

|1−∆t| < 1

|1 + ∆t| > 1



ẏ = f(y)

Given the initial conditions (temperature, density, composition), we 
wish to evolve the stiff ODEs that represent our reaction network.

We’ll take a look at several (but not all) implicit methods Nearly all 
of these methods are in active use among various researchers.

A good ODE integrator should exert some adaptive control 
over its own progress, making frequent changes in its stepsize.

The purpose adaptive stepsize control is to achieve a predetermined 
accuracy in the solution with minimum computational effort. 



Many small steps should tiptoe through treacherous terrain, 
while a few great strides should speed through smooth countryside.

The resulting gains in efficiency are not mere tens of percents or 
factors of two; they can be factors of ten, a hundred, or more.

Sometimes accuracy may be demanded not directly in the solution 
itself, but in some conserved quantity that can be monitored.

Implementation of adaptive stepsize control requires that the 
stepping algorithm return information about its performance, 
and most importantly, an estimate of its truncation error.



Obviously, calculation of this information will add to the overhead, 
but the investment will generally be repaid handsomely.
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where the change Δ is found by expanding f(yn+1)  about f(yn)

y
n+1 = yn + ∆

(1̃/h − J̃) · ∆ = f(yn)

Ã · x = b

The simplest 1rst order Euler method advances over a time step h by

This method costs 1 Jacobian and 1 right-hand side evaluation,
1 matrix reduction, and 1 backsubstitution.

which is simply

This is the smallest possible cost per time step and is one of the 
most common methods for evolving nuclear reaction networks.



This method is 1rst order accurate, which as given provides no 
rigorous estimate of the truncation error over a given time step.

Heuristics, usually limiting the change in any abundance to be less 
than some small percentage, are often invoked to gain some sense of 
accuracy and to form the next time step.

One could implement “step doubling” to gain a formal accuracy 
estimate;  take two half step and one full step. If the two solutions 
agree within some specified accuracy tolerance, accept the time step.

Step doubling is relatively expensive. Higher order methods 
obtain accuracy estimates by comparing solutions at different 
orders. We turn to two of these schemes next.



yn+1 = yn +

4∑

i=1

bi∆i

Ã · ∆1 = f(yn)

Ã = (1̃/γh − J̃)

Ã · ∆2 = f(yn + a21∆1) + c21∆1/h

Ã · ∆3 = f(yn + a31∆1 + a32∆2) + (c31∆1 + c32∆2)/h

The bi, γ, aij, and cij are fixed constants of the method. 

The 4th order Kaps-Rentrop method advances a time step h by

where the Δi are found from solving the staged equations 

The truncation error is estimated by comparing an embedded 
3rd-order solution with the 4th-order solution. 
This in turn, permits adaptive stepsize control. 

Ã · ∆4 = f(yn + a41∆1 + a42∆2 + a43∆3) + (c41∆1 + c42∆2 + c43∆3)/h



This general feature of higher-order integration methods impacts the 
optimal choice of a linear algebra package.

This method costs 1 Jacobian, 3 right-hand side evaluations, 1 matrix 
reduction, and 4 backsubstitutions for a time step that meets the 
specified integration accuracy.

In this method not all of the right-hand sides are known in advance, 
Δ4 depends on Δ3 ... depends on  Δ1. 



h = H/m Ã = (1̃ − J̃)

Ã · ∆0 = hf(yn) y1 = yn + ∆0

Ã · x = hf(yk) − ∆k−1

∆k = ∆k−1 + 2x

yk+1 = yk + ∆k

Ã · ∆m = h[f(ym) − ∆m−1]

y
n+1 = ym + ∆m

then for k=1,2 ... m-1 solving the staged equations

The variable order Bader-Deuflhard method advances a large time 
step H from yn to yn+1 by forming

closure is obtained by the last stage 



The exact number of times the staged sequence is executed depends 
on the accuracy requirements and the smoothness of the solution. 

The staged sequence is executed at least twice, yielding a 5th order 
method, or a maximum 7 times, yielding a 15th order method.

Accuracy estimates of a time step is made by comparing solutions 
from different orders. This in turn permits adaptive stepsize control. 



The Bader-Deuflard method is used in the codes for these lectures. 

Minimum cost is 1 Jacobian, 8 right-hand side evaluations, 
2 matrix reductions, and 10 backsubstitutions for a time step 
that meets the specified integration accuracy. 

Cost increases by 1 matrix reduction + m backsubstitutions for 
every order increase.

Cost/step is at least twice as large as the Euler or Kaps-Rentrop 
methods, but it may be more efficient if time steps at least twice 
as large can be taken.



Interlude



Integrating the ODEs serves two functions for stellar models.

Alpha-chain networks

The primary function, as far as the hydrodynamics is concerned, 
is to provide the magnitude and sign of the energy generation rate.
The second function is to describe the evolution of the abundances.  

Obtaining accurate values for the energy generation rate is 
expensive in terms of computer memory and CPU time. 

The largest block of memory in a stellar hydrodynamic program 
is reserved for storing the abundances at every grid point. 



For a given set of resources usage one must choose between 
having fewer isotopes or having less spatial resolution.

The general response to this tradeoff has been to evolve fewer  
isotopes, and thus calculate an approximate energy generation rate. 

The set of 13 nuclei most commonly used for this purpose are
 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni.
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 An α-chain network can give a energy generation rate that is 
generally within 20% of the energy generation rate given by larger 
reaction networks at a fraction of the cost.
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It is essential, though, to include (α,p)(p,γ) and (γ,p)(p,α) links in 
order to obtain reasonably accurate energy generation rates and 
abundances when the temperature exceeds ∼2.5 x 109 K. 

A definition of what we mean by an α-chain network is prudent. 

A strict α-chain only has (α,γ) and (γ,α) links among the 13 isotopes 
4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, and 56Ni.

At larger temperatures the flows through the (α,p)(p,γ) sequences 
are faster than the flows through (α,γ) channels. An (α,p)(p,γ) 
sequence is, effectively, an (α,γ) reaction through an intermediary.



In our α-chain network, we include 8 (α,p)(p,γ) sequences and their 
inverses by assuming steady-state proton flows through the 
intermediate isotopes 27Al, 31P, 35Cl, 39K, 43Sc, 47V, 51Mn, and 55Co.

This strategy permits inclusion of (α,p)(p,γ) sequences without 
evolving the proton or intermediate isotope abundances. 
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Run the code in hydrostatic mode for the initial conditions 
T = 3x109 K, ρ = 109 g/cm3, X(4He) = 1.0.
Plot the abundance evolution. 
What isotope dominates when? 
Run the code in explosive (adiabatic) mode (same initial conditions). 
Compare and contrast the two results.

Download, compile, and run the 13 isotope α-chain code from 
www.cococubed.com/code_pages/burn.shtml 

Tasks for the day



Questions and Discussion

Betsy Beise, University of Maryland; Philippe Chomaz, GANIL; Alexandra Gade, 
Michigan State University; Bob McKeown, California Institute of Technology; 

Frank Timmes, University of Arizona; Bill Zajc, Columbia University; John Hardy, Texas A&M University;
Dave Morrissey, Michigan State University; Witek Nazarewicz, University of Tennessee; Derek Teaney,
Stony Brook University; Michael Wiescher, University of Notre Dame; Sherry Yennello, Texas A&M University

National Science Foundation; US Department of Energy's Institute for Nuclear Theory;
Michigan State University; National Superconducting Cyclotron Laboratory (NSCL)
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